《二项分布和应用-条件概率》
第十章第8课时二项分布及其应用

【解】 记 Ai 表示事件:第 1 次和第 2 次这两次发球,甲共 得 i 分,i=0,1,2; Bi 表示事件:第 3 次和第 4 次这两次发球,甲共得 i 分,i=0,1,2; A 表示事件:第 3 次发球,甲得 1 分; B 表示事件:开始第 4 次发球时,甲、乙的比分为 1 比 2; C 表示事件:开始第 5 次发球时,甲得分领先.
A、B 中至多 有一个发生
(A B )∪( A B) ∪(AB)
(A B )∪( A B)
∪( A B )
P(A)P( B )+P( A )P(B)+P(A)P(B) P(A)P( B )+P( A )P(B)+ P( A )P( B )
目录
跟踪训练 2.(2012·高考重庆卷)甲、乙两人轮流投篮,每人每次投一球.约 定甲先投且先投中者获胜,一直到有人获胜或每人都已投球 3 次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投 中的概率为12,且各次投篮互不影响. (1)求乙获胜的概率; (2)求投篮结束时乙只投了 2 个球的概率.
目录
解:(1)设“至少有一个系统不发生故障”为事件 C,那么
1-P( C )=1-110·p=4590,解得 p=15.
(2)由题意,P(ξ=0)=C031103=1 0100,
P(ξ=1)=C131102×1-110=1 20700,
P(ξ=2)=C23×110×1-1102=1204030,
其中恰有 1 次获得通过的概率是( )
4
2
A.9
B.9
C.247
D.227
答案:A 2.设随机变量 X~B(6,12),则 P(X=3)等于( )
5 A.16
3 B.16
C.58
高中数学第二章随机变量及其分布22二项分布及其应用221条件概率同步课件新人教A版选修2

②利用缩小样本空间计算(局限在古典概型内),即将 原来的样本空间 Ω 缩小为已知的事件 A,原来的事件 B 缩小为 AB,利用古典概型计算概率:P(B|A)=nn((AAB)).
2.条件概率的性质. 如果 B 和 C 是两个互斥事件,那么 P(B∪C|A)=P(B|A) +P(C|A).
注意:利用该公式可使求有些条件概率较为简捷, 但应注意这个性质在“B 与 C 互斥”这一前提下才具备 的,因此不要忽视这一条件而乱用这个公式.
4
2
1
1
A.9
B.9
பைடு நூலகம்C.2
D.3
解析:由题意可知.n(B)=C1322=12,n(AB)=A33=
6. 所以 P(A|B)=nn((ABB))=162=12.
答案:C
3.已知 P(AB)=15,P(A)=35,则 P(B|A)=(
)
A. 1
B.1
15
3
C.235
D.23
解析:P(B|A)=PP((AAB))=15÷35=13.
结束 语 同学们,你们要相信梦想是价值的源泉,相信成
功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
考试加油。
归纳升华 利用条件概率的性质解题的方法
1.分析条件,选择公式:首先看事件 B,C 是否互 斥,若互斥,则选择公式 P(B∪C|A)=P(B|A)+P(C|A).
2.分解计算,代入求值:为了求比较复杂事件的概 率,一般先把它分解成两个(或若干个)互不相容的较简单 的事件之和,求出这些简单事件的概率,再利用加法公式 即得所求的复杂事件的概率.
2 8
=28,
这个产品都是次品的事件数为C
2018-2019学年高中数学 第二章 随机变量及其分布 2.2 二项分布及其应用 2.2.1 条件概率课件

答案:23
3 5
探究一 条件概率的计算 [典例 1] 现有 6 个节目准备参加比赛,其中 4 个舞蹈节目,2 个语言类节目,如果 不放回地依次抽取 2 个节目,求: (1)第 1 次抽到舞蹈节目的概率; (2)第 1 次和第 2 次都抽到舞蹈节目的概率; (3)在第 1 次抽到舞蹈节目的条件下,第 2 次抽到舞蹈节目的概率.
[双基自测]
1.设 A,B 为两个事件,且 P(A)>0,若 P(AB)=31,P(A)=23,则 P(B|A)=( )
1
2
A.2
B.9
1
4
C.9
D.9
1 解析:由 P(B|A)=PPAAB=32=21,故选 A.
3
答案:A
2.下列说法正确的是( )
A.P(B|A)=P(AB) C.0<P(B|A)<1
又 P(A)=0.9,P(B|A)=PPAAB,得 P(AB)=P(B|A)·P(A)=0.8×0.9=0.72. [答案] 0.72
[错因与防范] 处容易误将事件 B|A 认为事件 AB,导致答案不正确.解决此类问
题的关键是细心审题,首先明确是否为条件概率问题,然后正确设出“事件 A”“事 件 AB”“事件 B|A”,在此基础上,选择恰当的概率公式.如本例中若将“事件 B|A” 和“事件 AB”混淆,则易造成解题失误.
1.某气象台统计,该地区下雨的概率为145,刮四级以上风的概率为125,既刮四级以
上的风又下雨的概率为110,设 A 为下雨,B 为刮四级以上的风,求 P(B|A).
1 解析:由题意知 P(A)=145,P(B)=125,P(AB)=110,故 P(B|A)=PPAAB=140=38.
15
【数学】2.2《 二项分布及其应用课件(新人教A版选修2-3)

独立事件一定不互斥. 独立事件一定不互斥 互斥事件一定不独立. 互斥事件一定不独立 明确事件中的关键词, 明确事件中的关键词,如,“至少有一个发生”“至 至少有一个发生”“至 ”“ 多有一个发生” 恰有一个发生” 多有一个发生”,“恰有一个发生”,“都发 ”“都不发生 都不发生” 不都发生” 生”“都不发生”,“不都发生”。
此时称随机变量X服从二项分布,记作X~B(n,p), 此时称随机变量 服从二项分布,记作 服从二项分布 并称p为成功概率 为成功概率。 并称 为成功概率。
复习回顾
二项分布 3、
在一次试验中某事件发生的概率是p,那么在n次 在一次试验中某事件发生的概率是 ,那么在 次 独立重复试验中这个事件恰发生 恰发生ξ 显然 显然ξ 独立重复试验中这个事件恰发生ξ次,显然ξ是一个随机 变量. 变量. 于是得到随机变量ξ的概率分布如下: 于是得到随机变量 的概率分布如下: 的概率分布如下 ξ p
例 1 考虑恰有三个小孩的家庭 (假定生男生女为 考虑恰有三个小孩的家庭.
等可能) 等可能)
(1)若已知某一家有一个是女孩,求这家另两个是男孩的概率 )若已知某一家有一个是女孩, (2)若已知某一家第一个是女孩,求这家另两个是男孩的概率 )若已知某一家第一个是女孩,
(女、女、女); (女、女、男); (女、男、女);(女、男、男); ( 男、女、女) ; ( 男、女、男) ; ( 男、男、女) ; ( 男、男、男) ;
B
A
复习回顾
1、事件的相互独立性 、 为两个事件, 设A,B为两个事件,如果 P(AB)=P(A)P(B),则称事 , 为两个事件 则称事 与事件B相互独立 件A与事件 相互独立。 与事件 相互独立。 即事件A( 对事件B( 即事件 (或B)是否发生 对事件 (或A)发生的 )是否发生,对事件 ) 概率没有影响,这样两个事件叫做相互独立事件。 概率没有影响,
二项分布及其应用

二项分布及其应用二项分布及其应用◇条件概率◇一、条件概率的定义与性质如果事件A发生与否,会影响到事件B的发生,在知道事件A发生的条件下去研究事件B时,基本事件空间发生了变化,从而B发生的概率也随之改变,这就条件概率要研究的问题。
1.定义:一般地,设A、B为两个事件,且P(A)>0,称P(B|A)=为在事件A发生的条件下,事件B发生的条件概率,一般把P(B|A)读作A发生的条件下B的概率.2.性质:(1)条件概率具有概率的性质,任何事件的条件概率都在0和1之间,即.(2)如果B和C是两个互斥事件,则P(B∪C|A)=二、典型例题1、利用定义求条件概率例1:抛掷两颗均匀的骰子,问(1)至少有一颗是6点的概率是多少?(2)在已知两颗骰子点数不同的条件下,至少有一颗是6点的概率是多少?例2:抛掷红蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”。
(1)求P(A),P(B),P(AB);(2)在已知蓝色骰子的点数为3或6时,求两颗骰子的点数之和大于8的概率。
2、利用缩小基本事件空间的方法求条件概率例1:一个口袋内装有4个白球和2个黑球,若不放回地抽取3次,每次抽一个小球,求(1)第一次摸出一个白球的情况下,第二次与第三次均是白球的概率。
(2)第一次和第二次均是白球的情况下,第三次是白球的概率。
例2:设10件产品中有4件次品,从中任取2件,那么(1)在所取得产品中发现是一件次品,求另一件也是次品的概率。
(2)若每次取一件,在所得的产品中第一次取出的是次品,那么求第二件也是次品的概率。
3、条件概率的性质及应用例1:在某次考试中,要从20道中随机地抽出6道题,若考试至少答对其中4道即可通过;若至少答对其中5道就获得优秀,已知某生能答对其中10道题目,且知道他在这次考试中已经通过,求他获得优秀的概率。
例2:把一副扑克牌(不含大小王)随机均分给赵、钱、孙、李四家,A={赵家得到6张梅花},B={孙家得到3张梅花} (1)求P(B|A)(2)求P(AB)三、课堂练习1、把一颗骰子连续抛掷两次,已知在第一次抛出偶数点的情况下,第二次抛出的也是偶数点的概率是多少?2、一个盒子中装有6件合格产品和4件次品,不放回地任取两次,每次取一件。
高中数学 第二章 随机变量及其分布 2.2 二项分布及其应用 2.2.1 条件概率 新人教A版选修2

反思与感悟 将原来的基本事件全体Ω缩小为已知的条件事件A,原
来的事件B缩小为AB.而A中仅包含有限个基本事件,每个基本事件发
生的概率相等,从而可以在缩小的概率空间上利用古典概型公式计 算条件概率,即P(B|A)=nAB ,这里n(A)和n(AB)的计数是基于缩小
nA 的基本事件范围的.
跟踪训练2 5个乒乓球,其中3个新的,2个旧的,每次取一个,不放
良,则随后一天的空气质量为优良的概率是
√A.0.8
B.0.75
C.0.6
D.0.45
解析 设某天的空气质量为优良是事件B,随后一天的空气质量为优良
是事件A,
故所求概率为 P(A|B)=PPABB=00..765=0.8.
解析 答案
命题角度2 缩小基本事件范围求条件概率 例2 集合A={1,2,3,4,5,6},甲、乙两人各从A中任取一个数,若甲先取 (不放回),乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的 数大的概率. 解 将甲抽到数字a,乙抽到数字b,记作(a,b),甲抽到奇数的情形有 (1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,4),(3,5),(3,6),(5,1), (5,2),(5,3),(5,4),(5,6),共15个.在这15个中,乙抽到的数比甲抽到的 数大的有(1,2),(1,3),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6),(5,6),共 9个,所以所求概率 P=195=35.
第二章 §2.2 二项分布及其应用
2.2.1 条件概率
学习目标 1.理解条件概率的定义. 2.掌握条件概率的计算方法. 3.利用条件概率公式解决一些简单的实际问题.
内容索引
12.5二项分布及其应用

1.条件概率及其性质(1)一般地,设A ,B 为两个事件,且P (A )>0,称P (B |A )=P (AB )P (A )为在事件A 发生的条件下,事件B 发生的条件概率.在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB )n (A ).(2)条件概率具有的性质 ①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件, 则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件(1)设A ,B 为两个事件,若P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (A )P (B |A )=P (A )P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. 3.二项分布(1)一般地,在相同条件下重复做的几次试验称为n 次独立重复试验.(2)一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n .此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率. 【知识拓展】超几何分布与二项分布的区别(1)超几何分布需要知道总体的容量,而二项分布不需要; (2)超几何分布是不放回抽取,而二项分布是放回抽取(独立重复).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)条件概率一定不等于它的非条件概率.( × ) (2)相互独立事件就是互斥事件.( × )(3)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( × )(4)二项分布是一个概率分布,其公式相当于(a +b )n 二项展开式的通项公式,其中a =p ,b =1-p .( × )(5)P (B |A )表示在事件A 发生的条件下,事件B 发生的概率,P (AB )表示事件A ,B 同时发生的概率.( √ )1.袋中有3红5黑8个大小形状相同的小球,从中依次摸出两个小球,则在第一次摸得红球的条件下,第二次仍是红球的概率为( ) A.38 B.27 C.28 D.37 答案 B解析 第一次摸出红球,还剩2红5黑共7个小球,所以再摸到红球的概率为27.2.(教材改编)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( ) A.49 B.29 C.427 D.227 答案 A解析 所求概率P =C 13·(13)1·(1-13)3-1=49. 3.(2015·课标全国Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36 D .0.312 答案 A解析 3次投篮投中2次的概率为P (k =2)=C 23×0.62×(1-0.6),投中3次的概率为P (k =3)=0.63,所以通过测试的概率为P (k =2)+P (k =3)=C 23×0.62×(1-0.6)+0.63=0.648.故选A.4.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________. 答案 0.8解析 已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75=0.8.5.(教材改编)国庆节放假,甲去北京旅游的概率为13,乙去北京旅游的概率为14,假定二人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为________. 答案 12解析 记在国庆期间“甲去北京旅游”为事件A ,“乙去北京旅游”为事件B ,又P (A B )=P (A )·P (B )=[1-P (A )][1-P (B )]=(1-13)(1-14)=12,“甲、乙二人至少有一人去北京旅游”的对立事件为“甲、乙二人都不去北京旅游”,故所 求概率为1-P (A B )=1-12=12.题型一 条件概率例1 (1)从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B |A )等于( ) A.18 B.14 C.25 D.12(2)如图所示,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”, B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________. 答案 (1)B (2)14解析 (1)P (A )=C 23+C 22C 25=25,P (AB )=C 22C 25=110, P (B |A )=P (AB )P (A )=14.(2)AB 表示事件“豆子落在△OEH 内”, P (B |A )=P (AB )P (A )=△OEH 的面积正方形EFGH 的面积=14.引申探究1.若将本例(1)中的事件B :“取到的2个数均为偶数”改为“取到的2个数均为奇数”,则结果如何?解 P (A )=C 23+C 22C 25=25, P (B )=C 23C 25=310,又A ⊇B ,则P (AB )=P (B )=310,所以P (B |A )=P (AB )P (A )=P (B )P (A )=34.2.在本例(2)的条件下,求P (A |B ). 解 由题意知,∠EOH =90°,故P (B )=14,又∵P (AB )=△OEH 的面积圆O 的面积=12×1×1π×12=1,∴P (A |B )=P (AB )P (B )=12π14=2π.思维升华 条件概率的求法(1)定义法:先求P (A )和P (AB ),再由P (B |A )=P (AB )P (A )求P (B |A ). (2)基本事件法:借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=n (AB )n (A ). (2016·开封模拟)已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为( ) A.310 B.29 C.78 D.79答案 D解析 方法一 设事件A 为“第1次抽到的是螺口灯泡”,事件B 为“第2次抽到的是卡口灯泡”,则P (A )=310,P (AB )=310×79=730,则所求概率为P (B |A )=P (AB )P (A )=730310=79.方法二 第1次抽到螺口灯泡后还剩余9只灯泡,其中有7只卡口灯泡,故第2次抽到卡口灯泡的概率为C 17C 19=79.题型二 相互独立事件的概率例2 设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T 的分布列;(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解 (1)由统计结果可得T 的频率分布为以频率估计概率得T 的分布列为(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同, 设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.方法一 P (A )=P (T 1+T 2≤70)=P (T 1=25,T 2≤45)+P (T 1=30,T 2≤40)+P (T 1=35,T 2≤35)+P (T 1=40,T 2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.方法二 P (A )=P (T 1+T 2>70)=P (T 1=35,T 2=40)+P (T 1=40,T 2=35)+P (T 1=40,T 2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09, 故P (A )=1-P (A )=0.91.思维升华 求相互独立事件同时发生的概率的方法 (1)首先判断几个事件的发生是否相互独立. (2)求相互独立事件同时发生的概率的方法主要有: ①利用相互独立事件的概率乘法公式直接求解;②正面计算较繁或难以入手时,可从其对立事件入手计算.(2017·青岛月考)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22千米的地铁票价如下表:现有甲、乙两位乘客,他们乘坐的里程都不超过22千米.已知甲、乙乘车不超过6千米的概率分别为14,13,甲、乙乘车超过6千米且不超过12千米的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列.解 (1)由题意可知,甲、乙乘车超过12千米且不超过22千米的概率分别为14,13,则甲、乙两人所付乘车费用相同的概率 P 1=14×13+12×13+14×13=13,所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.(2)由题意可知,ξ=6,7,8,9,10, 则P (ξ=6)=14×13=112,P (ξ=7)=14×13+12×13=14,P (ξ=8)=14×13+14×13+12×13=13,P (ξ=9)=12×13+14×13=14,P (ξ=10)=14×13=112.所以ξ的分布列为题型三 独立重复试验与二项分布 命题点1 根据独立重复试验求概率例3 甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分.求乙队得分X 的分布列.解 (1)设“甲队以3∶0,3∶1,3∶2胜利”分别为事件A ,B ,C ,则P (A )=23×23×23=827,P (B )=C 23⎝⎛⎭⎫232×⎝⎛⎭⎫1-23×23=827, P (C )=C 24⎝⎛⎭⎫232×⎝⎛⎭⎫1-232×12=427. (2)X 的可能取值为0,1,2,3, 则P (X =0)=P (A )+P (B )=1627,P (X =1)=P (C )=427,P (X =2)=C 24×⎝⎛⎭⎫1-232×⎝⎛⎭⎫232×⎝⎛⎭⎫1-12=427, P (X =3)=⎝⎛⎭⎫133+C 23⎝⎛⎭⎫132×23×13=19. 故X 的分布列为命题点2 根据独立重复试验求二项分布例4 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少? 解 (1)X 可能的取值为10,20,100,-200. 根据题意,有P (X =10)=C 13×⎝⎛⎭⎫121×⎝⎛⎭⎫1-122=38, P (X =20)=C 23×⎝⎛⎭⎫122×⎝⎛⎭⎫1-121=38, P (X =100)=C 33×⎝⎛⎭⎫123×⎝⎛⎭⎫1-120=18, P (X =-200)=C 03×⎝⎛⎭⎫120×⎝⎛⎭⎫1-123=18. 所以X 的分布列为(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3), 则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为 1-P (A 1A 2A 3)=1-⎝⎛⎭⎫183=1-1512=511512. 因此,玩三盘游戏,至少有一盘出现音乐的概率是511512.思维升华 独立重复试验与二项分布问题的常见类型及解题策略(1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率.(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.(2016·沈阳模拟)某学校举行联欢会,所有参演的节目都由甲、乙、丙三名专业老师投票决定是否获奖.甲、乙、丙三名老师都有“获奖”、“待定”、“淘汰”三类票各一张,每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响.若投票结果中至少有两张“获奖”票,则决定该节目最终获一等奖;否则,该节目不能获一等奖. (1)求某节目的投票结果是最终获一等奖的概率;(2)求该节目投票结果中所含“获奖”和“待定”票票数之和X 的分布列.解 (1)设“某节目的投票结果是最终获一等奖”这一事件为A ,则事件A 包括:该节目可以获两张“获奖”票,或者获三张“获奖”票.∵甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响, ∴P (A )=C 23(13)2(23)1+C 33(13)3=727. (2)所含“获奖”和“待定”票票数之和X 的值为0,1,2,3. P (X =0)=(13)3=127,P (X =1)=C 13(23)1(13)2=29, P (X =2)=C 23(23)2(13)1=49, P (X =3)=(23)3=827.因此X 的分布列为18.独立事件与互斥事件典例 (1)中国乒乓球队甲、乙两名运动员参加奥运乒乓球女子单打比赛,甲夺得冠军的概率是37,乙夺得冠军的概率是14,那么中国队夺得女子乒乓球单打冠军的概率为________. (2)某射手每次射击击中目标的概率都是23,这名射手射击5次,有3次连续击中目标,另外两次未击中目标的概率是________. 错解展示解析 (1)设“甲夺得冠军”为事件A ,“乙夺得冠军”为事件B ,则P (A )=37,P (B )=14,由A 、B 是相互独立事件,得所求概率为P (A B )+P (A B )+P (AB )=37×34+47×14+37×14=1628=47. (2)所求概率P =C 35×(23)3×(13)2=80243. 答案 (1)47 (2)80243现场纠错解析 (1)设“甲夺得冠军”为事件A ,“乙夺得冠军”为事件B ,则P (A )=37,P (B )=14.∵A 、B 是互斥事件,∴P (A ∪B )=P (A )+P (B )=37+14=1928.(2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则 P (A )=P (A 1A 2A 3A 4A 5)+P (A 1A 2A 3A 4A 5)+P (A1A 2A 3A 4A 5)=⎝⎛⎭⎫233×⎝⎛⎭⎫132+13×⎝⎛⎭⎫233×13+⎝⎛⎭⎫132×⎝⎛⎭⎫233=881. 答案 (1)1928 (2)881纠错心得 (1)搞清事件之间的关系,不要混淆“互斥”与“独立”. (2)区分独立事件与n 次独立重复试验.1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ) A.12 B.14 C.16 D.18 答案 A解析 由古典概型知P (A )=12,P (AB )=14,则由条件概率知P (B |A )=P (AB )P (A )=1412=12.2.(2016·长春模拟)一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( ) A .C 1012(38)10(58)2 B .C 912(38)9(58)2C .C 911(58)9(38)2D .C 911(38)10(58)2 答案 D解析 “X =12”表示第12次取到红球,前11次有9次取到红球,2次取到白球, 因此P (X =12)=38C 911(38)9(58)2=C 911(38)10(58)2. 3.已知A ,B 是两个相互独立事件,P (A ),P (B )分别表示它们发生的概率,则1-P (A )P (B )是下列哪个事件的概率( ) A .事件A ,B 同时发生 B .事件A ,B 至少有一个发生 C .事件A ,B 至多有一个发生 D .事件A ,B 都不发生 答案 C解析 P (A )P (B )是指A ,B 同时发生的概率,1-P (A )·P (B )是A ,B 不同时发生的概率,即事件A ,B 至多有一个发生的概率.4.甲射击命中目标的概率是12,乙命中目标的概率是13,丙命中目标的概率是14.现在三人同时射击目标,则目标被击中的概率为( ) A.34 B.23 C.45 D.710答案 A解析 设“甲命中目标”为事件A ,“乙命中目标”为事件B ,“丙命中目标”为事件C ,则击中目标表示事件A ,B ,C 中至少有一个发生.又P (A B C )=P (A )P (B )P (C )=[1-P (A )]·[1-P (B )]·[1-P (C )]=⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14=14. 故目标被击中的概率P =1-P (A B C )=34.5.(2017·南昌质检)设随机变量X 服从二项分布X ~B (5,12),则函数f (x )=x 2+4x +X 存在零点的概率是( ) A.56 B.45 C.3132 D.12 答案 C解析 ∵函数f (x )=x 2+4x +X 存在零点, ∴Δ=16-4X ≥0,∴X ≤4.∵X 服从X ~B (5,12),∴P (X ≤4)=1-P (X =5)=1-125=3132.6.(2016·安徽黄山屯溪一中月考)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是( ) A .P (B )=25B .事件B 与事件A 1相互独立C .P (B |A 1)=511D .P (B )的值不能确定,它与A 1,A 2,A 3中哪一个发生都有关 答案 C解析 由题意A 1,A 2,A 3是两两互斥的事件,P (A 1)=510=12,P (A 2)=210=15,P (A 3)=310,P (B |A 1)=12×51112=511,由此知,C 正确;P (B |A 2)=411,P (B |A 3)=411,而P (B )=P (A 1B )+P (A 2B )+P (A 3B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)·P (B |A 3) =12×511+15×411+310×411=922. 由此知A ,D 不正确.故选C.7.设随机变量X ~B (2,p ),随机变量Y ~B (3,p ),若P (X ≥1)=59,则P (Y ≥1)=________.答案1927解析 ∵X ~B (2,p ),∴P (X ≥1)=1-P (X =0)=1-C 02(1-p )2=59, 解得p =13.又Y ~B (3,p ),∴P (Y ≥1)=1-P (Y =0)=1-C 03(1-p )3=1927. 8.如图所示的电路有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为________.答案 18解析 灯泡甲亮满足的条件是a ,c 两个开关都开,b 开关必须断开,否则短路.设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则甲灯亮应为事件A B C ,且A ,B ,C 之间彼此独立,且P (A )=P (B )=P (C )=12,由独立事件概率公式知P (A B C )=P (A )P (B )P (C )=12×12×12=18. 9.(2017·广州月考)设事件A 在每次试验中发生的概率相同,且在三次独立重复试验中,若事件A 至少发生一次的概率为6364,则事件A 恰好发生一次的概率为________.答案964解析 设事件A 发生的概率为p ,由题意知(1-p )3=1-6364=164,解得p =34,则事件A 恰好发生一次的概率为C 13×34×(14)2=964. 10.(2016·荆州质检)把一枚硬币任意抛掷三次,事件A =“至少一次出现反面”,事件B =“恰有一次出现正面”,则P (B |A )=________. 答案 37解析 由题意知,P (AB )=323=38,P (A )=1-123=78,所以P (B |A )=P (AB )P (A )=3878=37.11.现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲,乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列.解 (1)依题意知,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有k 人去参加甲游戏”为事件A k (k =0,1,2,3,4).则P (A k )=C k 4⎝⎛⎭⎫13k ⎝⎛⎭⎫234-k . 这4个人中恰有2人去参加甲游戏的概率为P (A 2)=C 24⎝⎛⎭⎫132⎝⎛⎭⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝⎛⎭⎫133×23+C 44⎝⎛⎭⎫134 =19. 所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能取值为0,2,4. 由于A 1与A 3互斥,A 0与A 4互斥,故 P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781.所以ξ的分布列是12.(2016·西安模拟)在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X 表示在这块地上种植1季此作物的利润,求X 的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率. 解 (1)设A 表示事件“作物产量为300 kg ”,B 表示事件“作物市场价格为6 元/kg ”,由题设知P (A )=0.5,P (B )=0.4, 因为利润=产量×市场价格-成本.所以X所有可能的取值为500×10-1 000=4 000,500×6-1 000=2 000,300×10-1 000=2 000,300×6-1 000=800.P(X=4 000)=P(A)P(B)=(1-0.5)×(1-0.4)=0.3,P(X=2 000)=P(A)P(B)+P(A)P(B)=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,故X的分布列为(2)设C i表示事件“第i季利润不少于2 000元”(i=1,2,3),由题意知C1,C2,C3相互独立,由(1)知,P(C i)=P(X=4 000)+P(X=2 000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2 000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季的利润不少于2 000元的概率为P(C1C2C3)+P(C1C2C3)+P(C1C2C3)=3×0.82×(1-0.8)=0.384,所以,这3季中至少有2季的利润不少于2 000元的概率为0.512+0.384=0.896.*13.李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率.解(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)记事件A为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场比赛中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C=A B∪A B,A,B独立.根据投篮统计数据,P(A)=0.6,P(B)=0.4.P(C)=P(A B)+P(A B)=0.6×0.6+0.4×0.4=0.52.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为0.52.。
二项分布及其应用(答案)

二项分布及其应用【知识要点】一、条件概率及其性质1、条件概率一般地,设A ,B 为两个事件,且0)(>A P ,称)()()(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的条件概率。
2、性质(1)任何事件的条件概率都在0和1之间,即1)(0≤≤A B P .(2)如果B 和C 是两个互斥事件,则)()()(A C P A B P A C B P ==Y 。
【例题1—1】从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则=)(A B P ( B ) A 、81 B 、41 C 、52 D 、21 【例题1—2】在一次考试的5道题中,有3道理科题和2道文科题,如果不放回地依次抽取2道题,则在第一次抽到理科题的条件下,第二次抽到理科题的概率为 21 。
【例题1—3】某地区空气质量监测表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( A )A 、0.8B 、0.75C 、0.6D 、0.45【例题1—4】从混有5张假钞的20张一百元钞票中任意抽取2张,将其中一张在验钞机上检验发现是假钞,则这两张都是假钞的概率为( A )A 、172B 、152C 、51D 、103 【例题1—5】把一枚硬币连续抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则=)(A B P ( A )A 、21B 、41 C 、61 D 、81 【例题1—6】1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则在从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是94 。
二、相互独立事件及n 次独立重复事件1、相互独立事件同时发生的概率(1)相互独立事件的定义:如果事件A (或B )是否发生对事件B (A )发生的概率没有影响,这样的两个事件叫做相互独立事件。