双目立体视觉

合集下载

双目视觉简介

双目视觉简介

双目立体视觉,在百度百科里的解释是这样解释的:双目立体视觉(Bin ocular Stereo Visio n )是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。

我相信未来的世界一定是三维感知的世界,毕竟二维世界很多情况下不能满足要求的。

一视差Dis parity 与深度图那么提到双目视觉就不得不提视差图:双目立体视觉融合两只眼睛获得的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作视差(Disparity) 图像。

对于视差的理解自己可以体验一下:将手指头放在离眼睛不同距离的位置,并轮换睁、闭左右眼,可以发现手指在不同距离的位置,视觉差也不同,且距离越近,视差越大。

那么提到视差图,就有深度图,深度图像也叫距离影像,是指将从图像采集器到场景中各点的距离(深度)值作为像素值的图像。

获取方法有:激光雷达深度成像法、计算机立体视觉成像、坐标测量机法、莫尔条纹法、结构光法。

那么这里引申一下深度图与点云的区别,点云:当一束激光照射到物体表面时,所反射的激光会携带方位、距离等信息。

若将激光束按照某种轨迹进行扫描,便会边扫描边记录到反射的激光点信息,由于扫描极为精细,则能够得到大量的激光点,因而就可形成激光点云。

深度图像经过坐标转换可以计算为点云数据;有规则及必要信息的点云数据可以反算为深度图像。

两者在一定条件下是可以相互转化的,之前的博客里,有使用PCL库实现过点云提取深度图,当然给出相机参数也是可以由深度图转为点云的。

截图一个深度图:h 也JrruK"■arru举所以深度与视差的关系如下比如绝对差值法D=| L-R|式中,L、R和D分别代表左视图、右视图和对应的绝对差值图的亮度值。

绝对差值图并不是严格意义上的视差图,但是它的计算方法最为简单,速度快,它给出的结果可以作为参考。

双目立体视觉原理

双目立体视觉原理

双目立体视觉原理双目立体视觉是指人类通过两只眼睛同时观察同一物体时产生的立体效果。

这种视觉原理是人类视觉系统中非常重要的一部分,它使我们能够感知到物体的深度和距离,为我们的日常生活和工作提供了重要的信息。

在本文中,我们将深入探讨双目立体视觉的原理和应用。

首先,双目立体视觉的原理是基于人类两只眼睛的位置差异而产生的。

由于两只眼睛分别位于头部的两侧,它们所看到的同一物体会有微小的差异。

这种差异包括视差、视角和视线方向等,这些差异为我们的大脑提供了丰富的信息,使我们能够感知到物体的深度和距离。

其次,双目立体视觉的原理还涉及到视觉系统的处理过程。

当两只眼睛同时观察同一物体时,它们所接收到的图像会被传送到大脑的视觉皮层进行处理。

在这个过程中,大脑会将两只眼睛接收到的信息进行比对和整合,从而产生立体效果。

这种比对和整合的过程是非常复杂的,它涉及到大脑的神经元网络和神经递质的作用,是一个高度精密的生物信息处理过程。

另外,双目立体视觉的原理还与人类的视觉经验和学习有关。

通过长期的视觉训练和经验积累,人类能够更加准确地感知物体的深度和距离。

这种经验和学习会影响到我们的视觉系统的发育和功能,使我们能够更加灵活地应对各种复杂的立体环境。

在实际应用中,双目立体视觉原理被广泛应用于计算机视觉、虚拟现实、医学影像等领域。

通过模拟人类的双目立体视觉原理,计算机可以实现立体图像的获取、处理和显示,从而实现立体视觉效果。

在虚拟现实技术中,双目立体视觉原理可以为用户提供更加逼真的虚拟体验,增强沉浸感和真实感。

在医学影像领域,双目立体视觉原理可以帮助医生更加准确地诊断疾病,提高医疗水平。

总之,双目立体视觉原理是人类视觉系统中非常重要的一部分,它使我们能够感知物体的深度和距离,为我们的日常生活和工作提供了重要的信息。

通过深入研究双目立体视觉的原理和应用,我们可以更好地理解人类视觉系统的工作机制,推动计算机视觉、虚拟现实、医学影像等领域的发展和创新。

《2024年度基于双目立体视觉定位和识别技术的研究》范文

《2024年度基于双目立体视觉定位和识别技术的研究》范文

《基于双目立体视觉定位和识别技术的研究》篇一一、引言随着科技的飞速发展,计算机视觉技术在许多领域中得到了广泛的应用。

其中,双目立体视觉定位和识别技术以其高精度、高效率的特点,在机器人导航、工业检测、无人驾驶等领域展现出巨大的应用潜力。

本文将围绕双目立体视觉定位和识别技术进行深入的研究和探讨。

二、双目立体视觉技术概述双目立体视觉技术是一种模拟人类双眼视觉的计算机视觉技术。

通过模拟人眼的视差感知原理,双目立体视觉技术利用两个相机从不同角度获取场景的图像信息,然后通过图像处理和算法分析,得到场景中物体的三维信息。

双目立体视觉技术主要包括相机标定、图像获取、图像预处理、特征提取、立体匹配、三维重建等步骤。

三、双目立体视觉定位技术双目立体视觉定位技术是双目立体视觉技术的核心部分,它通过计算左右相机获取的图像间的视差信息,实现场景中物体的三维定位。

具体而言,双目立体视觉定位技术首先需要对相机进行精确的标定,以获取相机的内外参数。

然后通过图像预处理和特征提取,获取场景中的特征点或特征线。

接着,利用立体匹配算法,将左右相机获取的图像进行匹配,得到视差图。

最后,根据视差信息和相机的内外参数,计算得到场景中物体的三维坐标信息。

四、双目立体视觉识别技术双目立体视觉识别技术是在定位技术的基础上,进一步对场景中的物体进行分类和识别。

通过分析物体的形状、大小、纹理等特征信息,结合机器学习、深度学习等算法,实现对物体的识别和分类。

双目立体视觉识别技术可以广泛应用于无人驾驶、机器人导航、工业检测等领域。

五、双目立体视觉技术的应用双目立体视觉技术在许多领域都得到了广泛的应用。

在无人驾驶领域,双目立体视觉技术可以实现车辆的定位和障碍物识别,提高车辆的行驶安全性和自动驾驶的准确性。

在机器人导航领域,双目立体视觉技术可以帮助机器人实现精准的路径规划和导航。

在工业检测领域,双目立体视觉技术可以实现对产品的快速检测和质量控制。

六、研究展望随着计算机视觉技术的不断发展,双目立体视觉定位和识别技术将会有更广泛的应用前景。

双目立体视觉匹配

双目立体视觉匹配

双目立体视觉匹配双目立体视觉匹配是一种计算机视觉技术,用于在双目摄像头中获取的图像中,找到对应的目标点,从而实现立体深度感知。

双目立体视觉匹配的原理是基于两个前提假设:一是视差概念,即两个相同的场景在左右两个眼睛中的图像位置差异;二是视差和深度之间的关系。

根据这两个基本假设,我们可以通过比较左右两个图像中的像素值来确定两个图像中的对应关系,从而计算出立体深度信息。

双目视觉匹配的过程通常包括以下几个步骤:1. 图像预处理:双目图像首先需要进行预处理,包括去噪、图像校正、颜色校正等。

这些步骤旨在提高图像质量和减少噪声对匹配结果的影响。

2. 特征提取:在预处理之后,需要从图像中提取出一些能够反映目标结构和纹理信息的特征点。

常用的特征包括角点、边缘、区域等。

3. 特征匹配:在这一步中,通过比较特征点之间的相似性来确定它们之间的对应关系。

常用的匹配算法有最近邻匹配、迭代最近点算法、随机抽样一致性算法等。

4. 视差计算:特征匹配之后,我们可以根据特征点之间的位置差异来计算出视差信息,即目标点在左右图像中的位置差异。

一般来说,视差越大,深度越小。

5. 深度计算:视差和深度之间的具体关系取决于相机的内外参数、基线长度等因素。

通过根据相机标定信息和经验参数,可以将视差转换为具体的深度值。

双目立体视觉匹配在机器人导航、三维重建、虚拟现实等领域具有广泛的应用。

通过获取场景的三维深度信息,可以使机器人在复杂环境中进行精确的定位和避障;在三维重建中,双目立体视觉匹配可以用于获取物体或场景的精确几何结构;在虚拟现实中,双目立体视觉匹配可以为用户提供更加真实的交互体验。

双目立体视觉匹配也面临着一些挑战和限制。

双目视觉匹配对于光照变化、纹理缺失等问题比较敏感,这会导致匹配结果的不稳定性;相机标定是双目视觉匹配中的重要一步,需要准确地测量相机参数和关联参数,否则会影响深度计算结果的精度;双目视觉匹配在处理大场景、纹理一致的区域等情况下会面临困难。

双目立体视觉在工业中运用的例子

双目立体视觉在工业中运用的例子

双目立体视觉在工业中有很多应用例子,以下是一些常见的应用场景:
1.零件识别与定位:双目立体视觉可以通过对物体进行三维测量和重构,实现零件的精确识别和定位。

在生产线中,机器人可以使用双目立体视觉
系统来识别零件的位置和姿态,从而精确地拾取和操作零件。

2.质量检测:双目立体视觉可以用于检测产品的外观质量和尺寸精度。

通过获取产品的三维模型,可以对产品进行全方位的检测和分析,如检测产
品表面的缺陷、尺寸偏差、对称性等。

3.机器人导航:双目立体视觉可以用于机器人的自主导航和定位。

通过获取环境的三维信息,机器人可以精确地识别障碍物和路径,并进行避障和
路径规划。

4.增强现实:双目立体视觉可以与增强现实技术结合,将虚拟物体与现实场景进行融合。

通过获取现实场景的三维信息,可以将虚拟物体精确地放
置在场景中,从而实现更加逼真的增强效果。

5.自动化装配:在制造业中,装配过程需要很高的精度和准确性。

双目立体视觉可以通过对零件进行精确的定位和操作,实现自动化装配。

机器人
可以使用双目立体视觉系统来识别零件的位置和姿态,从而精确地装配零件。

总之,双目立体视觉在工业中具有广泛的应用前景,可以提高生产效率、降低成本、提高产品质量等。

随着技术的不断发展,双目立体视觉将会在更多的领域得到应用。

双目立体视觉匹配

双目立体视觉匹配

双目立体视觉匹配双目立体视觉匹配是指利用人类双眼在空间中略微不同的视角,联合大脑进行视觉信息的处理和匹配,从而获得空间的深度和立体感。

在现代科技中,利用双目立体视觉匹配可以实现很多实用的应用,比如立体影像、立体游戏、机器人视觉导航等。

双目立体视觉匹配技术是计算机视觉和人工智能领域的一个重要研究方向,具有广泛的应用前景。

一、双目立体视觉原理人类通过双眼获取的两幅视觉图像,实际上是同一个物体在不同视角下的投影。

这两幅图像之间存在视差,也就是物体在不同视角下的位置差异。

大脑通过对这些视差的处理,得出了深度信息,使我们能够感知到物体的三维空间位置。

双目立体视觉匹配主要涉及视差的计算和匹配。

在数字图像处理中,利用计算机对双眼获取的两幅图像进行处理和匹配,从而获取深度信息。

通常采用的方法包括视差计算、视差匹配和深度图生成等步骤。

1. 视差计算:通过一系列像素级的图像处理方法,计算出两幅图像之间的视差。

常见的计算方法包括半全局匹配(Semi-Global Matching, SGM)、立体匹配算法(Stereo Matching)、视差图像传感器(Depth Sensing Image Sensor)等。

2. 视差匹配:将两幅图像中对应的像素进行匹配,找到它们之间的视差值。

通常采用的方法包括基于特征点的匹配、基于像素级的匹配等。

3. 深度图生成:根据计算得出的视差信息,生成目标物体的深度图,从而实现三维空间中物体位置的感知。

双目立体视觉匹配的原理是基于人类视觉的工作原理,通过模拟人类双眼的工作方式,从而实现数字图像的深度感知和立体视觉效果。

二、双目立体视觉应用双目立体视觉匹配技术在现代科技中应用广泛,涉及到多个领域,包括计算机视觉、人工智能、机器人技术等。

以下将介绍一些典型的双目立体视觉应用。

1. 立体影像:利用双目立体视觉匹配技术,可以实现立体影像的拍摄和显示。

通过双目相机拍摄的图像以及虚拟现实(Virtual Reality, VR)或增强现实(Augmented Reality, AR)技术,可以实现逼真的立体影像体验。

双目立体视觉匹配

双目立体视觉匹配

双目立体视觉匹配双目立体视觉匹配是指通过两个视觉传感器(眼睛)同时获取的视觉信息,进行图像的匹配与处理,从而实现对三维空间中物体位置、形状和深度的感知。

在人类视觉系统中,我们的两只眼睛分别观察到不同的景象,这两个视角的差异被大脑处理后,使我们能够感知到三维世界。

双目立体视觉匹配的核心就是模拟人类视觉系统的工作原理,通过计算机对不同眼睛拍摄到的图像进行处理,提取出深度信息,从而实现对三维空间的感知。

双目立体视觉匹配的基本原理是寻找两个图像之间的对应点。

当两个图像的视角或位置发生变化时,同一物体在两个图像中的像素值可能会发生变化。

通过分析这种变化,可以计算出物体的深度信息。

1. 图像获取:使用两个摄像机同时获取两幅图像,这两个摄像机应具有一定的基线距离,即两个摄像机之间的距离。

2. 校准:对两个摄像机进行标定和校准,确定两个摄像机之间的位置关系和相机参数。

3. 特征提取:从图像中提取出能够用于匹配的特征点,常用的特征点包括角点、边缘等。

4. 特征描述:对提取出的特征点进行描述,通常使用局部特征描述方法,如SIFT、SURF等。

5. 特征匹配:将一个图像中的特征点与另一个图像中的特征点进行匹配,通常使用特征向量的距离度量方法,如欧氏距离、余弦相似度等。

6. 匹配剔除:对匹配点进行剔除,以排除误匹配和无效匹配。

7. 深度计算:根据匹配点的位置信息以及两个摄像机之间的位置关系,计算出物体的深度信息。

8. 三维重建:根据深度信息和摄像机参数,将匹配点重建为三维空间中的点云,从而得到三维物体模型。

双目立体视觉匹配在计算机视觉领域有重要的应用,例如机器人导航、三维重建、物体跟踪等。

由于双目立体视觉匹配能够提供精确的深度信息,因此在许多应用中可以取得比单目视觉更好的效果。

双目立体视觉匹配也存在一些挑战和限制。

对于低纹理区域或者高度相似的物体,匹配点的提取和匹配可能会受到干扰。

摄像机的标定和校准是一个关键的步骤,如果标定不准确或者摄像机之间的位置关系发生变化,都会影响匹配的准确性。

《双目立体视觉》课件

《双目立体视觉》课件

05
双目立体视觉的应用案例
机器人视觉导航
机器人视觉导航是双目立体视觉的重要应用之一。通过双目立体视觉技术,机器 人可以获取周围环境的深度信息,实现自主导航、避障和路径规划等功能。
双目立体视觉技术可以帮助机器人识别障碍物、行人和车辆等,提高机器人的安 全性和可靠性。
医学影像分析
在医学领域,双目立体视觉技术被广泛应用于医学影像分析 。通过双目立体视觉技术,医生可以获取患者的三维立体图 像,提高诊断的准确性和可靠性。
深度学习技术Байду номын сангаас
随着深度学习算法的不断发展, 双目立体视觉技术将更加智能化 ,能够自动识别和提取更多的三
维信息。
实时处理能力
随着计算能力的提升,双目立体 视觉技术将实现更快速、实时的 三维重建,满足实时应用的需求

多传感器融合
未来双目立体视觉技术将与其他 传感器技术(如激光雷达、毫米 波雷达等)融合,实现更全面的
运动模糊问题
总结词
运动模糊是由于摄像机或物体快速移动导致图像模糊的现象,对双目立体视觉的深度感知造成干扰。
详细描述
在动态环境中,摄像机或物体的快速移动可能导致图像模糊,从而影响双目立体视觉系统的深度感知 能力。为了解决这一问题,研究者们提出了基于运动补偿的算法,通过分析图像中的运动轨迹,对模 糊图像进行还原和补偿,以提高深度感知的准确性。
详细描述
在复杂的光照条件下,如明暗交替、阴影或高光,双目视觉 系统可能难以准确判断物体的深度和距离。这主要是因为阴 影或高光区域中的物体可能会与背景融为一体,导致立体匹 配算法失效。
遮挡和透明物体问题
总结词
遮挡和透明物体是双目立体视觉中的常见挑战,需要特殊算法来处理。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二 设备组成
工作原理图
(1)相对位置固定 的CCD两个
(2)线结构光发射 器一个
(3)标定点若干
实物图片
三 工作原理及算法流程
双目视觉测量原理:
如图所示,假设空间中一点P在左、右相机中成像位置 分别为pl(ul,vl)和pr(ur,vr),且两相机坐标系间存在刚性 变换关系R、T。
记P点在左右相机坐标系下坐标分别(xl,yl,zl),(xr,yr,zr,)根据小 孔成像模型
曲面重建图
扫描一个碗的侧面
扫描碗的侧面的效果图 散点图
曲面重建图
又根据左右目相机位置变换关系:
七个由此方可程计6算个出未特知征数点P,在线左相性机方坐程标组系下可的解三,维可坐标得为P在: 左目 相机的相机坐标系下的坐标(xl,yl,zl)
其中A=(ur-crx)/frx,B=(vr-cry)/fry,C =(ul-clx)/flx, D =(vl-cly)/fly;frx,fry,flx,fly分别为左右相机的归一化焦 距,(clx,cly),(crx,cry)分别为左右相机图像中心像素坐标。
双目立体视觉
一 双目视觉简介
双目立体视觉(Binocular Stereo Vision)是今年几 何量测量研究中的重要领域,以测量物体的三维轮廓数 据为目的,主要包括数据测量与数据后处理两部分,伴 随着光电传感器件以及计算机视觉领域的日趋成熟,双 目视觉技术应用领域不断拓展,目前主要应用于: 1 航空航天、汽车、船舶、模具等工业制品的逆向设计 2 产品质量检测 3 生物医学3D建模 4 电影特效制作与动漫建模 5 3D打印前期模型输入
因此,左相机像面上的任意一点只要能在右相机像面上找到 对应的匹配点,就可以确定出该点的三维坐标。这种方法是完全 的点对点运算,像面上所有点只要存在相应的匹配点,就可以参 与上述运算,从而获取其对应的三维坐标。
双目视觉程序算法流程:
1.导入第一帧左右目图像 左目图像
右目图像
2.运用canny算法处理图像 左目处理结果
(1)标定点的精准匹配
标定点匹配时,如果仅仅利用极限约束条件,往往会出现左 目中的一个标定点在右目中会有多个标定点满足约束条件!
这时我们首先对所有的情况都把立体坐标计算出来,扫描图 像时,相邻两帧图像之间运动很小,我们可以近似看作是平移运 动,所以正确的标定点的位移一定是近似相等的,以此来排除进 入约束条件的错误的标定点。
右目处理结果
3.筛选标定点,并利用“极限约束条件匹配”,然后利用双目视 觉原理计算标定点的立体坐标,以后相邻两幅图像的立体标定点 的坐标为以后计算相邻两帧图像的坐标系的变换关系,以便实现 自定位的目的做准备。
左目处理结果
右目处理结果
4.对左目的图像进行二值化处理,选取亮度为255的点,然后选 取被测物体上的光线的轮廓,以得到光线在被测物体上的像素坐 标,并根据事先标定好的光平面在左目相机坐标系中的方程 Z=A*X+B*Y+C,计算物体上被结构光打到的点,在当前左目相机 坐标系下,的空间坐标。
自定位技术的实现原理:
(2)旋转矩阵R和平移矩阵T的计算 当我们得到了准确的相邻两帧图像对应的标定点的准确的运动信息
之后,我们需要求解两个坐标系之间的刚体变换关系才能将数据统一对齐 到一个坐标系中,
若我们得到了n对对应的标定点坐标,我们可以将其关系表示成如下 形式:
其中p分别代表标定点在前后帧的空间坐标,R和T代表两个坐标系之间的 最优刚体变换关系,N为测量噪声。
二值化处理结果
物体上的光线轮廓
5.重复上述步骤,但处理第2帧到第n帧图像时,需要利用标定点的空间 坐标,计算得到当前左目相机坐标系与第一帧左目相机坐标系之间的变 换关系,然后将当前帧处理得到的物体上的点的坐标转化到第一帧左目 相机坐标下的三维坐标。
四 关键技术(自定位原理)源自自定位技术的实现原理:上述公式等价于求
其中q分别代表标定点在前后帧的,相对于所有 标定点重心的,空间坐标。这个方程可以用SVD 方法求其最小二乘解。然后解下面方程求得T。
其中 P 分别代表标定点在前后帧的,所有标定 点重心的空间坐标。
五 检测实例展示
扫描一个长方体块的上表面
扫描长方体铁块光滑的上表面的效果图
散点图
相关文档
最新文档