轴对称作图大全
(人教版) 轴对称图形 教学PPT课件1

•
10、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。
•
11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。
•
12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。洗牌,但是玩牌的是我们自己!
•
17、逆境是成长必经的过程,能勇于接受逆境的人,生命就会日渐的茁壮。
•
18、哪里有天才,我是把别人喝咖啡的功夫,都用在工作上的。——鲁迅
•
19、所谓天才,那就是假话,勤奋的工作才是实在的。——爱迪生
•
20、做一个决定,并不难,难的是付诸行动,并且坚持到底。
•
21、不要因为自己还年轻,用健康去换去金钱,等到老了,才明白金钱却换不来健康。
•
22、如果你不给自己烦恼,别人也永远不可能给你烦恼,烦恼都是自己内心制造的。
•
23、命运负责每个人身上都有惰性和消极情绪,成功的人都是懂得管理自己的情绪和克服自己的惰性,并像太阳一样照亮身边的人,激励身边的人。
•
2、你心里最崇拜谁,不必变成那个人,而是用那个人的精神和方法,去变成你自己。
•
3、你今天必须做别人不愿做的事,好让你明天可以拥有别人不能拥有的东西。
•
8、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给时间来定夺。
•
9、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡慕那些总能撞大运的人,你必须很努力,才能遇上好运气。
画轴对称图形

l
B′
A′
A (B ′) Bl
A′
B′ Bl
(图2)
(图3)
想一想:如果有一个图形和一条直线,如何画出与这个图形 关于这条直线对称的图形呢?
例3 如图,已知△ABC和直线l,作出与△ABC关于直线l 对称的图形.
B C
lA
分析:△ABC可以由三个顶点的位置确定,只要能分别画出 这三个顶点关于直线l的对称点,连接这些对称点,就能得到 要画的图形.
问题1:如何画一个点的轴对称 图形?
画出点A关于直线l的对称点A′. 作法: (1)过点A作l的垂线,垂足为点O. (2)在垂线上截取OA′=OA. 点A′就是点A关于直线l的对称点.
﹒A
O
l
﹒A′
问题2:如何画一条线段的对称图形? 已知线段AB,画出AB关于直线l的对称线段.
A
A′ (图1)
B
A
分析:增设的公共汽车站要
满足到两个小区的路程一样
长,应在线段AB的垂直平 分线上,又要在公路边上,
A 所以找到AB垂直平分线与 公路的交点便是.
B 公共汽车站
典例精析
例1 如图,已知点A、点B以及直线l. (1)用尺规作图的方法在直线l上求作一点P,使PA= PB.(保留作图痕迹,不要求写出作法); (2)在(1)中所作的图中,若AM=PN,BN=PM,求证: ∠MAP=∠NPB.
刻度的直尺作出它们的对称轴.
解:延长BC、B'C'交于点P,延长 A
AC,A'C'交于点Q,连接PQ,则直
线PQ即为所要求作的直线l.
B
l A′
B′ C PC′
Q
方法总结:如果成轴对称的两个图形对称点连线段(或延长线) 相交,那么交点必定在对称轴上.
画轴对称图形 课件 初中数学人教版八年级上册(2021-2022学年)

例 如图,是一只停泊在平静水面上的小船,它的“倒
影”应是图中的( B ).
初中数学
l
A
B
C
D
练习 如图,有一个英语单词,三个字母都关于直线 l 对
称,请补全字母,补全后的单词是________. BED
那么这两个图形全等.
P
P′
2. 如果两个图形关于某条直线成轴对称,
那么对称轴是任何一对对应点所连
线段的垂直平分线.
动手操作
如图,在一张半透明的纸的左边部分,画出一只左手印, 如何画出与左手印关于直线 l 对称的右手印呢?
初中数学
P
P′
l
由一个平面图形可以得到与它关于一条 直线 l 对称的图形,
(1)这个图形与原图形的形状、大小完 全相同;
于直线 l 的对称点 A′ ,B′ ,
l 2. 连接A′ B′ ,
A′
则线段 A′ B′ 即为所求.
B′
初中数学
如何验证画出的图形与线段 AB 关于直线 l 对称?
B
A
P
l
A′ P′ B′
初中数学
例 (3)已知: △ABC 和直线 l .
求作: △ABC 关于直线 l 对称的图形.
B
分析:
C
△ABC 可以由三个顶点的
初中数学
丙同学
练习 求作△ABC关于直线 l 对称的△A′ B′ C′.
B
B′
C C′
A
A′
l
规范作图!
初中数学
初中数学
练习 把下列图形补成关于直线 l 对称的图形.
设计轴对称图案

l
A′
B
C C′
B′
在格点图中,大家会很容易画出与已知图形成轴对 称的图形,如果没有格点图,我们还能比较准确地 画出与已知图形成轴对称的图形吗?Leabharlann 生活中有许多美丽的轴对称图案
⑴这些装饰图形都具有什么样的特点? ⑵它们分别有几条对称轴? ⑶你能说出它们对称轴的位置吗?
那么我们能通过作图自己绘出或设计出漂亮 的轴对称图案吗? 观察下面的图形,并思考问题。
⑷按照另一条斜的对称轴画出 ③图中图形的对称图形.
⑸按照水平(或垂直)对称轴画 出④中图形的对称图形. 涂上你喜欢的颜色即可.
①
②
③
④
归纳设计对称图案的步骤:
(1)画出对称轴
(2)画出图形的基本形状的部分线条
(3)按照其中一条对称轴画出基本形状的对称图形 (4)按照另一条对称轴继续画对称图形 (5)完成对称图案设计
⑴
⑵
①上面图形是轴对图形吗?它们有多少条对称轴?
②图⑴的四个部分均是轴对称图形吗?对称轴有什么特点? ③能否利用轴对称性通过只作一部分来画出这个图形?
请按以下步骤来画
⑴在正方形纸上用虚线画出四条对称轴.
⑵在其中一个三角形中,画出图形形状 的基本线条. ⑶按照其中一条斜的对称轴画 出②中图形的对称图形.
图形吗 ? 如果是,它有几
条对称轴?画画看。
3. 如何画出一个图形关于某一直线的对称图形? 画出图形中的特殊点的对称点,然后连结对 称点,即可画出关于这条直线的对称图形. 如图,请画出△ABC的 关于直线l对称的图形。
B C B′ A
l
A′
C′
4、你可以通过什么方法来验证你画得是否正确 用折叠的方法
对称的美术图案,除了图形对称以外,颜色也 是对称的。
轴对称现象及简单的轴对称图形

轴对称现象及简单的轴对称图形知识梳理1.轴对称图形:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2.轴对称:对于两个平面图形,如果沿一条直线对折后能够完全重合,那么称这两个图形成轴对称,两个图形的对应点叫做对称点。
3.轴对称的性质(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等;(3)对应角相等4.利用轴对称的性质作图5.等腰三角形定义及性质定义:有两条边相等的三角形叫做等腰三角形性质:两边相等,两底角相等,底边上的“三线合一”。
判定:(1)有两条边相等的三角形是等腰三角形(2)有两个角相等的三角形也是等腰三角形6.等边三角形定义及性质定义:三边都相等的三角形是等边三角形,也叫正三角形。
性质:三边相等,三个角相等都是60°,三边上的“三线合一”判定:(1)三边都相等的三角形是等边三角形(2)三个角都相等的三角形是等边三角形(3)有两个角等于60°的三角形是等边三角形(4)有一个角等于60°的等腰三角形是等边三角形7.垂直平分线的概念及性质(1)概念:垂直于一条线段,并且平分这条线段的直线,叫做这条线的垂直平分线,简称中垂线。
(2)性质:线段垂直平分线上的点到线段两个端点的距离相等。
8.角平分线的性质:角平分线上的点到角两边的距离相等。
9.垂直平分线及角平分线的画法例题精讲考点1.轴对称图形与成轴对称例1.下列图形中,轴对称图形是()A.(1),(2) B.(1),(4) C.(2),(3) D.(3),(4)(34)1变式1.下列语句中:①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④轴对称图形的两个对应点一定在对称轴的两侧.正确的有()A.1个 B.2 C.3 D.4变式2.将一正方形纸片按图1中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()变式3.小华在镜中看到身后墙上的钟如下,你认为实际时间最接近8点的是()A B C D考点2.方案设计例2.如图,是由三个阴影小正方形组成的图形,请在三个网格中各补画出一个有阴影的小正方形,使阴影组成的图形为轴对称图形变式1.如图,把图中的某两个小方格图上阴影,使整个图形是以线段所在直线为对称轴的轴对称图形。
人教版八年级数学上册《画轴对称图形》轴对称PPT精品课件

EFG,则△ EFG就是所求.
方法二:也可以利用全等知识进行作图,即先出A、C
的对称点E、G,然后分别以E、G为圆心,AB、CB为
半径作弧,两弧交于点F,则△ EFG就是所求.
知识拓展
二、确定对称点:四边形ABCD和四边形EFGH关于直线MN对称,连
知识梳理
例2:(2)画出△ ABC关于y轴对称的△ A2B2C2;
(3)是否存在点E,使△ ACE和△ ACB全等?若存在,直接写
出所有点E的坐标。
【结论】轴对称变换的作图的步骤是:①
求特殊点的坐标;②描点;③连线.
知识梳理
例3:在平面直角坐标系中,已知点
A( − 3,1),B( −
1,0),C( − 2, − 1),请在下图中画出△ ABC,并画出与
分别为何值.
(1)A、B关于x轴对称;
(2)A、B关于y轴对称。
知识梳理
例2:(1)根据关于x轴对称点的坐标特点横坐标不变、纵坐标互为
相反数可得
2m + n = 1
=1
,解得
− = −2
= −1
(2)根据关于y轴对称点的坐标特点纵坐标不变、横坐标互为
2m + n = −1
= −1
又∵点P(m,n),关于y轴的对称点的坐标为(1,b)
∴m=-1,n=b.
∴m=-1,n=2,故m+n=1.
知识梳理
例4:若点A(m + 2,3)与点B( − 4,n + 5)关于y轴对称,则
m+n= 0 .
+2=4
=2
根据
;解得
;故m + n = 0
轴对称课件ppt

THANKS
感谢观看
04
轴对称的作图
轴对称作图的方法和步骤
确定对称轴
首先确定图形关于哪条直线对称,即对称轴的位 置。
绘制对称图形
根据对称轴,绘制出与原图形对称的图形。
检查完整性
确保新绘制的图形与原图形完全一致,没有遗漏 或多余的部分。
轴对称作图的实例解析
矩形
以矩形为例,其对称轴为其对角线,沿对称轴折叠后,两侧图形 完全重合。
轴对称的两个图形也是全等的,它们的对应点关于对称轴对称,且每个点到对称轴的距离等 于它到对称点的距离。
轴对称与旋转对称的关系
旋转对称是指图形绕某一点旋转一定角度后与自身重合,而轴对称则是 图形关于某一直线对称。
旋转对称和轴对称可以同时存在于一个图形中,例如正三角形既具有旋 转对称性(绕中心点旋转120度与自身重合),又具有轴对称性(关于中
轴对称的几何意义
点关于对称轴的对称
对于直线上的任意一点,关于对称轴都有另一个点与之对称,且 两点连线与对称轴垂直。
直线关于对称轴的对称
对于直线上的任意一段线段,关于对称轴都有另一段线段与之对称 ,且两段线段平行于对称轴。
平面图形关于对称轴的对称
对于平面图形中的任意部分,关于对称轴都有另一部分与之对称, 且两部分形状和大小完全相同。
01
首先需要确定两个图形之间的对称轴。
寻找对应点
02
在两个图形上寻找关于对称轴对称的对应点。
判断是否满足判定定理
03
检查对应点连线是否被对称轴垂直平分,以及对应线段是否关
于对称轴对称。
判定轴对称的实例解析
01
02
03
等腰三角形
等腰三角形是轴对称的, 其对称为底边的中垂线 。
轴对称图形及性质

文昌院教育学科教师辅导讲义课 题轴对称图形及性质教学内容轴对称图形及性质(1.1,1.2)第一节一、1. 轴对称定义:把一个图形沿一条直线这段,如果它能够和另一个图形重合,那么这两个图形关于这条直线对称,也称这两个图形轴对称。
这条直线称为对称轴(对称轴是一条直线,不是射线或线段),两个图形的对应点(即沿对称轴对折后,能够重合的点)叫做对称点。
2. 轴对称图形定义:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形3. 轴对称与轴对称图形的区别:(1) 轴对称是两个图形的位置关系,轴对称图形是一个具有特殊形状的图形 (2) 轴对称涉及两个图形,轴对称是一个图形轴对称与轴对称图形的联系:(1) 定义中都有一条直线,沿这条直线折叠重合。
(2) 轴对称图形一定成轴对称,成轴对称的不一定是轴对称图形。
注意:轴对称图形的对称轴有的只有一条,有的存在多条 例1. 下列图形中是轴对称图形的是( )轴对称与轴对称图形轴对称的性质轴对称图形线段角等腰三角形等腰梯形轴对称图①②③④A.①②B.③④C.②③D.①④例2、下列轴对称图形中,对称轴最多的是().A、等腰直角三角形B、有一角为60的等腰三角形C、正方形D、圆例3.下列图形分别是等边三角形、直角三角形、等腰梯形和矩形,其中有且只有一条对称轴的轴对称图形是( )例4、如图,下列图案是我国几家银行的标志,其中是轴对称图形的有()A.1个B.2个C.3个D.4个例5.剪纸是中国的民间艺术.剪纸方法很多,下面是一种剪纸方法的图示(先将纸折叠,然后再剪,展开即得到图案):下面四个图案中,不能用上述方法剪出的是( )二、轴对称的性质:(1.2)1. (1)线段垂直平分线:垂直并且平分一条线段的直线(线段垂直平分线是到线段两端距离相等的点的集合,即①经过线段的中点 ②垂直于线段,两者缺一不可。
)(2)作线段AB 的垂直平分线: ①分别以A 、B 为圆心,大于AB 21的长为半径画弧,两弧相交于点C 、D ②过C 、D 两点作直线③直线CD 就是线段AB 的垂直平分线 2.性质:①成中轴对称的两个图形全等;②如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。