采用卡尔曼滤波器对惯性导航平台快速精对准_最初试验结果

合集下载

惯性导航初始对准方法研究进展

惯性导航初始对准方法研究进展

Vol. 27 No. 12Dec. 2020第27卷第12期2020年12月电光与控制Electronics Optics & Control Key words : inertial navigation ; initial alignment ;o 引言惯性导航是一种对加速度计和陀螺仪输出进行积 分运算从而获得系统瞬时速度、姿态、位置的技术,其不 依赖外部信息,也不向外部辐射能量。

为获得高精度的 惯导输出首先要保证初始对准的准确性,同时在应用的过程中也对初始对准的速度提出了一定的要求。

目前初始对准的方法主要分为3类。

第一类是传引用格式:郭银景,杨文健,刘珍•惯性导航初始对准方法研究进展[J].电光与控制,2020,27( 12) :63-68. GUO Y J, YANG W J, LIU 乙An over ­view of initial alignment methods in inertial navigation [ J ]. Electronics Optics & Control, 2020, 27(12) :63-68.惯性导航初始对准方法研究进展郭银景,杨文健,刘珍(山东科技大学电子信息工程学院,山东青岛266590)摘 要:初始对准是惯导系统中的关键技术之一,其对准的时间和精度直接影响惯导系统的工作性能。

从建模误差、惯性传感器随机误差、环境扰动及不可预测因素3个方面分析了当前惯导系统初始对准的研究难点,然后从传统两阶 段、非线性对准、基于优化的对准3类对准方法以及运动对准方面重点阐述了当前初始对准的研究进展。

在进一步的 研究中,将人为操纵因素表述为扰动融入误差模型,结合新型强跟踪滤波器处理水下非线性非高斯噪肓等方法,有望使惯导系统初始对准的速度、精度和适用性实现新的提升。

关键词:惯性导航;初始对准;运动对准中图分类号:U666.12 文献标志码:A dot : 10.3969/j. issn. 1671 -637X.2020.12.014An Overview of Initial Alignment Methodsin Inertial NavigationGUO Yinjing, YANG Wenjian, LIU Zhen(College o£ Electronics and Information Engineering, Shandong University o£ Science and Technology, Qingdao 266590, China)Abstract : Initial alignment is one of the key technologies in the inertial navigation system, and the alignedtime and alignment accuracy will directly affect the performance of the inertial navigation system. This paperanalyzes current research difficulties in initial alignment of the inertial navigation system from the following three aspects : Modeling errors, random errors of the inertial sensor, environmental disturbances and other unpredictable factors. Then, this paper focuses on the current research progress of initial alignment in termsof three types of methods : Traditional two-stage alignment, nonlinear alignment and optimization-basedalignment, as well as motion alignment. In future research, the speed, accuracy and applicability of initial alignment of the inertial navigation system will be further improved by taking manipulation factors as disturbances, adding them to the error model, and using a new type of strong tracking filter to deal withunderwater nonlinear non-Gaussian noise.tion alignment统的两阶段方法,将过程分为粗对准和精对准两部分。

中等精度惯性卫星组合导航系统设计

中等精度惯性卫星组合导航系统设计

中等精度惯性/卫星组合导航系统设计王超一 ZY1203209张天钧 ZY1203233张鑫 ZY1203234一、系统功能1)惯性/卫星组合系统简介组合导航是弹道导弹等大型空间飞行器导航定位技术主要的发展方向之一。

应用具有完全自主性的惯性导航系统和高精度卫星导航系统构成惯性/ 卫星组合导航系统,是最具有应用前景的组合导航架构。

全球定位系统(Globe Position System,GPS)和捷联惯性导航系统(SINS)都是目前世界上应用广泛的导航方法之一。

GPS易受地形地物的影响而导致定位中断,并且受制于人,而SINS定位误差随时间而积累,若将它们组合起来可形成优势互补并且在短期和长期上都有保证。

随着现代电子信息技术的发展.嵌人式技术的应用越来越广泛,尤其是在导航领域,导航设备正朝小型化、微型化应用发展,而且对系统精度和实时性要求也越来越高。

SINS/GPS组合导航能够增强导航系统容错能力和余度能力,研究高精度、高可靠性、小体积、低成本的SINS/GPS组合导航系统具有重要意义。

在飞机、舰船或其他对导航系统体积和性能有严格要求的领域具有潜在的应用价值。

为克服GPS和SINS各自的缺点,根据SINS和GPS的导航功能互补的特点,取长补短,构成一个有机的整体,提高系统的整体导航精度及导航性能以及空中对准和再对准的能力。

GPS接收机在惯导位置和速度信息的辅助下,也将改善捕获、跟踪和再捕获能力,并在卫星分布条件差或可见星少的情况下导航精度不致下降过大。

由于优点显著,SINS /GPS组合系统被一致认为是飞行载体最理想的组合导航系统。

2)系统基本构成组合导航系统的基本组成如图 1 所示。

在图 1 中,只保留惯性导航系统、卫星导航系统与信息融合系统,就构成惯性/ 卫星组合导航系统的基本组成。

其中惯性导航系统有陀螺稳定平台导航系统与捷联惯性测量组合导航系统 2 种类型。

捷联惯性测量组合精度较低,一般仅在中近程空间飞行器上使用。

《惯性导航系统快速传递对准技术》记录

《惯性导航系统快速传递对准技术》记录

《惯性导航系统快速传递对准技术》阅读笔记1. 惯性导航系统快速传递对准技术概述惯性导航系统(Inertial Navigation System,简称INS)是一种利用陀螺仪、加速度计和磁力计等传感器实时测量物体的角速度、加速度和磁场等信息,从而计算出物体的位置、速度和姿态等参数的导航系统。

在军事、航空、海洋、航天等领域,惯导系统具有重要的应用价值。

由于大气层扰动、地球自转引起的误差等因素,惯导系统在实际应用中可能会出现较大的误差。

为了提高惯导系统的精度和稳定性,快速传递对准技术应运而生。

快速传递对准技术是指通过一种特殊的方法,使惯导系统中的参考站与待测站之间的相对位置发生变化,从而实现对惯导系统参数的修正。

这种方法具有操作简便、效率高、精度高等优点,可以有效地减小惯导系统误差,提高导航精度。

快速传递对准技术已经广泛应用于各类惯导系统,如地面空中水下空间惯导系统等。

1.1 研究背景与意义随着科技的飞速发展,惯性导航系统(INS)在各种领域的应用越来越广泛,如航空航天、自动驾驶汽车、机器人等。

惯性导航系统的主要功能是通过陀螺仪和加速度计等惯性测量器件来测量和计算物体在空间中的位置和运动状态。

由于惯性导航系统的自主性较强,且会受到各种环境因素如温度、振动等的影响,使得其初始对准时间较长,精度受到一定程度的影响。

如何提高惯性导航系统的快速传递对准技术,缩短对准时间,提高对准精度,成为了当前研究的热点问题。

快速传递对准技术的提高对于提高惯性导航系统的性能具有重要意义。

它可以有效地缩短系统的初始对准时间,提高系统的快速反应能力。

这对于一些需要快速响应的应用场景,如军事机动、灾难救援等,具有重要的实用价值。

快速传递对准技术可以提高系统的定位精度和导航精度,这对于提高导航系统的可靠性和稳定性至关重要。

随着科技的发展,惯性导航系统正朝着更高精度、更高集成度的方向发展。

研究和发展快速传递对准技术,对于推动惯性导航系统的技术进步和产业升级具有深远的意义。

基于矩阵卡尔曼滤波的捷联惯导初始对准算法

基于矩阵卡尔曼滤波的捷联惯导初始对准算法

基于矩阵卡尔曼滤波的捷联惯导初始对准算法
捷联惯导初始对准算法是一种基于矩阵卡尔曼滤波的高精度的惯导初始对准算法。

它是一种先进的、高效的应用于初始对准的滤波技术,应用于惯性导航系统初始对准。

它能够实现与惯导导航系统互补度高的高精度初始对准,能够在最短的时间内完成初始对准过程,而不幸平整受到静止不动传感器环境下初始对准时可能会出现的误差。

捷联惯导初始对准算法使用矩阵卡尔曼滤波器来实现惯性导航系统的初始对准程序。

它通过滤波器的三个输入,即惯性状态在轴的无功力转角,动力转角以及时间戳来更新滤波器内部的状态变量。

经过滤波器的更新,可以更准确的估计出惯性导航系统的部件的状态。

捷联惯导初始对准算法采用的是自适应滤波器以得到最佳的估计结果,滤波器使用不同参数,依据惯性状态变化进行更新,以实现最佳估计效果。

算法采用时间戳与惯性状态变化来校正滤波器估计值,以提高算法的准确度,这使得捷联惯导初始对准算法成为高效的惯性导航系统初始对准方法。

从整个初始对准过程来看,捷联惯导初始对准算法比传统惯性导航系统的初始对准方法提供了更高精度的估计结果,并且能够在较短的时间内完成初始对准工作,在很大程度上减少了初始对准所耗费的时间,有效地缩短了惯性导航系统可用性时间。

卡尔曼滤波在捷联惯导系统初始对准中的应用

卡尔曼滤波在捷联惯导系统初始对准中的应用

o l i l yn h a d r n t me t ,d c e sn h i n in o e e u t n fk ma l r O d c e sn n y smp i i g te h r wae i sr f u n s e r a i gt ed me so ft q ai s o a n f t ,S e r a i g h o l i e
捷联惯性导航系统中。 关键词 : 卡尔曼滤波 ; 捷联惯导系统 ; 初始对准; 加速度计
中 图 分 类 号 : 29 3 V 4 .2 文 献标 识码 : A
Ap l a i n o l a i e n t l i n e to t a d wn I p i t fKam n F l r i I i a g m n fS r p o NS c o t n i Al
Z HO n , U Ka g YAN Ja in—g o u
( uo ai oeeo o h et nP leh i n esy X ’nS ax 7 0 7 , h a A tm t nC l g f r w s r o t nc U i r t, ia hni 10 2 C i ) o l N t e yc a l v i n
维普资讯
第2 卷 第9 5 期
文 章 编 号 :0 6-94 ( 0 8 0 0 4 10 3 8 2 0 )9- 0 6—0 4



仿

28 月 0 年9 பைடு நூலகம் 0
卡 尔曼 滤 波在 捷 联 导 系 始 对 准 中 的应 用 惯 统初
周 亢 , 闫建 国
ABST RACT: a e n t e a p i ain o ama i e n ii a l n n fsr p o NS,t e me h d o ama B s d o p l t fk l n f tri n t la i me to t d wn I h c o l i g a h t o fk l n sa e e u to n b e v t n e u t n’ o sr ci n w sa a y e .Ac o dn e p n i l n t o n t ei - tt q ain a d o s r ai q ai o o Sc n tu t a n z d o l c r i g t t r cp e a d meh d i n oh i h i a l n n fsrp o NS,b s d O h l si t o t a i me to ta d wn I i l g a e U t e c a sc me d,a n w t o sr s a c e . T i y u i z st e h e meh d wa e e r h d h swa t ie h l a c lr me es’o t u sa b ev n au s dr cl ,d c e s st e n mb ro ev ra ls i h q a in ,t u o c ee o tr up t so s r i g v l e i t e y e r a e h u e f h a be n t e e u t s h sn t t i o

定位定向设备纯惯性导航下的高精度输出设计

定位定向设备纯惯性导航下的高精度输出设计

定位定向设备纯惯性导航下的高精度输出设计摘要:本文阐述了定位定向设备在纯惯导环境下的工作原理及性能缺陷,通过在传统惯性导航系统基础上增加高程计、高精度气压传感器、设置惯性导航定位信息的权重,提高定位定向设备在天向速度和海拔高度方向上输出的稳定性和有效性,为定位定向设备适应复杂环境作战提供了实现途径。

关键词:定位定向设备高程计光纤陀螺仪加速度计1引言定位定向设备是一种通过多信息融合技术实现对方位、姿态、速度、位置和时间信息的高精度终端测量设备,对于武器系统间主从作战、精密武器的追踪投放等有重大意义[1]。

目前,定位定向设备常见的导航技术包括卫星导航和纯惯导导航。

卫星导航是目前常用的导航技术,但是,卫星导航是脆弱的,在战争时期容易受到敌方操控而受到欺骗、因为地理环境而定位失灵。

在此环境下,纯惯导导航技术成为最可靠的导航方式[2]。

纯惯性导航是一种基于定位定向设备自身的完全自主化导航方式,不受卫星信号和收星情况的干扰。

在实际的工程应用中,定位定向设备的纯惯导导航技术存在输出误差随时间而累积的问题[3]。

2定位定向设备组成定位定向设备是以牛顿力学定律为基本原理,利用惯性测量元件(光纤陀螺仪和加速度计)建立参考坐标系后测量战车运动参数,再由导航计算机进行积分运算,获得战车姿态[4]。

其中,光纤陀螺仪通过测量地球自转角速率在其敏感轴上的与北向之间的夹角,获得战车航向角信息。

由于陀螺仪的漂移将使测角误差随时间成正比地增大、高度定位误差呈现发散态[5],为解决此问题,本系统在传统惯性导航系统基础上增加高程计、高精度气压传感器、设置惯性导航定位信息的权重,以望实现定位定向设备在纯惯导情况下的高精度输出。

高程计是利用大气压力的变化规律,来测量所在地的海拔高度和所在地的大气压变化,以及测量因地域变化发生的相对高度变化。

借助于气压高度计的阻尼作用,经过温度等大气参数补偿,气压数据校准,数据滤波等处理,能有效抑制定位定向设备在高度方向的发散态。

高精度卫星定位技术误差分析与改进策略

高精度卫星定位技术误差分析与改进策略

高精度卫星定位技术误差分析与改进策略高精度卫星定位技术是现代导航和地理信息系统中的关键技术之一,它通过接收卫星信号来确定接收器在地球上的精确位置。

随着科技的发展,高精度卫星定位技术在各个领域,如测绘、交通、农业、事等,都发挥着越来越重要的作用。

然而,这项技术在实际应用中仍然面临着多种误差源,这些误差源可能会影响到定位的精度和可靠性。

本文将探讨高精度卫星定位技术中的误差分析,并提出相应的改进策略。

一、高精度卫星定位技术概述高精度卫星定位技术主要依赖于全球导航卫星系统(GNSS),如的全球定位系统(GPS)、俄罗斯的格洛纳斯(GLONASS)、欧洲的伽利略(Galileo)和中国的北斗导航系统(BDS)。

这些系统通过发射卫星信号,使得地面接收器能够计算出其位置、速度和时间。

1.1 卫星定位技术原理卫星定位技术基于三角测量原理,即通过测量接收器与至少四颗卫星之间的距离,来确定接收器在三维空间中的位置。

接收器通过计算信号传播时间来确定距离,而信号的传播时间与卫星和接收器之间的距离成正比。

1.2 定位技术的应用场景高精度卫星定位技术在多个领域有着广泛的应用,包括但不限于:- 测绘工程:用于地形测绘、土地规划和工程建设。

- 交通导航:提供车辆定位、路线规划和实时导航服务。

- 精准农业:指导农业机械进行精确播种、施肥和收割。

- 事应用:用于定位、导航和武器制导。

二、高精度卫星定位技术的误差分析尽管高精度卫星定位技术在理论上可以提供非常精确的位置信息,但在实际应用中,多种误差源会影响定位的精度。

2.1 卫星误差卫星误差主要包括卫星轨道误差和卫星钟差。

卫星轨道误差是由于卫星轨道模型与实际轨道之间的偏差造成的,而卫星钟差则是由于卫星时钟与标准时间之间的偏差造成的。

2.2 信号传播误差信号传播误差主要包括电离层延迟和对流层延迟。

电离层延迟是由于卫星信号在通过电离层时受到电子密度变化的影响,导致信号传播速度的变化。

对流层延迟则是由于信号在通过对流层时受到温度、湿度和大气压力变化的影响。

北航卡尔曼滤波课程-捷联惯导静基座初始对准试验

北航卡尔曼滤波课程-捷联惯导静基座初始对准试验

卡尔曼滤波实验报告捷联惯导静基座初始对准实验一、实验目的①掌握捷联惯导的构成和基本工作原理;②掌握捷联惯导静基座对准的基本工作原理;③了解捷联惯导静基座对准时的每个系统状态的可观测性;④了解双位置对准时系统状态的可观测性的变化。

二、实验原理选取状态变量为:X = [6匕5匕+E+N乎U v x \ e X£y£J,其中导航坐标系选为东北天坐标系,5V 为东向速度误差,5V 为北向速度误差,乎 为东 向姿态误差角,*, 为北向姿态误差角,乎〃为天向姿态误差角,V ,为北向加速度偏置,£x 为东向陀螺漂移,8,为北向陀螺漂移,£Z为天向陀螺漂移。

则 系统的状态模型为:X = AX + W(1)其中0 2。

sin L0 - g 0 C C 00 0 1112-2。

sin L0 g 0 0 C C 0 021 22 00 0。

sin L -。

cos L 0 0 C C C 1112 13 0 0 -。

sin L 0 00 0 C C C 21 22 230 0 。

cos L 0 0 0 0 C C C A =31 32330 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0_0 _W = [W W W W W 0 0 0 0 0]T ,W ……W 为零均值高斯55* + 45乎白噪声,分别为加速度计误差和陀螺漂移的噪声成分,。

为地球自转角速度,C 为姿态矩阵C 中的元素,L 为当地纬度。

量测量选取两个水平速度误差:Z = [5V 5V ]叽 则量测方程为: E N即 Z = HX +n斯白噪声。

要利用基本卡尔曼滤波方程进行状态估计,需要将状态方程和量测方程进行离散化。

系统转移矩阵为:工 T 2 , T 3 ,① =I + TA + — A 2 + — A 3 + ♦…k / k -1k -1 2! k -13! k -1V x 为东向加速度偏置,5 V ]E5 V0 0 1000 0000 00(2)其中,H 为量测矩阵,“=%丑N 》为量测方程的随机噪声状态矢量,为零均值高« Tn/ =工——A k -1其中,T为采样间隔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档