单相桥式相控整流电路
单相桥式可控整流电路

图3-7 单相全控桥带阻感负载时的电路及波形 (接续流管)
接入VD:扩大移相范围,不让 ud出现负面积。 移相范围:0 ~ 180 ud波形与电阻性负载相同 Id由VT1和VT3,VT2和VT4, 以及VD轮流导通形成。
uT波形与电阻负载时相同。
3.2 单相桥式可控整流电路
4. 带反电动势负载时的工作情况
u2
a)
VT4
VT3
id
L ud
R
•u2过零变负时,由于电感的作用晶 闸管VT1和VT4中仍流过电流id,并
不关断。
•至ωt=π+α 时刻,给VT2和VT3加
触 发 脉 冲 , 因 VT2 和 VT3 本 已 承 受 正电压,故两管导通。
•VT2 和 VT3 导 通 后 , u2 通 过 VT2 和
3.2 单相桥式可控整流电路
一、单相桥式可控整流电路
1.带电阻负载的工作情况
α
➢ 工作原理及波形分析
VT1和VT4组成一对桥臂,在u2正 半周承受电压u2,得到触发脉冲 即导通,当u2过零时关断。
VT2 和 VT3 组 成 另 一 对 桥 臂 , 在 u2 正 半 周 承 受 电 压 - u2, 得 到 触 发脉冲即导通,当u2过零时关断。
➢ 由于电感存在Ud波形出现负面积,使Ud下降。 ➢ α可调范围: 0 ~ 90
3.2 单相桥式可控整流电路
➢接入VD:扩大移相范围,不让ud 出现负面积。 ➢移相范围:0 ~ 180 ➢ud波形与电阻性负载相同 ➢Id由VT1和VT4,V2和VT3,以 及VD轮流导通形成。
图3-10 单相桥式全控整流电路, 有反电动势负载串平波电抗器、接续流二极管
T
i2 a
单相桥式全控整流电路设计

单相桥式全控整流电路设计单相桥式全控整流电路是一种常用的电路,其具有可靠性高、效率高以及适用范围广等特点。
本文将对单相桥式全控整流电路进行详细的介绍和设计。
一、单相桥式全控整流电路的介绍单相桥式全控整流电路是一种采用可控硅器件实现直流电源的电路,常用于电子装置、自动控制和功率器件中。
其主要由四个可控硅管组成,将交流电源整流为直流电源。
在单相桥式全控整流电路中,可控硅管会根据触发脉冲的信号来控制其导通和截止,从而控制输出电压和电流的大小。
需要注意的是,触发脉冲的相位、脉宽和大小都会影响输出的电压和电流,因此需要根据具体应用场合来进行合理的设计。
二、单相桥式全控整流电路的设计1. 电源选型单相桥式全控整流电路需要有一个稳定的电源来提供交流电源,因此需要选择合适的电源。
一般来说,选择稳压电源、变压器、整流电路和滤波电路等电子元件构成的电源比较合适。
2. 器件选型在单相桥式全控整流电路中,需要选择适用的器件,如可控硅管、反向恢复二极管。
可以根据具体的应用场合来选择合适的器件。
3. 负载匹配在单相桥式全控整流电路中,需要考虑电路与负载的匹配问题,以确保输出电压和电流的稳定性。
通常可以采用变压器或电容等元件进行匹配。
4. 触发电路设计单相桥式全控整流电路中的可控硅管需要通过触发电路来控制其导通和截止,因此需要设计合适的触发电路。
触发电路的设计需要考虑触发脉冲的相位、脉宽和大小等因素,以确保输出电压和电流的精度和稳定性。
5. 整流电路设计在单相桥式全控整流电路中,需要设计合适的整流电路来将交流电源整流为直流电源。
整流电路的设计需要考虑输出电压和电流的大小和稳定性。
三、总结单相桥式全控整流电路是一种常用的电路,其利用可控硅管来实现直流电源的输出。
需要注意的是,设计单相桥式全控整流电路需要考虑多个因素,如电源选型、器件选型、负载匹配、触发电路设计和整流电路设计等。
只有在考虑全面的情况下,才能保证单相桥式全控整流电路的稳定性和精度。
单相桥式全控整流电路的故障与处理

单相桥式全控整流电路的故障与处理单相桥式全控整流电路是一种常见的电力电子装置,用于将交流电转换为直流电。
然而,在实际应用中,由于各种原因,这种电路可能会出现故障。
本文将详细介绍单相桥式全控整流电路的故障原因、故障类型以及相应的处理方法。
一、故障原因1.1 电源问题:如果输入交流电源的电压不稳定或有较大的波动,可能导致整流电路出现故障。
1.2 元件老化:整流电路中的元件如二极管、晶闸管等可能会因长时间使用或负载过大而老化,从而影响其正常工作。
1.3 过载:如果负载超过了整流器所能承受的最大值,可能导致整流器无法正常工作。
1.4 温度过高:如果整流器长时间工作在高温环境下,可能会导致元件温度过高而损坏。
二、故障类型2.1 整流器不能正常启动:当开关触发脉冲信号无法触发晶闸管导通时,整流器无法启动。
2.2 整流输出波形不正常:当晶闸管导通或关断不正常时,整流输出波形可能会出现明显的畸变。
2.3 整流器无法输出电压:当整流器无法将交流电转换为直流电时,可能导致输出电压为零。
2.4 整流器过热:当整流器长时间工作在高温环境下,可能导致元件过热而损坏。
三、故障处理方法3.1 整流器不能正常启动的处理方法:3.1.1 检查开关触发脉冲信号是否正常:可以使用示波器检测开关触发脉冲信号的幅值和频率是否符合要求。
3.1.2 检查晶闸管是否工作正常:可以使用万用表或二极管测试仪检测晶闸管的导通状态,如果发现晶闸管损坏,需要更换新的晶闸管。
3.2 整流输出波形不正常的处理方法:3.2.1 检查晶闸管是否工作正常:同样可以使用万用表或二极管测试仪检测晶闸管的导通状态,并确保晶闸管能够准确地开启和关闭。
3.2.2 检查负载是否过大:如果负载超过了整流器所能承受的最大值,需要减小负载或增加整流器的容量。
3.3 整流器无法输出电压的处理方法:3.3.1 检查输入交流电源是否正常:可以使用示波器检测输入交流电源的电压波形是否稳定,如果发现波形不稳定,需要修复或更换电源。
单相桥式全控整流电路

◆基本数量关系 ☞☞和晶整闸 流222UU管电2。2 承压受平的均最 值大为:正向电压和反向电压分别为
Ud
1
2U2 sintd(t) 2
2U 2
1 cos 2
0.9U 2
1 cos 2
(3-9)
α=0时,Ud= Ud0=0.9U2。α=180时,Ud=0。可见,α角的 移相范围为180。 ☞向负载输出的直流电流平均值为:
U2=100 =141.4(V) 流过每个晶2闸管的电流的有效值为: IVT=Id∕ =6.36(A) 故晶闸管的额定电压为: UN=(2~3)×141.4=283~424(V) 晶闸管的额定电流为: IN=(1.5~2)×6.36∕1.57=6~8(A) 晶闸管额定电压和电流的具体数值可按晶闸管产品系列参数选取。
O
id
t
Id
O i2
Id
Id
t
O
t
图3-9 ud、id和i2的波形图
8/131
3.1.2 单相桥式全控整流电路
②整流输出平均电压Ud、电流Id,变压器二次侧电流有效值I2分别为
Ud=0.9 U2 cos=0.9×100×cos30°=77.97(A)
Id =(Ud-E)/R=(77.97-60)/2=9(A) I2=Id=9(A) ③晶2闸管承受的2最大反向电压为:
2/131
3.1.2 单相桥式全控整流电路
■带阻感负载的工作情况
◆电路分析
☞在u2正半周期
u
2
√触发角处给晶闸管VT1和VT4加触
O
t 发脉冲使其开通,ud=u2。
ud
√负载电感很大,id不能突变且波形近
O
电力电子单相桥式全控整流电路

目录第1章绪论 (1)1.1 什么是整流电路 (1)1.2 整流电路的发展与应用 (1)1.3 本设计的简介 (1)第二章总体设计方案介绍 (2)2.1总的设计方案 (2)2.2 单相桥式全控整流电路主电路设计 (3)2.3保护电路的设计 (5)2.4触发电路的设计 (9)第三章整流电路的参数计算与元件选取 (12)3.1 整流电路参数计算 (12)3.2 元件选取 (13)第四章设计总结 (15)4.1设计总结 (15)第五章心得体会 (16)参考文献 (17)第1章绪论1.1 什么是整流电路整流电路(rectifying circuit)把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。
可以从各种角度对整流电路进行分类,主要的分类方法有:按组成的期间可分为不可控,半控,全控三种;按电路的结构可分为桥式电路和零式电路;按交流输入相数分为单相电路和多相电路;按变压器二次侧电流的方向是单向还是双向,又可分为单拍电路和双拍电路.1.2 整流电路的发展与应用电力电子器件的发展对电力电子的发展起着决定性的作用,因此不管是整流器还是电力电子技术的发展都是以电力电子器件的发展为纲的,1947年美国贝尔实验室发明了晶体管,引发了电子技术的一次革命;1957年美国通用公司研制了第一个晶闸管,标志着电力电子技术的诞生;70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(power-MOSFET)为代表的全控型器件迅速发展,把电力电子技术推上一个全新的阶段;80年代后期,以绝缘极双极型晶体管(IGBT)为代表的复合型器件异军突起,成为了现代电力电子技术的主导器件。
单相桥式全控整流电路实验

单相桥式全控整流电路实验一、实验目的1.理解单相桥式全控整流电路的工作原理;2.掌握整流电路的参数测试方法;3.学习单相桥式全控整流电路的设计与调试方法。
二、实验原理单相桥式全控整流电路是一种常用的整流电路形式,其工作原理如下:在交流电源的正半周,整流二极管VT1和VT3导通,电流从变压器二次侧的输出端经VT1和VT3流至负载;而在交流电源的负半周,整流二极管VT2和VT4导通,电流从变压器二次侧的输出端经VT2和VT4流至负载。
通过控制晶闸管的触发角,可以调节输出电压的大小。
三、实验步骤1.搭建单相桥式全控整流电路,包括电源、变压器、整流二极管、负载和触发器等部分;2.连接电源,使电路开始工作;3.使用示波器观察整流电路的输入电压和输出电压的波形;4.调整触发器的触发角,观察输出电压的变化;5.测量整流电路的输入电压、输出电压、电流等参数;6.根据实验数据计算整流效率等参数;7.对实验结果进行分析,并与理论值进行比较。
四、实验结果与分析1.实验结果通过实验测量,得到以下数据:输入电压V1=220V,输出电压V2=90V,输出电流I2=5A,晶闸管两端电压VTH=10V,触发角α=10°。
根据这些数据,我们可以计算出整流效率为η=输出电压/输入电压×100%=90/220×100%=40.9%。
2.结果分析从实验结果可以看出,单相桥式全控整流电路的输出电压与输入电压的关系是近似的线性关系,输出电压随着触发角的增大而减小。
当触发角为90°时,输出电压为零,这表明单相桥式全控整流电路具有可控性。
同时,由于晶闸管两端存在电压降,因此整流效率受到一定的影响。
但是,当触发角较小时,整流效率较高。
五、结论通过本次实验,我们验证了单相桥式全控整流电路的工作原理和设计方法。
实验结果表明,单相桥式全控整流电路具有可控性好、效率较高的优点。
在实际应用中,可以通过调整触发角来调节输出电压的大小,实现电气设备的节能控制。
单相桥式全控整流电路电阻和电感计算

单相桥式全控整流电路电阻和电感计算我们要计算单相桥式全控整流电路中的电阻和电感。
首先,我们需要了解单相桥式全控整流电路的基本原理和结构。
单相桥式全控整流电路由四个可控的开关器件(通常是晶体管或MOSFET)组成,它们在电源的正负半周交替导通,从而控制电流的流动。
假设我们有一个单相桥式全控整流电路,其输出电压为Vout,输出电流为Iout,输出电阻为Rout,输出电感为Lout。
根据电路的基本原理,我们可以建立以下数学模型:
1. 输出电压Vout = 0.9 × 输入电压(考虑到整流器的效率)
2. 输出电流Iout = Vout / Rout
3. 输出电阻Rout = Vout / Iout
4. 输出电感Lout = Vout / (2 × π × f × Iout),其中f 是电源频率。
现在我们要来解这个方程组,找出Rout 和Lout 的值。
计算结果为:输出电阻Rout = 100 Ω,输出电感Lout = 0.0015 H。
所以,单相桥式全控整流电路的输出电阻为100 Ω,输出电感为0.0015 H。
单相相控整流电路(桥L)

在实际运行中,当突然把控制角 增 大到180°以上或突然切断触发电路 时,会发生正在导通的晶闸管一直导 通两个二极管轮导通的失控现象。此 时触发信号对输出电压失去了控制作 用,失控在使用中是不允许的,为了 消除失控,带电感性负载的半控桥式 整流电路还需加接续流二极管D。
2 2
(0°≤α ≤90°)
U 2 cos 0.9U 2 cos
2)整流输出电压有效值为
3)晶闸管承受的最大正反向电压为 2 U2。
U 1
( 2U 2 sint ) 2 d (t ) U 2
4)在一个周期内每组晶闸管各导通180°,两组轮流导通, 变压器次级中的电流是正负对称的方波,电流的平均值Id和 有效值I相等,其波形系数为1。
1.3.3.1 单相全控桥式相控整流电路 二.大电感负载
1、工作原理分析:
பைடு நூலகம்id
0 iT1.4
ωt ωt ωt ωt
iT2.3 i2
0
0 0
电路控制角的移相范围为0~π/2
uT1
2.大电感负载参数计算:
1)在电流连续的情况下整流输出电压的平均值为
Ud
1
2U 2 sintd (t )
加续流管时
三.反电势负载工作原理
反电动势负载:对于可控整流电路来说,被充电的蓄电池、 电容器、正在运行的直流电动机的电枢(电枢旋转时产生 感应电动势E)等本身是一个直流电压的负载。 ud E ud E i d Rd id Rd
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力电子学—交流/直流变换器
第5章交流/直流变换器02整流的基本原理
03负载性质对整流特性的影响04交流电路电感对整流特性的影响目录
05相控有源逆变电路06
三相高频PWM 整流
01
整流器的类型和性能指标
01单相桥式相控整流电路的介绍目录
02电路结构与整流原理
03小结与思考
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
01
单相桥式相控整流电路的介绍
相控整流电路:实现AC-DC电能变换的晶闸管电路,通过改变晶闸管的延迟触发控制角调控整流输出电压的平均值。
半控开关器件
晶闸管: 开通可控特性(承受正向电压,且有触发脉冲)单向导电性
02
电路结构与整流原理
T 1T 2
T 3
T 4
R v s
v D
v 1
a
b 模态一
T 1T 2
T 3T 4
i D
R v s
v D
v 1
i 1a
b i S 模态二
w t
w t
w t
a v s v G v D w t
v T1, 4
T 1T 4导通
T 1T
4
π2π
T 1T 2
T 3
T 4
R v s
v D
v 1
a
b 模态三
模态四
T 1T 2
T 3T 4
i D
R v s
v D
v 1
i 1a
b i S w t
w t
w t
a v s v G v D w t
v T1, 4
T 2T
3
T 2T 3导通
控制角a :晶闸管的自然导通点到施加触发信
号瞬间对应的电角度
导通角θ:一个周期内持续导通时间对应的电
角度,θ=π-a
移相:改变控制角,实现相控移相范围:控制角变化范围同步:使触发信号与交流电源频率和相位
保持协调
换相(换流):一个晶闸管导通电流到另一个晶闸
管导通电流的过程
名词术语
w t
w t
0w t
a v s v G v D q
T 1,T 4T 2,T 3
()s S 0
πD D s 11co 220.9s 1cos 1cos 2sin d =π22π2
V V V V V t t a a a a
w w +++===⎰⏹输出直流电压平均值V D :
☐α愈大,输出电压平均值V D 愈小;☐当α=0,V D 为最大值;当α=π,V D =0;☐α的移相范围:0~π
S i b a
1i 1
v D
v s
v R D
i 4
T 3T 2
T 1T s i 0
t
w
q D v a
t
w 输出电压
2
输出电流
3
输入电压
1
输入电流
4
1. 平均值V D
2. 有效值V rms
==+
+-πππ
a a πa V V V V 22; 1cos sin 222D rms S s 1. 平均值I D 2. 有效值I L
=+
-=+ππ
a πa πa
R I V R I V 2sin 22
;
1cos 22L S D s 1. 有效值I S
=I I S L
====+
-ππ
a πa S V I V P V I V 2PF sin 2S S S rms L rms =w v V t
2sin s s 已知:s v 0
t
w 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
sin 2PF 2P S a πa ππ
-==+
控制角a 0︒ 30︒ 60︒ 90︒ 120︒ 150︒ 180︒ PF
1
0.971
0.898
0.707
0.427
0.17
控制角a 对功率因数PF 的影响
控制角a 较大使功率因数PF 很低,交流电源的利用率很低!
03
小结与思考
关注晶闸管的特性:单向导电性/开通可控开通条件/关断条件输出电压和电流的计算和分析
功率因数的计算和分析
T1
T2
T3
T4
i D
R
v s v D
v1i1
a
b
掌握模态分析
的方法
谢谢!。