现代分子生物学-第一章共67页

合集下载

2024版年度现代分子生物学(全套课件180P)ppt课件

2024版年度现代分子生物学(全套课件180P)ppt课件
2024/2/3
链的延伸
RNA聚合酶沿DNA模板 移动,催化RNA链的延
伸。
转录终止
RNA聚合酶在特定信号 作用下停止转录,释放
RNA链。
16
转录后修饰
包括5’端加帽、3’端 加尾等修饰过程。
RNA的加工与成熟
剪接
去除内含子,连接外显子,形成成熟的 mRNA。
编辑
对某些核苷酸进行修饰或替换,改变RNA的 编码信息。
DNA复制和修复过程中的突变 和重组为生物进化提供了原材
料。
疾病发生与发展
DNA复制和修复异常可能导致 基因突变和基因组不稳定,进
而引发疾病的发生和发展。
2024/2/3
14
04
RNA转录与加工
2024/2/3
15
RNA转录的过程与机制
转录起始
RNA聚合酶与DNA模板 结合,形成转录起始复
合物。
疗。
基因治疗
通过导入正常基因或修复突变基 因,恢复细胞功能,达到治疗疾
病的目的。
精准医疗
结合基因诊断与治疗,为患者提 供定制化的治疗方案,提高治疗
效果和生活质量。
2024/2/3
26
07
分子生物学技术与应用
2024/2A重组技术
利用限制性内切酶、DNA连接酶等工具酶,实现 DNA片段的切割、连接和重组,构建重组DNA分子。
8
基因组的组成与特点
基因组的定义
基因组是一个生物体所有 基因的总和,包括核基因 组和细胞器基因组。
2024/2/3
基因组的组成
基因组由DNA序列、RNA 序列和蛋白质序列等组成, 其中DNA序列是主要的遗 传物质。
基因组的特点

《现代分子生物学》朱玉贤第四版 第1章 绪论

《现代分子生物学》朱玉贤第四版  第1章  绪论

关于诺贝尔奖
• 1962年沃森、克里克和威尔金斯获得诺贝尔生理学或医学 奖的时候,富兰克林已经在4年前因为卵巢癌而去世。按 照惯例,诺贝尔奖不授予已经去世的人。此外,同一奖项 至多只能由3个人分享,假如富兰克林活着,她会得奖吗? 性别差异是否会成为公平竞争的障碍?后人为了这个永远 不能有答案的问题进行过许多猜测与争论。
1.3.4基因组、功能基因组与生物信息学研究
• 后基因组时代生物信息学的作用将更加举足轻重, 要读懂“天书”,仅仅依靠传统的实验观察手段 无济于事,必须借助高性能计算机和高效数据处 理的算法语言。只有如此,“天书”才能发挥它 应有的价值。
• 生命科学的革命性巨变已把生物信息学推到了前 台,生物信息技术已成为后基因时代的核心技术 之一,在蛋白质组学、功能基因组学、药物基因 组学等领域必将更有用武之地,从而对生命科学 (尤其是医学)的发展产生无法估计的巨大影响。
通过DNA连接酶把不同的DNA片段连接成一个整体。a. DNA
的粘性末端; b. DNA的平末端; c. 化学合成的具有EcoRI粘性末 端的DNA片段。
重组DNA操作过程示意图
根 癌 土 壤 农 杆 菌 ( Agrobaoterium ห้องสมุดไป่ตู้umefaciens) 侵 染 植 物 细 胞 后 能 将 其 Ti (tumor inducing)质粒上的一段DNA(TDNA)插入到被侵染细胞的基因组,并能稳定 地遗传给后代,植物的遗传转化(植物基因工 程)技术随之得到迅速发展。
2、基因表达调控研究
蛋白质分子控制了细胞的一切代谢活动,而决 定蛋白质结构和合成时序的信息都由核酸(主 要是脱氧核糖核酸)分子编码,所以,基因表 达实质上就是遗传信息的转录和翻译过程。
3、结构分子生物学

朱玉贤《现代分子生物学》(第4版)笔记和课后习题(含考研真题)详解

朱玉贤《现代分子生物学》(第4版)笔记和课后习题(含考研真题)详解

目录第1章绪论 (4)1.1复习笔记 (4)1.2课后习题详解 (5)1.3名校考研真题详解 (7)第2章染色体与DNA (10)2.1复习笔记 (10)2.2课后习题详解 (17)2.3名校考研真题详解 (22)第3章生物信息的传递(上)——从DNA到RNA (36)3.1复习笔记 (36)3.2课后习题详解 (44)3.3名校考研真题详解 (49)第4章生物信息的传递(下)——从mRNA到蛋白质 (62)4.1复习笔记 (62)4.2课后习题详解 (71)4.3名校考研真题详解 (78)第5章分子生物学研究法(上)——DNA、RNA及蛋白质操作技术 (90)5.1复习笔记 (90)5.2课后习题详解 (96)5.3名校考研真题详解 (101)第6章分子生物学研究法(下)——基因功能研究技术 (114)6.1复习笔记 (114)6.2课后习题详解 (120)6.3名校考研真题详解 (124)第7章原核基因表达调控 (132)7.1复习笔记 (132)7.2课后习题详解 (138)7.3名校考研真题详解 (140)第8章真核基因表达调控 (147)8.1复习笔记 (147)8.2课后习题详解 (154)8.3名校考研真题详解 (158)第9章疾病与人类健康 (168)9.1复习笔记 (168)9.2课后习题详解 (174)9.3名校考研真题详解 (177)第10章基因与发育 (182)10.1复习笔记 (182)10.2课后习题详解 (183)10.3名校考研真题详解 (185)第11章基因组与比较基因组学 (186)11.1复习笔记 (186)11.2课后习题详解 (189)11.3名校考研真题详解 (192)第1章绪论1.1复习笔记一、分子生物的概念分子生物学是从分子水平研究生物结构、组织和功能的一门学科,以核酸、蛋白质等生物大分子的结构、形态及其在遗传信息和细胞信息传递中的作用和功能为研究对象。

现代分子生物学

现代分子生物学

现代分子生物学第一章绪论1.狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控等过程,当然也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。

2. 分子生物学研究内容: 1 DNA重组技术(基因工程)2. 基因的表达调控3. 生物大分子的结构和功能研究(结构分子生物学)4. 基因组、功能基因组与生物信息学研究第二章核酸的的结构与功能1.*遗传物质必须具有的特性:a、贮存并表达遗传信息b、能把信息传递给子代c、物理和化学性质稳定 d、具有遗传变化的能力2.*DNA的特征: 各异的碱基序列储存大量的遗传信息 2.碱基互补是其复制、转录表达遗传信息的基础3生理状态下物理、化学性质稳定. 4.有突变和修复能力,可稳定遗传是生物进化的基础3.*DNA携带两种遗传信息: a、编码蛋白质和RNA的信息(编码tRNA、rRNA) b、编码基因选择性表达的信息(二)DNA双螺旋结构模型要点: 1. DNA分子由两条相互平行但走向相反的脱氧多核苷酸链组成,两链以-脱氧核糖-磷酸-为骨架,以右手螺旋方式绕同一公共轴盘。

螺旋直径为2nm,形成大沟及小沟相间。

2. 碱基垂直螺旋轴居双螺旋内側,与对側碱基形成氢键配对(互补配对形式:A=T; G≡C)。

3. 相邻碱基平面距离0.34nm,螺旋一圈螺距3.4nm,一圈10对碱基。

4. 氢键维持双链横向稳定性,碱基堆积力维持双链纵向稳定性。

(三)双螺旋结构的基本形式:B-DNADNA结构的多态性:几种不同的DNA双螺旋结构以及同一种双螺旋结构内参数存在差异的现象* mRNA结构特点1. 大多数真核mRNA的5´末端均在转录后加上一个7-甲基鸟苷,同时第一个核苷酸的C´2也是甲基化,形成帽子结构:m7GpppNm-。

2. 大多数真核mRNA的3´末端有一个多聚腺苷酸(polyA)结构,称为多聚A尾。

* tRNA的一级结构特点:含10~20% 稀有碱基,如DHU 3´末端为— CCA-OH ;5´末端大多数为G ;具有TψC* tRNA的二级结构——三叶草形(四环四臂)氨基酸臂DHU环反密码环额外环T ΨC环(四)DNA的物理、化学性质一、变性(或融解):DNA双螺旋区的氢键断裂,使双螺旋的两条链完全分开变成单链,这一链分离的过程叫做变性1、条件:加热, 极端pH,有机溶剂(尿素、酰胺),低盐浓度等2、变性过程的表现:¤是一个爆发式的协同过程,变性作用发生在一个很窄的温度范围¤导致一些理化性质发生剧烈变化※熔液黏度降低(刚性—柔性)※沉降速度加大※浮力密度上升(体积增加,与体积成正比)※此外吸收值升高(A260nm),即增色效应:(指在DNA变性的过程中,它在260nm的吸收值先是缓慢上升,达到某一温度时及骤然上升)二、DNA分子的复性:变性DNA在适当条件下,两条彼此分开的链又可以重新地合成双螺旋结构的过程(退火)三、分子杂交:不同来源的两个互补核酸序列通过相互退火形成双螺旋结构的反应核酸酶:是指所有可以水解核酸的酶依据底物不同分类:a、DNA酶:专一降解DNA。

现代分子生物学第一章绪论

现代分子生物学第一章绪论

细胞的其它成分,如脂类、糖类和核酸 也相继在这一阶段被认识和纯化。当仍 无法解释细胞内最重要的生命活动,细 胞成分是如何进行世代相传的?
1.1.3 经典的生物化学和遗传学
孟德尔 Gregor Mendel ( 1822-
1884),奥地利科学家,
经典遗传学的奠基人,
发现并提出遗传学定
律。
1857-1864 的 7 年中,进行了豌豆的杂交研究, 1865 年发表了他的划时代的论文《植物杂交试 验》,1884年逝世;1900年他的理论被重新发现。
来,即生物是由细胞和细胞的产物所组成;
② 所有细胞在结构和组成上基本相似;
③ 新细胞是由已存在的细胞分裂而来; ④ 生物的疾病是因为其细胞机能失常。
1.1.3 经典的生物化学和遗传学 ● 19世纪中叶,植物细胞提取液得到蛋白质 实现了用酵母无细胞提取物和葡萄糖进 行氧化反应,生成乙醇,证明化学物质
1绪论2染色体与dna3生物信息的传递上从dna到rna4生物信息的传递下从mrna到蛋白质5分子生物学研究方法上dnarna及蛋白操作技术6分子生物学研究方法下基因功能研究技术7基因的表达与调控上原核8基因的表达与调控下真核9疾病与人类健康癌症病毒和基因治疗10基因与发育11基因组与比较基因组学第一章绪论11引言12分子生物学简史13分子生物学研究内容14分子生物学展望11引言111创世说与进化论达尔文1859年物种起源确立了进化论的概念18311836年以博物学家的身份乘贝格尔号参加了英国派遣的环球航行喜欢观察各种小动习惯
第一章
1.1 引言
绪论
1.2 分子生物学简史 1.3 分子生物学研究内容 1.4 分子生物学展望
1.1 引言
1.1.1创世说与进化论

2024年度现代分子生物学课件完整版

2024年度现代分子生物学课件完整版
13
DNA重组的方式与意义
01
02
03
04
同源重组
发生在同源序列之间的重组, 包括交叉互换和非交叉互换两
种类型
位点特异性重组
发生在特定DNA序列之间的 重组,需要特定的重组酶催化
2024/3/24
转座重组
通过转座子的移动实现的 DNA重组
DNA重组的意义
促进生物进化,产生生物多样 性;参与基因表达调控;修复
翻译水平调控
通过mRNA的稳定性、翻译起始速率等因素控 制蛋白质合成的数量和质量。
表观遗传学调控
通过DNA甲基化、组蛋白修饰等方式影响基因表 达的可遗传变化。
2024/3/24
适应环境变化
使生物体能够根据不同环境条件调整基因表达模式 ,以维持内环境稳定。
细胞分化与发育
在细胞分化和发育过程中,基因表达调控确保不 同细胞类型具有独特的表型特征。
2024/3/24
4
分子生物学的研究内容
生物大分子的结构与功能
遗传信息的传递与表达
研究生物大分子如蛋白质、核酸等的结构 特点、理化性质以及生物功能。
研究DNA复制、RNA转录和蛋白质翻译等 遗传信息传递过程及其调控机制。
基因表达的调控
细胞信号传导与基因表达调控
研究基因表达的时空特异性以及环境因素 对基因表达的影响。
蛋白质相互作用研究
利用酵母双杂交、免疫共沉淀等技术研究蛋 白质之间的相互作用及其功能。
2024/3/24
蛋白质测序
利用质谱等技术对蛋白质序列进行测定,包 括肽质量指纹图谱、蛋白质组学等。
蛋白质表达与功能分析
通过基因工程手段在特定宿主中表达目标蛋 白质,研究其结构和功能。

2024版《现代分子生物学》朱玉贤第五版北大课件

2024版《现代分子生物学》朱玉贤第五版北大课件
翻译后加工
新生肽链经过加工修饰,如剪切、 折叠、修饰等,成为具有生物活性 的蛋白质。
20
蛋白质翻译后加工修饰类型举例
2024/1/28
N-端fMet或Met的切除
新生肽链N-端的甲硫氨酸或甲酰甲硫氨酸通常被切 除。
二硫键的形成
半胱氨酸残基之间可以形成二硫键,对蛋白质的稳 定性和活性有重要作用。
化学修饰
生物工程
表观遗传学机制可以影响细胞的分化和发育,因此通过表观遗传学手段来改造细胞或生物体可能成为一种新 的生物工程技术。例如,利用表观遗传学手段来实现细胞重编程和再生医学应用。
26
06
现代分子生物学技术应用与 发展趋势
2024/1/28
27
DNA测序技术原理及应用领域拓展
DNA测序技术原理
通过特定的生物化学方法,将 DNA片段化并逐一测定其碱基序 列,从而获得完整的基因序列信
组修复等。
DNA损伤修复对于维持细胞基 因组稳定性和防止突变具有重要
意义。
2024/1/28
11
基因突变与遗传多样性
基因突变是指DNA序列中碱基的替换、 插入或缺失。
基因突变是生物进化的原材料,对于 生物适应环境和进化具有重要意义。
2024/1/28
基因突变可以产生新的等位基因,增 加遗传多样性。
序列比对与注释
01
利用生物信息学方法对基因序列进行比对和注释,揭示基因功
能和进化关系。
基因表达谱分析
02
通过高通量测序技术,研究基因在不同条件下的表达谱变化,
解析基因调控网络。
蛋白质结构与功能预测
03
利用生物信息学方法预测蛋白质的三维结构和功能,为药物设
计和蛋白质工程提供理论支持。

现代分子生物学课件

现代分子生物学课件

DNA聚合酶
▪ DNA分子切割
限制性内切酶
▪ DNA片段与载体连接
DNA连接酶
▪ DNA凝胶电泳
▪ 细胞转化及重组子的筛选与鉴定等
2020/12/8
16
分子生物学的研究内容
DNA重组技术
三大基本工具: ➢ “分子手术刀” 限制性核酸内切酶 ➢ “分子缝合针” DNA连接酶 ➢ “分子运输车” 基因进入受体细胞的载体
(4)基因组、功基因组与生物信息学研究
基因组(genome): 生物有机体的单倍体细胞中的所有DNA,包括
核中的染色体DNA和线粒体、叶绿体等亚细胞器中 的DNA。
P. 456
2020/12/8
24
分子生物学的研究内容 基因组、功能基因组与生物信息学研究
基因组计划: 测定基因组序列。
- 人类基因组计划 目的是揭开人类所有的遗传结构, 包括所有的基因(尤其是与疾病相关的基因)和基因外 序列的结构。1990年-2001年,美、英、法、德、 日、中 6 国的合作已完成人类基因的全部序列测定工 作。见表2-1, P. 19. - 小家鼠、果蝇、线虫、拟南芥、水稻、啤酒酵母,以 及多种真菌、细菌的基因组研究相继展开,其中拟南 芥基因组的全序列测定已完成。
结构分子生物学
结构分子生物学就是研究生物大分子特定的空间结 构及结构的运动变化与其生物学功能关系的科学。
主要包括三个研究方向: ✓ 结构的测定 采用X射线衍射、二维或多维核磁共振等方法 ✓ 结构运动变化规律的探索 ✓ 结构与功能相互关系的建立
2020/12/8
23
分子生物学的研究内容 基因组、功能基因组与生物信息学研究
(3.2 108bp)。 ➢2001年, 完成人类基因组全序列测定(3.5 109bp)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
他们还推测存在一种与DNA序列相互补、能 将它所编码的遗传信息带到蛋白质合成场所并 翻译产生蛋白质的mRNA(信使核糖核酸)。
对分子生物学的发展产生了极其重要的 指导作用。
Francois Jacob (Left), Jacques Monod (Center) &
Andre Lwoff (Right),1965分享了诺贝尔生理医学奖
三、现代分子生物学发展中的主要里程碑
孟德尔的 遗传学规律 最先使人们对 性状遗传 产生了理性认识
Gregor Mendel (1822-1884). The Father of Genetics
• 孟德尔(奥地利)的遗传学规律最先使人们 对性状遗传产生了理性认识;
• Morgan(美)的基因学说则进一步将“性 状”与“基因”相耦联,成为分子遗传学的 奠基石。
了道路。
1953, Watson &
Crick 提出DNA的反向平 行双螺旋模型; Wilkins通过对 DNA分子的X射线 衍射研究证实了该 模型。
Rosalind E. Franklin
1920-1958
• 1961年,法国科学家Jacob和Monod提出 并证实了操纵子(operon)作为调节细菌细 胞代谢的分子机制。
Barbra McClintock
• 1975年,美国人Temin、Dulbecco和 Baltimore由于发现在RNA肿瘤病毒中存在以 RNA为模板,逆转录生成DNA的逆转录酶而 共享诺贝尔生理医学奖;
• 1989年,(美)Altman和Cech发现某些RNA 具有酶的功能而共享Nobel化学奖;
二、分子生物学发展的三个阶段
(一) 准备和酝酿阶段 (二) 现代分子生物学的建立和发展阶段 (三) 初步认识生命本质并改造生命的深
入发展阶段
二、分子生物学发展的三个阶段
(一) 准备和酝酿阶段 (19世纪后期到20世纪50年代初)
1、确定了蛋白质是生命的主要物质基础; 2、确定了生物遗传物质基础是DNA
主要参考书
1.《现代分子生物学》 朱玉贤、李毅第三版(2019)
2. Genes VIII (IX). Benjamin Lewin
3. Molecular Biology of the Gene James D. Watson, et al. 2019 第五版4.《现代遗传学原来自》 徐晋麟等,科学出版社,2019
• 1910年,德国科学家Kossel第一个分离了 腺嘌呤,胸腺嘧啶和组氨酸, 获诺贝尔生理医 学奖。
• 1959年,美国科学家Uchoa第一次合成了 核糖核酸,实现了将基因内的遗传信息通过 RNA翻译成蛋白质的过程。
• 1959年,Kornberg实现了试管内细菌细胞 中DNA的复制。
Watson和Crick所提出的脱氧核糖酸双螺旋 模型,为充分揭示遗传信息的传递规律铺平
2
数学
1
18. 2
0
生物
38
19. 1
8
2019年SCI收录的6000余种期刊的影响因子中
CA-CANCER J CLIN ANNU REV IMMUNOL NEW ENGL J MED ANNU REV BIOCHEM NAT REV CANCER NAT REV MOL CELL BIO SCIENCE CELL NAT REV IMMUNOL NATURE
课程基本要求
• 熟知核酸的基本生物化学特性; • 熟知生物信息的储存与表达过程; • 掌握DNA、RNA和蛋白质的基本代谢过程,特别
是基因的一般结构与生物功能,基因活性的修饰 与调节; • 掌握分子克隆与DNA重组的基本技术与原理,了 解现代分子生物学基本研究方法,了解基因治疗 与基因组学的新成果,新进展。
• 统计全世界引用指数(Impact factor)在10以上 的超一流学术刊物,也发现80%左右是生物科学 相关刊物。
表 1.引 用 指 数 在 10 以 上 的 自 然 科 学 刊 物 分 科 比 较
学 科 杂志总数 平均引用指数 >30 杂志 数
总论
3
17. 8
0
化学
2
11. 8
0
物理
5
22. 0
1968年,Nirenberg,Holley和Khorana共享诺贝尔 生理医学奖 • Nirenberg:破译DNA遗传密码; • Holley:阐明了酵母丙氨酸tRNA的核苷酸序列, 并证实了所有tRNA具有结构上的相似性; • Khorana:第一个合成了核酸分子,并且人工复制 了酵母基因。
• 1972年,Paul Berg(美)第一次进行了 DNA重组。
• 1977年,Sanger和Gilbert(英)第一次进 行了DNA序列分析。
1980年,获诺贝尔化学奖
1983年,McClintock由于在50年代提出并发 现了可移动遗传因子(jumping gene或称 mobile element)而获得Nobel奖。
63.342 47.237 44.016 36.525 31.583 31.354 30.028 29.194 28.697 26.681
分子生物学
• 是研究核酸、蛋白质等生物大分子的形态、结构特 征及其重要性、规律性和相互关系的科学;
• 是人类从分子水平上真正揭示生物世界的奥秘,由 被动地适应自然界转向主动地改造和重组自然界的 基础学科。
(二) 现代分子生物学的建立和发展阶段 ( 20世纪50年代初到70年代初)
• 1、DNA双螺旋结构模型(1953) (现代分子生物学诞生的里程碑)
• 2、遗传信息传递中心法则的建立 • 3、对蛋白质结构与功能的进一步认识
(三)现代分子生物学深入发展的阶段 • 1、重组DNA技术的建立和发展; • 2、基因组研究; • 3、单克隆抗体及基因工程抗体技术; • 4、基因表达调控机理; • 5、细胞信号转导机理研究。
5. Lehninger Principles of Biochemistry, 2019 第五版
第一章 绪 论
一、二十一世纪是现代生物科学的世纪
• 统计美国“科学引文索引(Science Citation Index, SCI)”收录的6080余种学术刊物,发现有4000种 左右为生物科学相关杂志!
相关文档
最新文档