现代分子生物学(第二版)课后答案 第四章生物信息的传递(下)

合集下载

现代分子生物学课后答案(朱玉贤_第三版)上

现代分子生物学课后答案(朱玉贤_第三版)上

第一章绪论2.写出DNA和RNA的英文全称。

答:脱氧核糖核酸(DNA, Deoxyribonucleic acid),核糖核酸(RNA, Ribonucleic acid)4.早期主要有哪些实验证实DNA是遗传物质?写出这些实验的主要步骤。

答:一,肺炎双球菌感染实验,1,R型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。

2,S型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。

3,用加热的方法杀死S型细菌后注入到小鼠体内,小鼠不死亡;二,噬菌体侵染细菌的实验:1,噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。

2,DNA中P的含量多,蛋白质中P的含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。

用35P标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部;而用32P标记DNA的噬菌体侵染细菌后,细菌体内有放射性,即表明噬菌体的DNA进入了细菌体内。

三,烟草TMV的重建实验:1957年,Fraenkel-Conrat等人,将两个不同的TMV株系(S株系和HR株系)的蛋白质和RNA分别提取出来,然后相互对换,将S株系的蛋白质和HR株系的RNA,或反过来将HR株系的蛋白质和S株系的RNA放在一起,重建形成两种杂种病毒,去感染烟草叶片。

6.说出分子生物学的主要研究内容。

答:1,DNA重组技术;2,基因表达调控研究;3,生物大分子的结构功能研究----结构分子生物学;4,基因组、功能基因组与生物信息学研究。

第二章染色体与DNA3.简述真核生物染色体的组成及组装过程真核生物染色体除了性细胞外全是二倍体,DNA以及大量蛋白质及核膜构成的核小体是染色体结构的最基本单位。

核小体的核心是由4种组蛋白(H2A、H2B、H3和H4)构成的扁球状8聚体。

蛋白质包括组蛋白与非组蛋白。

现代分子生物学课后习题及答案(共10 章) 第一章绪论1 你对现代分子

现代分子生物学课后习题及答案(共10 章) 第一章绪论1 你对现代分子

现代分子生物学课后习题及答案(共 10 章)第一章绪论 1. 你对现代分子生物学的含义和包括的研究范围是怎么理解的? 2. 分子生物学研究内容有哪些方面? 3. 分子生物学发展前景如何? 4. 人类基因组计划完成的社会意义和科学意义是什么?答案: 1. 分子生物学是从分子水平研究生命本质的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。

狭义:偏重于核酸的分子生物学,主要研究基因或 DNA 的复制、转录、表达和调节控制等过程,其中也涉及与这些过程有关的蛋白质和酶的结构与功能的研究。

分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。

所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。

这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。

这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。

阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。

2. 分子生物学主要包含以下三部分研究内容:A.核酸的分子生物学,核酸的分子生物学研究核酸的结构及其功能。

由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(moleculargenetics)是其主要组成部分。

由于 50 年代以来的迅速发展,该领域已形成了比较完整的理论体系和研究技术,是目前分子生物学内容最丰富的一个领域。

研究内容包括核酸/基因组的结构、遗传信息的复制、转录与翻译,核酸存储的信息修复与突变,基因表达调控和基因工程技术的发展和应用等。

分子生物学课后习题答案

分子生物学课后习题答案

第一章第一章 绪论绪论o DNA 重组技术和基因工程技术。

DNA 重组技术又称基因工程技术,目的是将不同DNA 片段(基因或基因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。

细胞的新的遗传性状。

DNA 重组技术是核酸化学、蛋白质化学、酶工程及微生物学、遗传学、细胞学长期深入研究的结晶,究的结晶,而限制性内切酶而限制性内切酶DNA 连接酶及其他工具酶的发现与应用则是这一技术得以建立的关键。

的关键。

DNA 重组技术有着广泛的应用前景。

重组技术有着广泛的应用前景。

首先,首先,DNA 重组技术可以用于大量生产某些在正常细胞代谢中产量很低的多肽,如激素、抗生素、酶类及抗体,提高产量,降低成本。

其次,DNA 重组技术可以用于定向改造某些生物的基因结构,使他们所具有的特殊经济价值或功能成百上千倍的提高。

能成百上千倍的提高。

o 请简述现代分子生物学的研究内容。

1、DNA 重组技术(基因工程)2、基因表达调控(核酸生物学)3、生物大分子结构功能(结构分子生物学)4、基因组、功能基因组与生物信息学研究、基因组、功能基因组与生物信息学研究第二章第二章 遗传的物质基础及基因与基因组结构遗传的物质基础及基因与基因组结构o 核小体、DNA 的半保留复制、转座子。

核小体是染色质的基本结构单位。

是由H2A 、H2B 、H3、H4各两分子生成八聚体和由大约200bp 的DNA 构成的。

核小体的形成是染色体中DNA 压缩的第一步。

压缩的第一步。

DNA 在复制过程中,每条链分别作为模板合成新链,产生互补的两条链。

这样新形成的两个DNA 分子与原来DNA 分子的碱基顺序完全一样。

因此,每个子代分子的一条链来自亲代DNA ,另一条链则是新合成的,这种复制方式被称为DNA 的半保留复制。

转座子是存在染色体DNA 上的可自主复制和移位的基本单位。

转座子分为两大类:插入序列和复合型转座子。

现代分子生物学课后习题集及答案(朱玉贤

现代分子生物学课后习题集及答案(朱玉贤

现代分子生物学课后习题集及答案(朱玉贤现代分子生物学课后习题及答案(共10章)第一章绪论1.你对现代分子生物学的含义和包括的研究范围是怎么理解的?2. 分子生物学研究内容有哪些方面?3. 分子生物学发展前景如何?4. 人类基因组计划完成的社会意义和科学意义是什么?答案:1.分子生物学是从分子水平研究生命本质的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。

狭义:偏重于核酸的分子生物学,主要研究基因或 DNA 的复制.转录. 达和调节控制等过程,其中也涉及与这些过程有关的蛋白质和酶的结构与功能的研究。

分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。

所谓在分子水平上研究生命的本质主要是指对遗传. 生殖.生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。

这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内.细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。

这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。

阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。

2. 分子生物学主要包含以下三部分研究内容:A.核酸的分子生物学,核酸的分子生物学研究核酸的结构及其功能。

由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(moleculargeics)是其主要组成部分。

由于50 年代以来的迅速发展,该领域已形成了比较完整的理论体系和研究技术,是目前分子生物学内容最丰富的一个领域。

研究内容包括核酸/基因组的结构.遗传信息的复制.转录与翻译,核酸存储的信息修复与突变,基因达调控和基因工程技术的发展和应用等。

(完整word版)[已整理]现代分子生物学复习要点及习题

(完整word版)[已整理]现代分子生物学复习要点及习题

(完整word版)[已整理]现代分子生物学复习要点及习题第一章绪论分子生物学分子生物学的基本含义(p8)分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。

分子生物学与其它学科的关系分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以至信息科学等多学科相互渗透、综合融会而产生并发展起来的,凝聚了不同学科专长的科学家的共同努力。

它虽产生于上述各个学科,但已形成它独特的理论体系和研究手段,成为一个独立的学科。

生物化学与分子生物学关系最为密切:生物化学是从化学角度研究生命现象的科学,它着重研究生物体内各种生物分子的结构、转变与新陈代谢。

传统生物化学的中心内容是代谢,包括糖、脂类、氨基酸、核苷酸、以及能量代谢等与生理功能的联系。

分子生物学则着重阐明生命的本质----主要研究生物大分子核酸与蛋白质的结构与功能、生命信息的传递和调控。

细胞生物学与分子生物学关系也十分密切:传统的细胞生物学主要研究细胞和亚细胞器的形态、结构与功能。

探讨组成细胞的分子结构比单纯观察大体结构能更加深入认识细胞的结构与功能,因此现代细胞生物学的发展越来越多地应用分子生物学的理论和方法。

分子生物学则是从研究各个生物大分子的结构入手,但各个分子不能孤立发挥作用,生命绝非组成成分的随意加和或混合,分子生物学还需要进一步研究各生物分子间的高层次组织和相互作用,尤其是细胞整体反应的分子机理,这在某种程度上是向细胞生物学的靠拢。

第一章序论1859年发表了《物种起源》,用事实证明“物竞天择,适者生存”的进化论思想。

指出:物种的变异是由于大自然的环境和生物群体的生存竞争造成的,彻底否定了“创世说”。

达尔文第一个认识到生物世界的不连续性。

意义:达尔文关于生物进化的学说及其唯物主义的物种起源理论,是生物科学史上最伟大的创举之一,具有不可磨灭的贡献。

(NEW)朱玉贤《现代分子生物学》(第5版)笔记和课后习题(含考研真题)详解

(NEW)朱玉贤《现代分子生物学》(第5版)笔记和课后习题(含考研真题)详解

4.3 名校考研真题详解 第5章 分子生物学研究法(上)——DNA、RNA及蛋白质操作技术
5.1 复习笔记 5.2 课后习题详解 5.3 名校考研真题详解 第6章 分子生物学研究法(下)——基因功能研究技术 6.1 复习笔记 6.2 课后习题详解 6.3 名校考研真题详解 第7章 原核基因表达调控 7.1 复习笔记 7.2 课后习题详解 7.3 名校考研真题详解 第8章 真核基因表达调控 8.1 复习笔记 8.2 课后习题详解 8.3 名校考研真题详解
② T2噬菌体感染大肠杆菌实验
a.在分别含有35S和32P的培养基中培养大肠杆菌。
b.用上述大肠杆菌培养T2噬菌体,分别制备含35S的T2噬菌体和32P的
T2噬菌体。
c.分别用含35S的T2噬菌体和32P的T2噬菌体感染未被放射性标记的大 肠杆菌。
d.培养一段时间后,将混合液离心,检测子代噬菌体放射性。上清液 主要是噬菌体,沉淀物主要是大肠杆菌。
(4)基因组、功能基因组与生物信息学研究
基因组计划是一项国际性的研究计划,其目标是确定生物物种基因组所 携带的全部遗传信息,并确定、阐明和记录组成生物物种基因组的全部 DNA序列。
功能基因组学相对于测定DNA核苷酸序列的结构基因组学,其研究内容 是在利用结构基因组学丰富信息资源的基础上,应用大量的实验分析方 法并结合统计学和计算机分析方法来研究基因的表达、调控与功能,以 及基因间、基因与蛋白质之间和蛋白质与底物、蛋白质与蛋白质之间的 相互作用和生物的生长发育等规律。功能基因组学的研究目标是对所有 基因如何行使其职能从而控制各种生命现象的问题作出回答。
严格地说,重组DNA技术并不完全等于基因工程,因为后者还包括其他
可能使生物细胞基因组结构得到改造的体系。

分子生物学4 生物信息的传递(下)——从RNA到蛋白质

分子生物学4  生物信息的传递(下)——从RNA到蛋白质

第四章生物信息的传递(下)从——从mRNA到蛋白质第四节蛋白质合成的生物学机制五、蛋白质前体的加工新生的多肽链大多数是没有功能的,必须经过加工修饰才能变为有功能的蛋白质。

1. N端fMet或Met的切除细菌新合成的肽链第一个氨基酸残基是什么?(甲酰甲硫氨酸)。

真核生物新合成的肽链第一个氨基酸残基是什么?(甲硫氨酸)。

细菌蛋白质N端的甲酰基能被脱甲酰化酶水解,不管是原核生物还是真核生物N端的甲硫氨酸往往在多肽链合成完毕之前就被切除。

有些新生蛋白质在去掉N端一部分残基后变成有功能的蛋白质。

有些动物病毒如脊髓灰质炎病毒的mRNA可翻译成很长的多肽链,含多种病毒蛋白,经过蛋白酶在特定位置上水解后得到几个有功能的蛋白质分子。

2. 二硫键的形成mRNA中没有胱氨酸的密码子,而不少蛋白质都含有二硫键,这是蛋白质合成后通过两个半胱氨酸的氧化作用生成的。

3. 特定氨基酸的修饰(1)氨基酸侧链的修饰包括磷酸化、糖基化、甲基化、乙酰化、羟基化和羧基化。

A、磷酸化:主要由多种蛋白激酶催化,发生在丝氨酸、苏氨酸、酪氨酸等氨基酸的侧链。

B、糖基化:大多数糖基化是由内质网中的糖基化酶催化的。

C、甲基化:蛋白质的甲基化是由N-甲基转移酶催化的,该酶主要存在于细胞质基质中。

甲基化包括发生在Arg(精氨酸)、His(组氨酸)和Gln(谷氨酰胺)的侧链的N-甲基化以及Glu(谷氨酸)和Asp(天冬氨酸)侧基的O-甲基化。

D、乙酰化:N-乙酰转移酶催化多肽链的N端乙酰化。

发生在赖氨酸侧链上的ε-NH2.(2)蛋白质N-糖基化修饰糖蛋白主要是通过蛋白质侧链上的天冬氨酸、丝氨酸、苏氨酸残基加上糖基出现的。

在内质网膜内侧的脂肪酸长链被磷酸化后加上由N-乙酰葡萄糖胺、甘露糖、葡萄糖组成的低聚糖链。

在糖基化过程中,先切去信号肽,再由低聚糖转移酶催化将N-乙酰葡萄糖胺、甘露糖、葡萄糖组成的低聚糖链转移到肽链N-端的天冬氨酸残基上。

Membrance(膜)oligosacchary I transferase(低聚糖转移酶)Dolichol phosphate(磷酸脂多萜醇)N-Acetylglucosamine(N-乙酰葡萄糖胺)Mannose(甘露糖)Glucose(葡萄糖)Asn(天冬氨酸)(3)蛋白质N-糖基化的主要场所是内质网4. 切除新生肽链中非功能片段(1)前胰岛素原蛋白翻译后成熟过程示意图新合成的胰岛素前体是前胰岛素原,必须先切去信号肽变成胰岛素原,再切去B-肽,才变成有活性的胰岛素。

现代分子生物学第四章演示教学

现代分子生物学第四章演示教学
Nirenberg及Ochoa等又用各种特定序 列如只含A、C的共聚核苷酸作模板,任意 排列时可出现8种三联子,即CCC、CCA、 CAC、ACC、CAA、ACA、AAC、AAA, 获 得 由 Asn 、 His 、 Pro 、 Gln 、 Thr 、 Lys 等6种氨基酸组成的多肽。
12
核糖体结合技术
• 蛋白质合成是一个需能反应。
3
• 翻译是指将mRNA链上的核苷酸从一个特定的 起始位点开始,按每3个核苷酸代表一个氨基 酸的原则,依次合成一条多肽链的过程。
4
4. 1. 1 三联子密码及其破译
因为mRNA中只有4种核苷酸,蛋白质中有20 种氨基酸:
• 以一种核苷酸代表一种氨基酸是不可能的。 • 若以两种核苷酸作为一个氨基酸的密码(二
第四讲 生物信息的传递 (下)从mRNA到蛋白质
1
主要内容: 1、遗传密码-三联子 2、tRNA 3、核糖体 4、蛋白质合成的生物学机制 5、蛋白质运转机制
2
蛋白质的生物合成
• 核糖体是蛋白质合成的场所;
• mRNA是蛋白质合成的模板;
• 转移RNA (tRNA)是模板与氨基酸之 间的接合体。
• 蛋白质合成需要多种蛋白质、酶和 其他生物大分子的参与。
以人工合成的三核苷酸如UUU、UCU、UGU 等为模板,在含核糖体、AA-tRNA的适当离子 强度的反应液中保温后通过硝酸纤维素滤膜。游 离的AA-tRNA因相对分子质量小能自由过膜, 与模板对应的AA-tRNA能与核糖体结合,体积 超过膜上的微孔而被滞留。
13
4. 1. 2 遗传密码的性质
密码的连续性(commaless) 密码的简并性(degeneracy) 密码的普遍性(universality) 密码的特殊性(specificity) 密码子与反密码子的相互作用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章生物信息的传递(下)----从mRNA到蛋白质
1,遗传密码有哪些特征?
答:1,密码的连续性,密码之间无间断也没有重叠;2,密码的简并性,许多氨基酸都有多个密码子;3,密码的通用性和特殊性,遗传密码无论在体内还是在体外,无论是对病毒、细菌、动物还是植物而言都是通用的,但是也有少数例外;4,密码子和反密码子的相互作用。

2,有几种终止密码子?它们的序列和别名分别是什么?
答:3种,UAA、UAG和UGA,别名是无意义密码。

3,简述摆动学说。

答:1966年,Crick根据立体化学原理提出摆动学说,解释了反密码子中某些稀有成分的配对。

摆动学说认为,在密码子与反密码子的配对中,前两对严格遵守碱基配对原则,第三对碱基有一定的自由度,可以“摆动”,因而使某些tRNA可以识别1个以上的密码子。

认为除A-U、G-C配对外,还有非标准配对,I-A、I-C、I-U,并强调密码子的5’端第1、2个碱基严格遵循标准配对,而第3个碱基可以非标准配对,具有一定程度的摆动灵活性。

4,tRNA在组成和结构上有哪些特点?
答:1.tRNA中含有稀有碱基,除ACGU 外还含有双氢尿嘧啶、假尿嘧啶等;2.tRNA分子形成茎环节构;3.tRNA 分子末端有氨基酸接纳茎;4.tRNA分子序列中很有反密码子。

5,比较原核与真核的核糖体组成。

答:1,真核细胞中的核糖体数量多余原核;2,真核细胞中核糖体RNA占细胞中总RNA的量少于原核;3,原核生物的核糖体通过与mRNA的相互作用,被固定在核基因组上,真核生物的核糖体则直接或间接的与细胞骨架有关联或者与内质网膜结构相连;4,原核生物核糖体由约RNA占2/3及1/3的蛋白组成,真核生物核糖体中RNA 占3/5,蛋白质占2/5。

6,什么是SD序列?其功能是什么?
答:SD序列是指信使核糖核酸(mRNA)翻译起点上游与原核16S 核糖体RNA或真核18S rRNA 3′端富含嘧啶的7核苷酸序列互补的富含嘌呤的3~7个核苷酸序列(AGGAGG),是核糖体小亚基与mRNA结合并形成正确的前起始复合体的一段序列。

功能:SD序列对mRNA的翻译起重要作用。

7,核糖体有哪些活性中心?
答:核糖体包括多个活性中心,即mRNA结合部位、结合或接受AA-tRNA部位,结合或接受肽酰-tRNA部位,肽基转移部位及形成肽键的部位,此外还有负责肽链延伸的各种延伸因子的结合位点。

8,真核生物与原核生物在翻译起始过程中有哪些区别?
答:原核生物的起始tRNA是fMet-tRNA,真核生物是Met-tRNAMet。

原核生物中30S小亚基首先与mRNA 模版相结合,再与fMet-tRNA结合,最后与50S大亚基结合。

而在真核生物中,40S小亚基首先与Met-tRNAMet 相结合,再与模版mRNA结合,最后与60S大亚基结合生成80S.mRNA.Met-tRNAMet起始复合物。

9,链霉素为什么能够抑制蛋白质的合成?
答:链霉素是是一种氨基葡萄糖型抗生素,分子式C21H39N7O12,可以多种方式抑制原核生物核糖体,能干扰fMet-tRNA与核糖体的结合,从而阻止蛋白质合成的正确起始,也会导致mRNA的错读。

10,什么是信号肽?它在序列组成上有什么特点?有什么功能?
答:绝大部分被运入内质网腔的蛋白质都带有一个信号肽,该序列常常位于蛋白质的氨基端,长度一般都在13-16个残基,有如下三个特征:1,一般带有10-15个疏水残基;2,在靠近该序列N端常常带有一个或者数个带正电荷的氨基酸;3,在其C端靠近蛋白酶切割位点处常常带有数个极性氨基酸。

功能:完整的信号肽是保证蛋白质转运的必要条件。

11,简述叶绿体蛋白质的跨膜运输机制。

答:1,活性蛋白水解酶位于叶绿体基质内;2,叶绿体膜能够特异性的与叶绿体蛋白的前体结合;3,叶绿体蛋白质前体内可降解序列因植物和蛋白质种类不同而表现出明显的差异;
12,蛋白质有哪些翻译后的加工修饰?
答:1、氨基端和羧基端的修饰;2.共价修饰:磷酸化、糖基化、羟基化、二硫键的形成;3.亚基的聚合;4.水解断链,切除新生肽中非功能片段。

13,什么是核定位序列?其主要功能是什么?
答:核定位序列:蛋白质的一个结构域,通常为一短的氨基酸序列,它能与入核载体相互作用,使蛋白能被运进细
胞核。

在绝大多数多细胞真核生物中,每当细胞发生分裂时,核膜被破坏,等到细胞分类完成后,核膜被重新建成,分散在细胞内的核蛋白必须被重新运入核内,为了核蛋白的重复定位,这些蛋白质中的信号肽----被称为核定位序列。

相关文档
最新文档