单相桥式全控整流电路基本工作原理
单相桥式全控整流电路基本工作原理

单相桥式全控整流电路基本工作原理
单相桥式全控整流电路电路主电路结构如下图1所示,其基本工作原理分析如下:
单相桥式全控整流电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。
单相桥式全控整流电路(阻-感性负载)电路图如图1所示
1)在u2正半波的(0~α)区间:
晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。
假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。
2)在u2正半波的ωt=α时刻及以后:
在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L→R→VT4→b →Tr的二次绕组→a流通,此时负载上有输出电压(ud=u2)和电流。
电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。
3)在u2负半波的(π~π+α)区间:
当ωt=π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。
在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
4)在u2负半波的ωt=π+α时刻及以后:
在ωt=π+α处触发晶闸管VT2、VT3使其导通,电流沿b→VT3→L→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压(ud=-u2)和电流。
此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。
晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。
2.1.4_单相桥式全控整流电路(电阻性负载)解析

4)输出电流有效值I与变压器二次侧电流I2 输出电流有效值I与变压器二次侧电流I2相同为
U U2 I I2 R R
1 π sin 2 2π π
4.3.2单相桥式全控整流电路(阻-感性负载)
1、电路结构
电感的感应电势使输出电压波形出现负波。输出电流是近似 平直的,晶闸管和变压器副边的电流为矩形波。
ud Ud
0
t1
t 2
t
iT1,4
id
Tr
iT2,3
0
Id
t
Id
i2 u2
VT1 a
VT3
L
0 u T1
t
u1
ud
b
VT2 VT4
0
R
u 2 (i2 )
t
u2 i2
Id
(a)
0
t
图4-4
(b)
2、工作原理
1)在u2正半波的(0~α)区间:
晶闸管VT1、VT4承受正压,但无触发脉冲,
3、波形
300
图4-2
600
900
1200
图4-3
1500
单相桥式整流器电阻性负载时的移相范围是 0~180º 。 α=0º 时,输出电压最高;α=180º 时,输出电压最小。
4. 基本数量关系 1)输出电压平均值Ud
1 Ud π
2U 2 sin tdt
4.3.1 单相桥式全控整流电路(电阻性负载)
1、电路结构 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成 共阳极,每一只晶闸管是一个桥臂。
ud (id )
Ud
电力电子单相桥式全控整流电路

目录第1章绪论 (1)1.1 什么是整流电路 (1)1.2 整流电路的发展与应用 (1)1.3 本设计的简介 (1)第二章总体设计方案介绍 (2)2.1总的设计方案 (2)2.2 单相桥式全控整流电路主电路设计 (3)2.3保护电路的设计 (5)2.4触发电路的设计 (9)第三章整流电路的参数计算与元件选取 (12)3.1 整流电路参数计算 (12)3.2 元件选取 (13)第四章设计总结 (15)4.1设计总结 (15)第五章心得体会 (16)参考文献 (17)第1章绪论1.1 什么是整流电路整流电路(rectifying circuit)把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。
可以从各种角度对整流电路进行分类,主要的分类方法有:按组成的期间可分为不可控,半控,全控三种;按电路的结构可分为桥式电路和零式电路;按交流输入相数分为单相电路和多相电路;按变压器二次侧电流的方向是单向还是双向,又可分为单拍电路和双拍电路.1.2 整流电路的发展与应用电力电子器件的发展对电力电子的发展起着决定性的作用,因此不管是整流器还是电力电子技术的发展都是以电力电子器件的发展为纲的,1947年美国贝尔实验室发明了晶体管,引发了电子技术的一次革命;1957年美国通用公司研制了第一个晶闸管,标志着电力电子技术的诞生;70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(power-MOSFET)为代表的全控型器件迅速发展,把电力电子技术推上一个全新的阶段;80年代后期,以绝缘极双极型晶体管(IGBT)为代表的复合型器件异军突起,成为了现代电力电子技术的主导器件。
2.1.5 单相桥式全控整流电路(阻-感性负载)

ωt 2
ωt
α
Id
id
i2 u1 u2
iT2,3
ωt
Id
VT1
VT3
L
u T1
ωt
ud
R
VT2 VT4
u 2 (i2 )
ωt
u2 i2
Id
ωt
图2-10
2、工作原理 、
1)在u2正半波的(0~α)区间: ) 正半波的( )区间: 晶闸管VT 承受正压,但无触发脉冲,处于关断状态。 晶闸管 1、VT4承受正压,但无触发脉冲,处于关断状态。 假设电路已工作在稳定状态,则在0~ 区间由于电感释放 假设电路已工作在稳定状态,则在 ~α区间由于电感释放 能量,晶闸管VT 维持导通。 能量,晶闸管 2、VT3维持导通。 2)在u2正半波的 ) 正半波的ωt=α时刻及以后: 时刻及以后: 时刻及以后 在 ωt=α 处 触 发 晶 闸 管 VT1 、 VT4 使 其 导 通 , 电 流 沿 a→VT1→L→R→VT4→b→Tr的二次绕组 的二次绕组→a流通 , 此时 流通, 的二次绕组 流通 负载上有输出电压( 和电流。 负载上有输出电压(ud=u2)和电流。电源电压反向加到晶 闸管VT 使其承受反压而处于关断状态。 闸管 2、VT3上,使其承受反压而处于关断状态。
3、 基本数量关系 、 1)输出电压平均值 d )输出电压平均值U
1 Ud = π
∫
π +α
α
2U 2 sin ωtd (ωt )
2 2U 2 = cos α = 0.9U 2 cos α π
2)输出电流平均值Id )输出电流平均值
Ud Id = R
3)晶闸管的电流平均值IdT 由于晶闸管轮流导电, 由于晶闸管轮流导电,所以流过每个晶闸管的平 均电流只有负载上平均电流的一半。 均电流只有负载上平均电流的一半。
单相全控整流电路详解

第一题说明全控型整流电路的工作原理,并设计出一个单相全控整流电路及其控制电路(开环)1.单相全控型PWM整流电路的结构单相电压型桥式PWM整流电路最初出现在交流机车传动系统中,为间接式变频电源提供直流中间环节,电路结构如图1-1所示。
每个桥臂由一个全控器件和反并联的整流二极管组成。
u s是正弦波电网电压,u d是整流器的直流侧输出电压,Ls为交流侧附加的电抗器,Ls包括外接电抗器的电感和交流电源内部电感,是电路正常工作所必须的。
起平衡电压,支撑无功功率和储存能量的作用。
全桥电路直流侧电容只要一个就可以。
由图1-1所示,能量可以通过构成桥式整流的二极管VD1-VD4完成从滞留测到交流侧的传递,也可以经过全控型器件V1-V4从直流侧你变为交流,反馈给电网。
图1-1所以PWM整流器的能量变换是可逆的,而能量的传递趋势是整流还是逆变,主要视V1-V4的脉宽调制方式而定。
2.单相全控型PWM整流电路的工作原理用正弦信号波和三角波相比较的方法对图1-1中的V1-V4进行SPWM控制,就可以在桥的交流输入端AB产生一个SPWM波u AB。
u AB中含有和正弦信号波同频率且幅值成比例的基波分量,以及和三角波载波有关的频率很高的谐波,不含有低次谐波。
当正弦信号波频率和电源频率相同时,i s也为与电源频率相同的正弦波。
由于Ls的滤波作用,谐波电压只使i s产生很小的脉动。
u s一定时,i s 幅值和相位仅由u AB中基波u ABf的幅值及其与u s的相位差决定。
改变u ABf的幅值和相位,可使i s和u s同相或反相,i s比u s超前90°,或使i s与u s相位差为所需角度。
u s> 0时,(V2、VD4、VD1、Ls)和(V3、VD1、VD4、Ls)分别组成两个升压斩波电路,以(V2、VD4、VD1、Ls)为例。
V2通时,u s通过V2、VD4向Ls储能。
V2关断时,Ls中的储能通过VD1、VD4向C充电。
单相桥式全控整流电路

ud=0) ud=u2 ud=0 ud=-u2 ud=0
输出电压波形同电阻性负载,电路有自然续流功能 移相范围: 0~π; 导通角θ=π-α
㈡各电量计算
1、负载
Ud
0.9 1
cos
2
Id
Ud Rd
2、晶闸管
I dT
1 2
Id
IT
1 2
流二极管 IdD IdT
ID IT U DM 2U 2
㈢存在问题:失控现象
若突然关断触发脉冲或将α迅速移到 180°,可能出现一只晶闸管直通,两 只整流二极管交替导通的电路失去控制 的现象,即失控现象。 此时输出变成单相不可控半波整流电压 波形,导通的晶闸管会因过热而损坏。 解决办法:接续流二极管VD
㈣接续流二极管VD后电路分析
在的负半周 0<ωt<α期间 VT1~VT4都不导通 ωt=α 时刻 触发 0<ωt<α期间 VT2、VT4导通 ωt=π 时刻 VT2、VT4关断
结论
1、在交流电源电源u2的正、负半周里, VT1、 VT3和 VT2、VT2两组晶闸管轮流触发导通,将 交流电转变成脉动直流电;
2、改变 α 角度大小,ud、id波形相应改变;
2、参数计算:
•输出电流平均值
Id
Ud E Rd
•其它参数计算与大电感负载时相同
2.3 单相桥式半控整流电路
一、电路结构(flash)
将单相桥式全控整流电路中的一对晶 闸管换成两只整流二极管即可
工作特点:晶闸管需触发才导通;整 流二极管承受正向电压时会自然(换 相)导通
二、电路工作原理及参数计算
Id
Ud R
单相桥式全控整流电路基本工作原理

单相桥式全控整流电路基本工作原理
1.脉冲触发控制器:在单相桥式全控整流电路中,采用脉冲触发控制器来对可控硅元件进行控制。
脉冲触发控制器通常是由脉冲发生器和触发电路组成,它可以产生一系列的脉冲信号,用于触发可控硅元件的导通。
2.控制信号生成:脉冲触发控制器根据需要调整输出电压的大小,生成对应的控制信号。
控制信号的频率一般高于输入电压的频率,一般在几十赫兹到几百赫兹之间。
3.触发可控硅元件:通过控制信号触发器,可控硅元件可以被控制导通。
在单相桥式全控整流电路中,有两个可控硅元件在正半周导通,另外两个在负半周导通,通过交替改变导通硅元件,可以实现对输入交流电压的整流。
4.交流电压的整流:当可控硅元件导通时,电流可以通过它们流入负载电阻,实现对交流电压的整流。
通过调整可控硅元件的导通角,可以控制电流的大小,从而实现对输出电压的调整。
5.滤波电路:由于可控硅元件导通时,电流是脉冲的,因此需要通过滤波电路将电流进行平滑处理,以获得平稳的直流电压。
滤波电路通常由电容和电感组成,能够滤去电流的脉动成分。
6.直流电压输出:经过滤波电路处理后,可以得到平稳的直流电压输出。
输出电压的大小取决于可控硅元件的导通角,可以通过调整控制信号的频率和宽度来控制导通角,从而实现对输出电压的调节。
总之,单相桥式全控整流电路利用可控硅元件的导通和关断,根据控制信号的调整,实现对输入交流电压的整流,并通过滤波电路获得所需的
直流输出电压。
这种电路结构简单、效果稳定,广泛应用于工业和家用电气设备中。
单相桥式全控整流电路基本工作原理

单相桥式全控整流电路基本工作原理该电路的基本工作原理如下:1.开通晶闸管:当输入交流电信号通过变压器降压后,将其接入晶闸管的两个交流输入端,晶闸管的门极接入触发控制电路。
在晶闸管通态分析中,容易发现当控制电路输出触发信号时,晶闸管正向导通,出现一个正导通的主电路。
此时,电流会通过晶闸管并进入负载电路。
2.关断晶闸管:在晶闸管正向导通后,电池使负载电路到负电压,负载电路从正向导通瞬间开始以反向电压工作,并保持该反向电压直到接下来正向导通的晶闸管。
3.换流:当正向导通的晶闸管关闭后,由于变压器的储能作用,晶闸管的另一对形成了正导通的主电路。
同样,电流会通过晶闸管并进入负载电路。
通过四个晶闸管的交替工作,即实现了电流的不间断输出,并将交流电信号变换为直流电信号。
4.触发控制:晶闸管的触发控制电路可以通过改变晶闸管的触发脉冲的时间、幅度和频率,来实现对晶闸管导通的控制。
具体来说,控制电路可以感知输入交流电信号的特性,并产生与之匹配的触发电压和触发时间,以确保晶闸管在合适的时机导通,并实现需求的电流输出。
5.平滑滤波:为了减小输出直流电的波动,通常在单相桥式全控整流电路的输出端串联一个滤波电路,通过电感和电容元件对输出电流进行平滑滤波,使得输出电流更加稳定。
-输出电流可以通过控制晶闸管的触发角度和宽度来实现对电路负载的精确控制。
-该电路可以实现电压和电流的双向控制,适用于多种应用场景,如交流调压、变频调速和直流供电等。
-由于使用了可控硅元件,电路具有较高的效率和可靠性。
需要注意的是,单相桥式全控整流电路在实际使用中需要根据具体需求来选择合适的晶闸管和控制电路参数,以实现期望的工作效果。
此外,由于晶闸管具有半导体器件的特性,需要采取一定的保护措施,以防止过流和过压等情况的发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单相桥式全控整流电路基本工作原理
单相桥式全控整流电路电路主电路结构如下图1所示,其基本工作原理分析如下:
单相桥式全控整流电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。
单相桥式全控整流电路(阻-感性负载)电路图如图1所示
1)在u2正半波的(0~α)区间:
晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。
假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。
2)在u2正半波的ωt=α时刻及以后:
在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L→R→VT4→b →Tr的二次绕组→a流通,此时负载上有输出电压(ud=u2)和电流。
电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。
3)在u2负半波的(π~π+α)区间:
当ωt=π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。
在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
4)在u2负半波的ωt=π+α时刻及以后:
在ωt=π+α处触发晶闸管VT2、VT3使其导通,电流沿b→VT3→L→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压(ud=-u2)和电流。
此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。
晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。