理论力学3-平面任意力系的简化与求解
合集下载
平面任意力系向作用面内一点简化

Fox
F
解得
iy
0
Foy FA cos 0
M
解得
Foy F
o
0
FA cos R M 0
M FR
例3-8 求: 解:
已知:
F=20kN,
q=10kN/m, M 20kN m, L=1m;
A,B处的约束力.
取CD梁,画受力图.
M
C
0
l FB sin 60 l ql F cos 30 2l 0 2
FRx Fix Fix Fx FRy Fiy Fiy Fy
FR ( Fix )2 ( Fiy )2
Fiy Fix cos( F 'R , i ) cos( F 'R , j ) FR FR
解:
取冲头B,画受力图.
F
解得
FB
iy
0 F FB cos 0
F Fl cos l 2 R2
F
解得
ix
0
FN FB sin 0
FR l 2 R2
FN F tan
取轮,画受力图.
F
解得
ix
0
FR l 2 R2
Fox FA sin 0
解: 取起重机,画受力图. F 满载时, A 0, 为不安全状况
M
B
0
P3min 8 2P 10P2 0 1
解得 P3min=75kN
空载时, FB 0, 为不安全状况
M
解得
A
0 4P3max-2P1=0
F3max=350kN
理论力学平面力系的简化和平衡

原力偶系的合力偶矩
n
M Mi i 1
只受平面力偶系作用的刚体平衡充要条件:
n
M Mi 0 i 1
对BC物块对B点取矩,以逆时针为正列方程应为:
M 2 M B (FC ) M FCY a FCx b M FC (b a) cos45 0
[例] 在一钻床上水平放置工件,在工件上同时钻四个等直径 的孔,每个钻头的力偶矩为 m1m2 m3 m4 15Nm 求工件的总切削力偶矩和A 、B端水平反力?
两轴不平行即 条件:x 轴不 AB
可,矩心任意
连线
mA (Fi ) 0 mB (Fi ) 0 mC (Fi ) 0
③三矩式 条件:A,B,C不在
同一直线上
上式有三个独立方程,只能求出三个未知数。
4. 平面一般力系的简化结果分析
简化结果: 主矢R ,主矩 MO ,下面分别讨论。 ① R =0, MO =0,则力系平衡,下节专门讨论。 ② R =0,MO≠0 即简化结果为一合力偶, MO=M 此时刚
解除约束,可把支反
力直接画在整体结构
的原图上)
解除约束
由
mA (Fi
)
0
P2a N B
3a0,
N B
2P 3
X 0 XA 0
Y 0 YB NB P0,
YA
P 3
2.5物体系统的平衡、静定与超静定问题
1、物体系统的平衡问题 物体系统(物系):由若干个物体通过约束所组成的系统叫∼。 [例]
外力:外界物体作用于系统上的力叫外力。 内力:系统内部各物体之间的相互作用力叫内力。
N2个物体受平面汇交力系(或平面平行力系)
X 0 Y 0
2*n2个独立平衡方程
N3个物体受平 X 0 面任意力系 Y 0
工程力学-材料力学-第03章 平面任意力系(邱清水)

3.1
(2 M O F M 2 F2 cos 60 2 F3 3F4 sin 30 2.5 kN m
由于主矢和主矩都不为零,故最后合成结果是一个合力 FR,合力到O点的距离为
d M O FR 0.421 m
A B C
附加条件:A,B,C 三点不共线直
为什么要附加条件?
3.2 平面任意力系的平衡条件和平衡方程
平面平行力系的平衡方程:
如果选Oxy坐标系的y轴与各力平
行,则不论力系是否平衡,各力在x轴
上的投影恒等于零。 于是,平面平行力系的平衡的数 目只有两个 即
F 0 M F 0
y O
或
M F 0 M F 0
A B
3.2 平面任意力系的平衡条件和平衡方程
3.平面任意力系平衡方程的应用
力系平衡方程主要用于求解单个物体或物体系统平衡时 的未知约束力,也可用于求解物体的平衡位置和确定主动 力之间的关系。 应用平衡方程解题的大致步骤如下: 1)选取研究对象,画出受力分析图; 2)选取坐标系,列出平衡方程; 3)求解方程组。
2
FRy arctan FRx
F F F arctan F
2
2
2
x
y
y
x
3.1 平面任意力系的简化.主矢与主矩 3.固定端(或插入端)约束
图(a)为固定端约束在计算时所用的简图。物体在固嵌部分所 受力是比较复杂的(图(b)),但当物体所受主动力为一平面 力系时,这些约束力亦为平面力系,可将它们向A点简化得一 力和一力偶(图(c))。这个力可用两个未知正交分力来代替。 因此,在平面力系情形下,固定端A处的约束作用可简化为两 F 个约束力 F Ax , Ay和一个约束力偶 M A (图(d))。
平面任意力系

解:
对象:小车ABC T, TC = G, NA, NB
y
h
分析力:
C TC
E
d
T
B NB b x
选轴列平衡方程:
A Nb A G
X T T c sin 0 T T c sin 1 . 04 kN
N
A
Y
N B T c cos 0
B
例2. 轮轴AD, A为止推轴承,C为圆柱轴承,轮B重 W==40kN,外伸端D的齿轮直径为d,受径向力P=20kN和 轴向力Q=40kN。L=20cm. 求两轴承的约束力。
解:
对象:轮轴
y YA L XA A W
A
分析力: W, P, Q, YC, XA, YA 选轴列平衡方程:
L L B C d YC
m 2 2P 20 0 . 8 2 16 0 .8 2 20 12 KN
(3) 解方程组;
RB qa 2
R Ay P qa R B 20 20 0 . 8 12 24 KN
平面任意力系平衡方程的其它形式
平衡方程的多矩形式
m A (F ) N
2 b Td T c cos b T c sin h 0
N
B
T c sin ( h d ) T c cos b 2b
1 . 67 kN
代入二式解得 或利用两矩式
N
A
T C cos N B 2 . 19 kN
B
F’1
n
平面任意力系三
F’R O MO
汇交力系合力的力矢称为原力系的主矢。
理论力学第2章平面任意力系

空载时轨道A 、 B的约束反力,并问此起重机在使用过程中有无翻
倒的危险。
解:
(1)起重机受力图如图
(2)列平衡方程 :
MA 0:
Q
Q(6 2) RB 4 W 2 P(12 2) 0
MB 0:
Q(6 2) W 2 P(12 2) RA 4 0
6m
解方程得:
W
P
12m
RA 170 2.5P
FR' Fi Fxi Fy j
MO MO (Fi )
3. 平面任意力系的简化结果
(1)FR´= 0,Mo ≠ 0, (2)FR´ ≠ 0,Mo = 0, (3)FR´≠ 0,Mo ≠ 0, (4)FR´= 0,Mo = 0,
合力偶,合力偶矩,MO MO (Fi )
合力,合力作用线通过简化中心O。
3
F2
j
F3
x
(437.6)2 (161.6)2
F1
1 1
100
Oi
1 2
466.5N
200
MO 21.44N m
y
合力及其与原点O的距离如图(c) 。 MO
x
y
d
x
O
FR FR′ 466.5N FR´
FR
O
d MO 45.96mm
(b)
(c)
FR
10
例11 水平梁AB受按三角形分布的载荷作用,如图示。载荷的
M
l
l
30
B
D
° F
3l
P
q
A
21
解:T字形刚架ABD的受力如图所示。
M
l
l
Fx 0
30
B
FAx 1 • q • 3a Fcos30 0
cly理论力学-第三章

M w 1bh. . b 2
理论力学
1 1 M q .gh.1h. h 2 3
(1) 侧墙不绕A点倾倒时Mw kq MqMA0
b 1 1 M w kq M q 1bh. . 1.4 . gh.1h. h 0 2 2 3
解得:b=0.9,根据条件知 b 0.9
力使物体绕某一轴转动效应的量度,称为力对该轴之矩。
Mz(F)= MO(Fxy)=±Fxyd=2S△OA′ B′
是代数量,正负规定 单位为 N· m + –
z
性质:
(1) 当力的作用线与轴平行或相交 时,力对于该轴之矩为零。 (2) 当力沿其作用线平移时, 它对于轴之矩不变。
F A O
d
B
B′
xy
A′ Fxy
1、直接投影法(一次投影法)
x
方向余弦
Fx=Fcosα, Fy=Fcosβ, Fz=Fcosγ
2、 二次投影法(间接投影法)
Fx=Fcosθcos , Fy=Fcosθsin , Fz=Fsinθ
C LY
系 列 一
理论力学 说明: (1) 力在坐标轴上的投影是代数量;而力沿直角坐标轴的分量及 力在坐标平面上的投影是矢量。 (2) 已知力在坐标轴上的投影,则大小及方向余弦为:
(3) 合力对于任一轴之矩等于各分力对于同一轴之矩的代 数和,此即力对轴之矩的合力矩定理。
C LY
系 列 一
理论力学 三、力对点之矩与力对通过该点的轴之矩的关系 1、力矩关系定理
力F对O点的矩矢大小为:
z MO(F)
γ
|MO(F)|=2S△OAB (a)
力F对于通过O点的z轴的矩矢大小为:
B
A F
理论力学
1 1 M q .gh.1h. h 2 3
(1) 侧墙不绕A点倾倒时Mw kq MqMA0
b 1 1 M w kq M q 1bh. . 1.4 . gh.1h. h 0 2 2 3
解得:b=0.9,根据条件知 b 0.9
力使物体绕某一轴转动效应的量度,称为力对该轴之矩。
Mz(F)= MO(Fxy)=±Fxyd=2S△OA′ B′
是代数量,正负规定 单位为 N· m + –
z
性质:
(1) 当力的作用线与轴平行或相交 时,力对于该轴之矩为零。 (2) 当力沿其作用线平移时, 它对于轴之矩不变。
F A O
d
B
B′
xy
A′ Fxy
1、直接投影法(一次投影法)
x
方向余弦
Fx=Fcosα, Fy=Fcosβ, Fz=Fcosγ
2、 二次投影法(间接投影法)
Fx=Fcosθcos , Fy=Fcosθsin , Fz=Fsinθ
C LY
系 列 一
理论力学 说明: (1) 力在坐标轴上的投影是代数量;而力沿直角坐标轴的分量及 力在坐标平面上的投影是矢量。 (2) 已知力在坐标轴上的投影,则大小及方向余弦为:
(3) 合力对于任一轴之矩等于各分力对于同一轴之矩的代 数和,此即力对轴之矩的合力矩定理。
C LY
系 列 一
理论力学 三、力对点之矩与力对通过该点的轴之矩的关系 1、力矩关系定理
力F对O点的矩矢大小为:
z MO(F)
γ
|MO(F)|=2S△OAB (a)
力F对于通过O点的z轴的矩矢大小为:
B
A F
第三章 平面任意力系和平面平行力系

10
X ) 0
m A ( Fi ) 0 mB ( Fi ) 0 mC ( Fi ) 0
③三矩式 条件:A、B、C 不在同一直线上
Y 0
mO ( Fi ) 0
①一矩式
mB ( Fi ) 0
②二矩式 条件:x 轴不⊥AB 连线
向一点简化
汇交力系+力偶系 (已知力系)
力 , R'(主矢) , (作用在简化中心) 力偶 ,MO (主矩) , (作用在该平面上)
5
主矢R ' F1 F2 F3 Fi
主矩 M O m1 m2 m3 mO ( F1 ) mO ( F2 ) mO ( Fi )
1
第三章
平面任意力系与平面平行力系
§3–1 平面任意力系向一点的简化
§3–2 平面任意力系的平衡问题
§3–3 平面平行力系
2
引言
平面任意力系:各力的作用线在同一平面内,既不汇交为一 点又不相互平行的力系,叫平面任意力系。 [例 ]
力系向一点简化:把未知力系(平面任意力系)变成已 知力系(平面汇交力系和平面力偶系)
3
§3-1 平面任意力系向一点简化
一、力的平移定理
作用在刚体上点A的力 F,可以平行移到任一点B,但必须
同时附加一个力偶。这个力偶的矩,等于原来的力 F 对新作
用点B的矩。 [证 ] 力 F 力系 F , F , F
力F 力偶(F,F )
4
二、平面任意力系的简化
一般力系(任意力系) (未知力系) 汇交力系 力偶系
出平衡重的最大值Wmax=375 kN 。实际工作时不允许处于
极限状态,需使其安全工作,平衡重应在这两者之间,即 Wmin<W<Wmax。
X ) 0
m A ( Fi ) 0 mB ( Fi ) 0 mC ( Fi ) 0
③三矩式 条件:A、B、C 不在同一直线上
Y 0
mO ( Fi ) 0
①一矩式
mB ( Fi ) 0
②二矩式 条件:x 轴不⊥AB 连线
向一点简化
汇交力系+力偶系 (已知力系)
力 , R'(主矢) , (作用在简化中心) 力偶 ,MO (主矩) , (作用在该平面上)
5
主矢R ' F1 F2 F3 Fi
主矩 M O m1 m2 m3 mO ( F1 ) mO ( F2 ) mO ( Fi )
1
第三章
平面任意力系与平面平行力系
§3–1 平面任意力系向一点的简化
§3–2 平面任意力系的平衡问题
§3–3 平面平行力系
2
引言
平面任意力系:各力的作用线在同一平面内,既不汇交为一 点又不相互平行的力系,叫平面任意力系。 [例 ]
力系向一点简化:把未知力系(平面任意力系)变成已 知力系(平面汇交力系和平面力偶系)
3
§3-1 平面任意力系向一点简化
一、力的平移定理
作用在刚体上点A的力 F,可以平行移到任一点B,但必须
同时附加一个力偶。这个力偶的矩,等于原来的力 F 对新作
用点B的矩。 [证 ] 力 F 力系 F , F , F
力F 力偶(F,F )
4
二、平面任意力系的简化
一般力系(任意力系) (未知力系) 汇交力系 力偶系
出平衡重的最大值Wmax=375 kN 。实际工作时不允许处于
极限状态,需使其安全工作,平衡重应在这两者之间,即 Wmin<W<Wmax。
平面任意力系 简化与平衡

P
列平衡方程 MB Fi 0,
FA b W a b Ge Pl 0
解得
FA
1 b
W
a
b
G
e
P
l
A
B
FA b FB
将其代入条件 FA ≥ 0,即得满载时平衡块的重量应满足
W ≥ 1 Ge Pl
ab
W ≤ Geb
a
W ≥ 1 Ge Pl
ab
所以,要保证起重机在空载和 满载时都不翻倒,平衡块重应 满足不等式
y FT
FAx A
D
FAy
FB
Bx
P
2m 1m
3m
4)求解未知量
解得
FAx 2.4 kN
FAy 1.2 kN
FB 0.85 kN
杆 BC 所受的力与FB是作用力与反作用力的关系,即杆 BC 所受的 力为 0.85 kN,是拉力
[例5] 横梁 AB 用三根杆支撑,受图示载荷。已知 F = 10 kN, M = 50 kN·m,若不计构件自重,试求三杆 所受的力。
2. 分布载荷的合成结果 均布载荷
q Fq ql
A
B
l/2
l
线性分布载荷
Fq ql /2
q
A
B
2l /3
l
三、平面任意力系简化结果的讨论
4)FR 0 且 MO 0
FR Fi' Fi
FR 0
F
' Rx
Fix'
Fix
F
' Ry
Fiy'
Fiy
Fix 0 Fiy 0
MO Mi MO Fi
W a
eC
G P
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
取水平杆2为研究对象,受力如图。
M A (F ) 0 : FNBb Fx 0
FNB
Fx b
代入(a)式得
示。已知水平力F=6 kN,M=4 kN·m,q=3 kN/m。求固定端A
及铰链C的约束反力。
解: (1) 取BC分析
D
2l/3
M
FCy
B
C
M
B
CF
FBx
FCx
FBy
l/2
M B (F ) 0 : M FCy l 0
q0
A
M FCy l 2 kN 求得结果为负说明与假设方向相反。
(例2) 取1C2D分析
平面力 偶 系力偶,MO (主矩,作用在该平面上)
4.1.2 平面任意力系向一点简化·主矢与主矩
平面任意力系中各力的矢量和称为平面任意力系 的主矢。主矢与简化中心的位置无关。
uur uur uur
rr
R' R'x + R'y X i Y j
R' ( X )2 (Y )2
cos( R'
,
4.2.2 平行分布线荷载的简化
1、均布荷载 Q ql 2、三角形荷载 Q 1 ql
2
3、梯形荷载
可以看作一个三角形荷载和一 个均布荷载的叠加 结论: 1、合力的大小等于线荷载所组成几何 图形的面积。 2、合力的方向与线荷载的方向相同。 3、合力的作用线通过荷载图的形心。
Q q
l/2 l/2 Q q
∴主矢 R X 2 Y 2 2002 1502 250N
cos cos(R, x) X 200 0.8
R 250
∴ =36.9°
mA mA (Fi ) P2 6 50 6 300N cm
2、简化最终结果
主矢 R 250N 方向: =36.9°
y
P2
P1
mA
B
第四章 平面任意力系
4 平面任意力系
• 平面任意力系向作用面内一点的简化 • 平面任意力系的平衡条件和平衡方程 • 物体系统的平衡·静定和超静定问题 • 平面简单桁架的内力计算
4.1 平面任意力系向作用面内一点简化
4.1.1 力线平移定理
定理:可以把作用在刚体上点A的力F平行
移到任一点O,但必须同时附加一个力偶,这
(1)平面任意力系简化为一个力偶的情形
R' =0,MO≠0
原力系合成为合力偶。合力偶矩M等于原力系对简化 中心的主矩。此时主矩与简化中心的位置无关。
MO MO(F)
4.2 平面任意力系简化结果分析
(2)平面任意力系简化为一个合力的情形·合力矩定理
如果主矩等于零,主矢不等于零,则此时平面 力系简化为一合力,作用线恰好通过简化中心。
FDy D FDx
CF
F'Cx
F'Cy
q0
MD(F) 0:
FCx
l
F
2l 3
0
FCx
2 3
F
4
kN
求得结果为负说明与假设方向相反。
D
2l/3
M
B
CF
l/2
A
(例3) 取1A2B、BC分析
Fx 0 :
FCx
FAx
1 2
ql
0
FAx
FCx
1 2
ql
(4)
1 2
32
1 kN
D
2l/3
M
B
CF
FA1
b 2
F(b 2
x)
FNB
b 2
FND
b 2
0
(a)
上式中FND和FNB为未知量,必须先求得;为此再 分别取整体和杆2为研究对象。
a
xF
A
B
2
3
1E
4
C
D
b
F
A
B
FEy
FA1
FEx FNB
E
FND
D
例13 取整体为研究对象,受力如图。
MC (F ) 0 : FNDb Fx 0
FND
Fx b
FAx
FAy
B
FBx
FBy
a
例5
再以AC为研究对象,受力如图。
MC (F ) 0 : FAxa FAya 0
解得:
FAx
FAy
1 4
qa
1 2
F
FBx
1 2
F
1 4
qa
F
C
FCx
A
FAx
FCy
FAy
q F
C
A
B
a
a
a
例6 例6 求图示多跨静定梁的支座反力。
F
q
解:先以CD为研究对象,受力如图。
i)
X R'
cos( R'
,
j)
Y R'
4.1.2 平面任意力系向一点简化·主矢与主矩
原力系各力对简化中心力矩的代数和称为原力系
对简化中心的主矩。一般来说,主矩与简化中心的位
置有关。
n
uur
MO MO (F i )
i 1
平面任意力系向作用面内任一点O简化,可得 一个力和一个力偶。这个力等于该力系的主矢, 作用线通过简化中心O 。这个力偶的矩等于该 力系对于点O的主矩。主矢与简化中心的位置 无关,主矩和简化中心的位置有关。
其中A、C、E为光滑铰链,B、D为光滑接触,E为 中点,各杆自重不计。在水平杆 2 上作用一铅垂 向下的力 F,试证明无论力 F 的位置 x 如何改变, 其竖杆 1 总是受到大小等于F 的压力。
解:本题为求二力杆(杆1)的内力FA1或FC1。为 此先取杆2、4及销钉A为研究对象,受力如图。
ME (F) 0 :
A
R R CP3 x来自主矩 LA = mA 300N cm
最终结果 合力 大小: R R 250N
方向: =36.9° 在A点左还是右?
位置图示: h L 300 1.2cm R 250
4.3 平面任意力系的平衡条件和平衡方程
4.3.1 平衡条件
平面任意力系平衡的必要与充分条件是:力系 的主矢和对任一点的主矩都等于零。即
拉杆CB的倾角=30°,质量不计,载荷Q=7.5 kN。求图示位
置a=2 m时拉杆的拉力和铰链A的约束反力。
例3 解:取横梁AB为研究对象。
Fx 0
FAx FT cos 0 (1)
FAy
Fy 0
FAx
A
FT
E
H
B
FAy FT sin P Q 0 (2)
P
a
M A(F) 0
F1 F2
y FR′
O
j
MO
Oi
x
Fn y
F1 F1 F2 F2 LL Fn Fn
F1′ M1
M2
O Mn
Fn′
F2′
M1 M O (F1)
M 2 M O (F2 )
x LLL
M n M O (Fn )
4.1.2 平面任意力系向一点简化·主矢与主矩
平面任意力系 向一点简化 平面汇交力系+平面力偶系
个附加力偶的矩等于原来的力F对新作用点O的
矩。
F′
B
F″ B
F=
F=
F′ MB
A
A
A
力线平移定理的逆步骤,亦可把一个力和一 个力偶合成一个力。
说明: ①力的平移定理揭示了力与力偶的关系:力
力+力偶
②力平移的条件是附加一个力偶m,且m与d有关,m=F•d
③力的平移定理是力系简化的理论基础。
4.1.2 平面任意力系向一点简化·主矢与主矩
A
D
FAx
BC
FAy
1 2
F
1 2
q
FAy
FB
FD
例7 例7 求图示结构固定端的约束反力。 F
解:先以BC为研究对象,受力如图。
M 0 : FCb M 0
FC
M b
FB
再以AB部分为研究对象,受力如图。
a
b
q a A
Fx 0 : FAx F FB 0
FB
Fy 0 : FAy qa 0 MA(F) 0
MA(F) 0
FDa
1 2
q(2a
b)2
0
解之得:
q(2a b)2 FD 2a
q(2a b)2 FAx 2a
FAy q(2a b)
AE
F
B
a
23
D1
C
b
a
a
FAy
q
FAx
AE 2
F 3
B
D1
FD
C
例4
再以铰C为研究对象,受力如图,建立如图坐标。
Fx 0 : F1 F3 cos 45o 0
F q
M
A
F
(a
b)
1 2
qa2
FBa
0
FB FB 求得
MA
FAx
M b
F,
FAy
qa,
MA L
FAx
A
FAy
C BM
C
FC
BM
F'B
B
例4 例8 组合结构如图所示,求支座反力和各杆的内力。
解:先以整体为研究对象,受力如图。
q
Fx 0 : FAx FD 0 Fy 0 : FAy q(2a b) 0
l/2
Fy 0 : FAy FCy 0
FAy FCy (2) 2 kN
M A(F) 0 :
11
M
A
M