雷达大作业

合集下载

雷达大作业---振幅和差角度测量及仿真

雷达大作业---振幅和差角度测量及仿真

雷达原理大作业单脉冲自动测角的原理及应用学院:电子工程学院作者:2016年5月21日单脉冲自动测角的原理及应用一.摘要单脉冲测角法是属于振幅法测角中的等信号法中的一种,其测角精度高,抗干扰能力强,在现实中得到了广泛的应用。

而其中对于接收支路要求不太严格的双平面振幅和差式单脉冲雷达,更是备受青睐。

本文首先讲述了单平面振幅和差式单脉冲雷达自动测角的原理,再简述了双平面振幅和差式单脉冲雷达自动测角的结构框图,接着简述了本文仿真所用的一些原理和公式推导,包括天线方向图函数及其导数的推导,最后做了基于高斯形天线方向图函数的单脉冲自动测角,基于辛克函数形天线方向图函数的单脉冲自动测角,和基于高斯形天线方向图函数的双平面单脉冲自动测角。

源代码在附录里。

二.重要的符号说明三.单平面振幅和差式单脉冲自动测角原理单脉冲测角法是属于振幅法测角中的等信号法中的一种。

在单平面内,两个相同的波束部分重叠,交叠方向即为等信号轴的方向。

将这两个波束接收到的回波信号进行比较就可以在一定范围内,一定精度要求下测到目标的所在角度。

因为两个波束同时接到回波,故单脉冲测角获得目标角误差信息的时间可以很短,理论上只要分析一个回波脉冲即可,所以称之为“单脉冲”。

因取出角误差的具体方式不同,单脉冲雷达种类很多,其中应用最广的是振幅和差式单脉冲雷达,其基本原理说明如下:1.角误差信号雷达天线在一个平面内有两个重叠的部分,如下图1所示:图1.振幅和差式单脉冲雷达波束图(a)两馈源形成的波束 (b)和波束 (c)差波束振幅和差式单脉冲雷达取得角误差信号基本方法是将这两个波束同时收到的信号进行和差处理,分别得到和信号和差信号。

其中差信号即为该角平面内角误差信号。

若目标处在天线轴方向(等信号轴),误差角0ε=,则两波束收到的回波信号振幅相同,差信号等于0。

目标偏离等信号轴而有一个误差角ε时,差信号输出振幅与ε成正比而其符号则由偏离方向决定。

2.和差比较器这里主要使用双T 插头,示意图如下图2(a )所示。

雷达系统大作业

雷达系统大作业

关于《宽带雷达的谱兼容波形》的短文报告摘要:这篇文章利用脉冲波形设计的方法来改善雷达系统中的超宽带频谱兼容问题,为了不让现有的窄带系统干扰到雷达超宽带系统——高分辨雷达系统。

通过在发射波形频谱中设置“凹陷"点来避开与窄带系统之间的共用频段。

之后,对约束最优化方法所带来的缺陷使用预失真技术和失配滤波器进行了改善。

通过使用约束最优化波形生成技术,对宽带雷达系统来说,在满足频谱管理组织的需求的情况下工作在复杂的射频环境下,这一点成为可能。

关键词:超宽带频谱兼容宽带雷达的谱兼容波形约束最优化方法预失真技术失配滤波器引言:随着超宽带(UWB)无线通信系统的兴起,高分辨率雷达操作也需要使用宽带波形。

与传统雷达系统将目标看作点散射目标不同的是,超宽带雷达的脉冲宽度要小于目标的尺寸。

超宽带对于目标的反射不仅仅体现在幅度和时间的变换上,同时脉冲的形状也在变化。

因此,超宽带雷达对目标的散射相比传统雷达在波形会上有不同反应,从而更加的灵敏。

用窄脉冲可以获得的高距离分辨力对于许多雷达应用来说是非常重要的,但是,窄脉冲的应用也有局限,由于脉冲的频谱带宽与脉宽成反比,因此窄脉冲的带宽很大,窄脉冲的大带宽提高了系统的复杂性,增加了对来自电磁频谱的其他用户干扰的可能性,另外发射功率不高,因此作用距离有限。

尽管如此缺陷,但为了维护高距离成像,人们仍然愿意使用窄脉冲。

但是如果对宽脉冲进行频率或者相位调制,那么它就可以具有和窄脉冲相同的带宽,简述如下:脉宽为T 的宽脉冲,通过调制可得到的带宽是B》1/T,调制过的宽脉冲在匹配滤波器中处理后获得的脉宽为τ=1/B,这样就可以获得窄脉冲的高距离分辨力。

因此脉冲压缩解决了高分辨力和高功率之间的矛盾。

LFM波形是雷达系统中广采用的脉冲压缩波形之一。

但是这仅仅是在理想的情况下实现的(即没有外界干扰,或者是占用电磁频谱权的情况下才能实现),实际情况是,一个最主要的问题是他们的发射常常与其他雷达所发射的频谱重叠,甚至也会与专门分配给通信和航海的频谱重叠解决方法:频谱兼容问题已经成为讨论研究的热点。

地质雷达作业指导书

地质雷达作业指导书

地质雷达作业指导书一、准备工作利用探地雷达探测地下目标之前,需要制订探测计划、选择和检查设备、收集有关资料等准备工作。

1、相关资料的收集探地雷达剖面反映了地下介质的电性特征,由于物性参数的多解性,要想根据这些电性特征刻画出地下介质的分布情况,必须对测区的地质情况有所了解,因此需要进行资料收集工作。

相关资料的收集包括确认探测目的、了解测区的地形情况、确定目标体的特性、收集测区以前的普查资料、地质调查报告、钻孔柱状图及其孔位分布等资料,对于特殊地质问题,还应走访有关施工人员了解问题性质与特征。

2、制订探测计划为高效而经济地完成探测目的,就必须制订一个详尽、合理的探测计划,探测计划书应该包括探测任务、探测目的、需要的设备、测试参数设置、拟采用的测试程序和处理解释方法等内容。

3、仪器设备的选定对于一般的探测任务,需要的设备主要有:(1)主要设备:便携式主机(含内置锂电池)、收发天线;(2)辅助设备/工具:15 米综合电缆线、供电电源(内置锂电池)、连接收发天线的触发线、带插座的长电源线(可选)、测距轮(可选)、相关工具、胶带、测试计划和记录纸、笔等;(3)系统软件:ANDROID下安装的采集和回放软件。

在这些设备的选择过程中,尤以天线型号(中心频率f0)的选择最为重要。

天线中心频率的选择需兼顾目标深度、目标最小尺度及天线尺寸是否符合场地需要等因素,对深层目标进行探测时,应采用50~400 MHz等较低频率的天线;探测浅层且尺度较小的目标时,应该选用900~ 2500MHz高频天线。

4、探测前的试验工作一般在现场测试工作正式开始之前,需要进行测量试验工作,其目的是:(1) 检查测量参数的选择是否符合预想结果;(2) 建立各种目标体的探地雷达图像特征。

试验测线一般应布置在埋有已知目标体的地点,特别是有钻孔的测区,试验测线应该通过钻孔。

二、现场数据采集打开探地雷达主机控制软件,进入探地雷达主机控制软件主界面。

激光雷达作业

激光雷达作业
参数检验算法的结果,阈值为0.053。用参数检验算 法得到的边缘图像的轮廓信息较好,漏检少;缺点是 得到的图像的边缘是多像素的,并不唯一,所以必须 对该图像进行后续处理,如细化、边缘连接。因此 后续的处理方法还需要重点考虑。
总结
本文讨论了5种算法的基本理论并对
它们的几项性能进行了比较,并且对实际激光雷
是多像素的。边缘的大部分信息都已经包含在边缘里,重要的是后续
能不能把正确的有效信息提取出来。
(3)所需时间
Sobel和Kirsch算法只利用了模板卷积,所以计算时间最短。而
LOG和Canny算法都先利用了高斯平滑,再进行处理,所需的时间最长。
对于同一幅图像,所需处理的时间从长到短为: Canny算法、LOG算法、
1.2激光雷达特点及机载激光雷达的应用
特点 优点
a)具有极高的角分辨能力
b)具有极高的距离分辨能力
c)速度分辨率高测速范围宽
d)激光雷达可完成高精度距离和速
度的同时测量
e)抗干扰能力强
f)可用于水下探测和水下通讯
缺点
1.全天候性能低于微波雷达;
2.波束窄,搜索目标困难;
3.效率低,技术上的难度大且一些关键技
第三章
机载激光雷达图像边缘检测算法比较
(1)抗噪性能
Sobel和Kirsch算法先对邻域内的像素点进行加权,然后根据梯度
原理进行差分,得到像素中心的像素值。这种处理对抑制加性噪声有
一定的好处,对抑制乘性噪声不是特别明显。
LOG算法和Canny算法都采用了高斯平滑函数对图像进行平滑。
高斯函数平滑对高斯白噪声具有良好的抑制作用。
参数检验算法、Kirsch算法、Sobel算法
第四章 实验结果及总结

2016雷达原理作业2-5

2016雷达原理作业2-5

6 2
1)不计发射和接收的损耗并忽略大气损耗,在测量期间要发射的最小能量应该是多少? 2)若该雷达为相干脉冲体制雷达,其他条件不变时,10 个等幅相参中频脉冲信号进行相参积 累,如果作用距离要求不变,发射功率 Pt 可以降低为多少? 6.恒虚警的作用是什么?如何在噪声电平变化时获得恒虚警。 7.为了充分利用雷达的最大作用距离 Rmax 200km ,载有发现低飞目标雷达的飞机应飞在怎样 的高度上?(目标飞机高度不小于 50m)
雷达原理作业2‐5章
1.某雷达发射机峰值功率为800kW,矩形脉冲宽度为3μs,脉冲重复频率为1000Hz,求该发射机 的平均功率和工作比。 2. 某雷达接收机噪声系数为6dB,接收机带宽为1.8MHz,求其临界灵敏度。 3.已知脉冲雷达中心频率 f0=3000MHz,回波信号相对发射信号的时延为1000μs,回波信号的频 率为3000.01MHz,目标运动方向与目标所在方向的夹角60°,求ห้องสมุดไป่ตู้标距离、径向速度与线速度。 4.已知某雷达对σ=5m2 的大型歼击机最大探测距离为100km, a) 如果该机采用隐身技术,使σ减小到0.1m2,此时的最大探测距离为多少? b) 在 a)条件下,如果雷达仍然要保持100km 最大探测距离,并将发射功率提高到10 倍,则 接收机灵敏度还将提高到多少? 5.某单载频脉冲雷达波长 5.5cm , G 40dB ,在其 300km 的作用距离上检测概率为 90%, 虚警概率为 10 ,且知 1m , Fn 10dB , Bn 20MHz ,试问:

雷达原理作业1 2 3 4-2016

雷达原理作业1 2 3 4-2016
目标方向 接收机 法线方向 接收机
法线方向 接收机 目标方向 接收机 接收机
基本原理:利用多个天线所接收回波信号之间的相位差测角。 优点:无测ห้องสมุดไป่ตู้模糊且测角精度高 13. 对三角波形调频连续波雷达,若其最大频偏Δf m =30MHz,三角波形的周期为 0.5 ms,若测得目标回波与发射信号的平均差频为 6 MHz。 1)画出该三角波形调频连续波的频率和时间的关系; 2) 求目标的距离; 3) 求该雷达的最大不模糊距离和距离分辨力。 ANS: t=f b*T m /4*Δf m 3750m 75km 2.5m
《雷达原理》作业,No.4 递交日期:2016.4.20
1. 对固定目标和运动目标的相干脉冲多普勒雷达回波,分别通过相位检波器 后,输出信号的主要区别是固定目标输出为等幅脉冲串,运动目标输出为受 到多普勒频率调制的脉冲串,回波脉冲在距离显示器上的主要区别是固定目 标输出无“频闪”现象,运动目标输出有“频闪”现象。 2、雷达动目标显示系统的作用是显示运动目标、抑制固定目标,常用的实现动 目标显示的方法是对消法、频谱抑制法。 3、雷达的盲速效应是指目标虽有一定的径向速度V r ,但其回波信号经过相位检 波器后,输出为一串等幅脉冲,表现为固定目标的特征,出现盲速的条件是 f d =kf r ,要提高第一等效盲速,采取的措施有 降低脉冲重复频率 , 频闪效 应是指脉冲工作状态时, 相位检波器后输出端回波脉冲串的包络调制频率F d 与 目标运动的径向速度V r 不再保持正比关系,出现频闪的条件是 f d <=f r /2 。 4、 对于PRF为 1KHz、波长 3cm的脉冲多普勒雷达,它的第一盲速为( 15 )米/ 秒,当目标速度大于( 7.5 )米/秒时,会出现频闪效应。为了消除盲速现象, 可以采用( 参差重复频率 )。 5. MTI滤波器的凹口宽度应该( 与杂波相当,对准杂波中心 ),通带内的频响 要求( 尽量平坦 )。 6. 在 MTD 中,如果采用 N=256 的滤波器组,PRF 为 1KHz,则能检测运动目标的 分辨率是( 力提高了( )倍。 );与 MTI 系统相比,其信噪比提高了( )倍,分辨

雷达原理作业

雷达原理作业

《雷达原理》作业,#1,2016 王斌答案不准确Bingo~ 2016.4.281、雷达的主要功能是利用目标对电磁波的反射探测目标并获取目标的有关信息,雷达所测量的目标的主要参数一般包括目标距离、方位角、仰角、径向速度。

2、雷达所面临的四大威胁是电子侦察与干扰、低空/超低空飞行器、反辐射雷达、隐身目标。

3、在雷达工作波长一定的情况下,要提高角分辨力,必须增大天线的有效孔径。

对脉冲雷达而言,µ,PRF为1000 Hz,则雷达的分辨其距离分辨力由脉冲宽度决定;如果发射信号的脉宽为1s力为 150m ,最小作用距离为 150m ,最大作用距离为 150km 。

4、常用的雷达波束形状包括针状波束和扇形波束。

5、简述雷达测距、测角和测速的基本原理。

ANS:测距的基本原理:通过测定电磁波在雷达与目标间往返一次所需时间来测量距离。

测角的基本原理:电磁波在空间的直线传播以及雷达天线波束具有方向性。

测速的基本原理:运动目标回波具有多普勒效应。

6. 简述RCS的定义及物理含义。

ANS:定义:RCS是目标向雷达接受天线方向散射电磁波能力的度量。

物理含义:它是一个等效的面积,当这个面积所截获的雷达照射能量各向同性地向周围散射时,当单位立体角内的散射功率,恰好等于目标向接收天线方向单位立体角内散射的功率。

=3 GHz,若一目标以1.2马赫(1马赫=340m/s)速度朝雷达飞行,则雷7、已知雷达工作频率为f达收到的回波频率与发射频率之差(即目标的多普勒频率)为多少?ANS:1.2*340*2/(3*10^8/3*10^9)=81608、已知某雷达为X波段,天线尺寸为0.6 m(方位向)×0.5 m(俯仰向),设k=1.25,求该雷达的方位和仰角分辨力,并求天线的增益(用dB表示)。

ANS:仰角分辨率:0.09375~0.062496方位角分辨率:0.078125~0.05208天线的增益:G=2680.83~6031.869、画出雷达的基本构成形式的框图,并简述各部分的功能。

地质雷达作业指导书

地质雷达作业指导书

地质雷达作业指导书1、测线布置(1、)隧道施工过程中质量检测以纵线布线为主,横向布线为辅。

纵向布线的位置应在隧道拱顶、左右拱腰、左右边墙和遂底各布1条;横向布线可按检测内容和要求布设线距,一般情况线距为8~12m。

采用点测时,每断面不小于6个点。

若检测中发现不合格地段,应加密测线或测点。

(2、)隧道竣工验收时,质量检测应纵向布线,必要时可横向布线。

纵向布线的位置应在隧道拱顶、左右拱腰和左右边墙各布1条;横向布线距为8~12m。

采用点测时,每断面不小于5个点。

需确定回填空洞规模和范围时,应加密测线或测点。

(3、)三车道隧道应在隧道拱顶部位增加两条测线。

(4、)测线每5~10m应有一里程标记。

2、介质参数标定(1、)检测前应对衬砌砼的介电常数或电磁波速做现场标定,且每座隧道长度不大于1处,每处实测不少于3次,取平均值,即为该隧道的介电常数或电磁波速。

当隧道长度大于3Km、衬砌材料或含水率变化较大时,应适当增加标定点数。

(2、)标定方法:在已知厚度部位或材料与隧道相同的其他预制件上测量;在洞口或洞内避车洞处使用双天线直达波法测量;钻孔实测。

(3、)求取参数时应具备以下条件:标定目标体的厚度一般不小于15cm,且厚度已知;标定记录中界面反射信号应清晰、准确。

(4、)标定结果应按下式计算:εr =(0.3t/2d)2V=(2d/t)×1093、测量时窗测量时窗由下式确定:ΔT=(2d√εr /0.3)a4、扫描样点数扫描样点数由下式确定:S=2ΔTfK×10-35、纵向布线纵向布线应采用连续测量方式,扫描速度不得小于40道(线)/s。

特殊地段或条件不允许时,可采用点测方式,测量点距不宜大于20cm。

6、数据处理及判定。

衬砌背后回填密实度的主要判定特征如下:(1、)密实。

信号幅度较弱,甚至没有界面反射信号。

(2、)不密实。

衬砌界面的强反射信号同相轴呈绕射弧形,且不连续、较分散。

(3、)空洞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

雷达原理实验名称:脉冲压缩技术在雷达信号处理中的应用学院:电子工程学院专业:信息对抗技术班级:021231姓名:学号:脉冲压缩技术在雷达信号处理中的应用引言:雷达是通过对回波信号进行接收再作一些检测处理来识别复杂回波中的有用信息的。

其中,波形设计有着相当重要的作用,它直接影响到雷达发射机形式的选择,信号处理方式,雷达的作用距离及抗干扰,抗截获等很多重要问题。

现代雷达中广泛采用了脉冲压缩技术。

脉冲压缩雷达常用的信号有线性调频信号和二相脉内编码信号。

脉冲压缩雷达具有高的辐射能量和高的距离分辨力,这种雷达具有很强的抗噪声干扰和欺骗干扰的性能。

因此,脉冲压缩技术在雷达信号处理中广泛应用。

一、脉冲压缩技术原理雷达是Radar(Radio Detection And Ranging)的音译词,意为“无线电探测和测距”,即利用无线方法来发现目标并测定目标在空间的位置,这也是雷达设备在最初阶段的功能。

典型的雷达系统主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。

利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。

现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。

随着雷达应用的不断扩大,对雷达的作用距离,分辨精度等的要求相应提高。

增大雷达作用距离ΔR=cτ/2可以提高其脉宽或峰值功率,但由于发射管的限制,增大功率往往不容易,于是可以用增大脉冲宽度的方法。

对于恒定载频单脉冲信号,脉宽的增大意味着带宽的减小,B=1/μτ。

根据距离分辨率的表达式,ΔR=cτ/2。

测距精度和距离分辨力对信号形式的要求是一致的,主要取决于信号的频率结构,为了提高测距精度和距离分辨力,要求信号具有大的带宽。

而测速精度和速度分辨力则取决于信号的时域结构,为了提高测速精度和速度分辨力,要求信号具有大的时宽。

除此之外,为提高雷达系统的发现能力,要求信号具有大的能量。

由此可见,为了提高雷达系统的发现能力、测量精度和分辨能力,要求雷达信号具有大的时宽、带宽、能量乘积。

但是,在系统的发射和馈电设备峰值功率受限制的情况下,大的信号能量只能靠加大信号的时宽来得到。

测距精度和距离分辨力同测速精度和速度分辨力以及作用距离之间存在着不可调和的矛盾。

于是在匹配滤波器理论指导下,人们提出了脉冲压缩的概念。

窄脉冲具有宽频谱带宽。

如果对宽脉冲进行频率或相位调制,那么它就可以具有和窄脉冲相同的带宽。

假设调制后的脉冲带宽增加了B,由接收机的匹配滤波器压缩后,带宽将等于1/B,这个过程叫脉冲压缩。

脉冲压缩雷达不需要高能量窄脉冲所需要的高峰值功率,就可同时实现宽脉冲的能量和窄脉冲的分辨力。

脉冲压缩比定义为宽脉冲宽度τ与压缩后脉冲宽度的之比。

带宽B与压缩后的脉冲宽度的关系为1/B。

这使得脉冲压缩比近似为Bτ。

即压缩比等于信号的时宽-带宽积。

在许多应用场合,脉冲压缩系统常用其时宽-带宽积表征。

脉冲压缩显著的特点是:(1)提高了检测性能。

它的发射信号采用载频按一定规律变化的宽脉冲,使其脉冲宽度与有效频谱宽度的乘积1B,这两个信号参数基本上是独立的,因而可以分别加以选择来满足战术要求。

在发射机峰值功率受限的条件下,它提高了发射机的平均功率 Pav增加了信号能量,因此扩大了探测距离。

(2)提高了距离分辨率。

在接收机中设置一个与发射信号频谱相匹配的压缩网络,使宽脉冲的发射信号(一般认为也是接收机输入端的回波信号)变成窄脉冲,因此保持了良好的距离分辨力。

这一处理过程称之为“脉冲压缩”。

(3)有利于提高系统的抗干扰能力,大大提高了信噪比。

对有源噪声干扰来说,由于信号带宽很大,迫使干扰机发射宽带噪声,从而降低了干扰的功率谱密度。

二、线性调频(LFM)信号脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。

这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。

脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation)信号,接收时采用匹配滤波器(Matched Filter)压缩脉冲。

LFM信号(也称Chirp 信号)的数学表达式为:22()2()()c K j f t t t s t rect Te π+= (2.1)式中c f 为载波频率,()t rect T为矩形信号,11()0,t t rect TT elsewise⎧ , ≤⎪=⎨⎪ ⎩(2.2) BK T=,是调频斜率,于是,信号的瞬时频率为()22c T T f Kt t + -≤≤,如图2.1(a )(K>0) (b )(K<0) 图2.1 典型的chirp 信号 线性调频仿真代码:%%线性调频仿真T=10e-6; %脉冲宽度 B=10e6; %频率调制带宽 K=B/T; %斜率 Fs=2*B;Ts=1/Fs; %采样率 N=T/Ts;t=linspace(-T/2,T/2,N);St=exp(j*pi*K*t.^2); %信号产生 subplot(211)plot(t*1e6,real(St));xlabel('us');title('线性调频 时域'); grid on;axis tight; subplot(212)freq=linspace(-Fs/2,Fs/2,N);plot(freq*1e-6,fftshift(abs(fft(St)))); xlabel(' MHz');title('线性调频 频域'); grid on;axis tight;仿真结果:-5-4-3-2-1012345-1-0.500.5us线性调频 时域-10-8-6-4-202468105101520 MHz线性调频 频域图2.2:LFM 信号的时域波形和幅频特性结果分析:在满足大时宽宽带积的条件下,线性调频信号振幅接近矩形函数。

线性调频信号具有平方率特性。

三、LFM 脉冲的匹配滤波信号()s t 的匹配滤波器的时域脉冲响应为:*0()()h t s t t =- (3.1)0t 是使滤波器物理可实现所附加的时延。

理论分析时,可令0t =0,重写3.1式,*()()h t s t =- (3.2)将2.1式代入3.2式得:22()()cj f t j Kt t h t rect e e Tππ-=⨯ (3.3 )图3.1:LFM 信号的匹配滤波如图3.1,()s t 经过系统()h t 得输出信号()o s t ,2222()()()()*()()()()()()()c c o j f u j f t u j Ku j K t u s t s t h t s u h t u du h u s t u du u t u e rect e e rect e du T T ππππ∞∞-∞-∞∞----∞= =- =-- =⨯ ⎰⎰⎰当0t T ≤≤时,22222022222()2sin ()T T c c j Kt j Ktu t j Ktu T j f t j Kt T j f ts t e e due ee t j Kt K T t t eKtπππππππππ---==⨯--- =⎰(3.4)当0T t -≤≤时,22222022222()2sin ()T T c c t j Kt j Ktu j Ktu T j f tj Kt T j f ts t e e dut e ee j Kt K T t t eKtπππππππππ+---=+ =⨯--+ =⎰(3.5)合并3.4和3.5两式:20sin (1)()()2c j f t tKT tt T s t Trect e KTt Tπππ-= (3.6) 3.6式即为LFM 脉冲信号经匹配滤波器得输出,它是一固定载频c f 的信号。

当t T ≤时,包络近似为辛克(sinc )函数。

0()()()()()22t tS t TSa KTt rect TSa Bt rect T Tππ== (3.7)图3.2:匹配滤波的输出信号如图3.2,当Bt ππ=±时,1t B=±为其第一零点坐标;当2Bt ππ=±时,12t B=±,习惯上,将此时的脉冲宽度定义为压缩脉冲宽度。

1122B B τ=⨯= (3.8)LFM 信号的压缩前脉冲宽度T 和压缩后的脉冲宽度τ之比通常称为压缩比D ,TD TB τ== (3.9)3.9式表明,压缩比也就是LFM信号的时宽频宽积。

由2.1,3.3,3.6式,s(t),h(t),so(t)均为复信号形式,Matab仿真时,只需考虑它们的复包络S(t),H(t),So(t)。

以下Matlab程序段仿真了图3.1所示的过程,并将仿真结果和理论进行对照。

匹配滤波仿真代码:%%匹配滤波仿真T=10e-6; %脉冲宽度B=30e6; %频率调制带宽K=B/T; %斜率Fs=10*B;Ts=1/Fs; %采样频率及间距N=T/Ts;t=linspace(-T/2,T/2,N);St=exp(j*pi*K*t.^2); %线性调频信号Ht=exp(-j*pi*K*t.^2); %匹配滤波Sot=conv(St,Ht); %滤波后subplot(211)L=2*N-1;t1=linspace(-T,T,L);Z=abs(Sot);Z=Z/max(Z);Z=20*log10(Z+1e-6);Z1=abs(sinc(B.*t1)); %sinc 函数Z1=20*log10(Z1+1e-6);t1=t1*B;plot(t1,Z,t1,Z1,'r.');axis([-15,15,-50,inf]);grid on;legend('结果sin函数');xlabel('Time in sec \times\itB');ylabel('Amplitude,dB');title('匹配滤波后的线性调频信号');subplot(212) %放大N0=3*Fs/B;t2=-N0*Ts:Ts:N0*Ts;t2=B*t2;plot(t2,Z(N-N0:N+N0),t2,Z1(N-N0:N+N0),'r.');axis([-inf,inf,-50,inf]);grid on;set(gca,'Ytick',[-13.4,-4,0],'Xtick',[-3,-2,-1,-0.5,0,0.5,1,2,3]); xlabel('Time in sec \times\itB');ylabel('Amplitude,dB');title('匹配滤波后的线性调频信号(放大)A/db');仿真结果:-15-10-5051015-40-20Time in sec ⨯BA m p l i t u d e ,d B匹配滤波后的线性调频信号-3-2-1-0.500.5123-13.4-40Time in sec ⨯BA m p l i t u d e ,d B匹配滤波后的线性调频信号(放大)A/db结果sin 函数图3.3:Chirp 信号的匹配滤波图3.3中,时间轴进行了归一化,(/(1/)t B t B =⨯)。

相关文档
最新文档