统计参数估计

合集下载

统计学中的参数估计方法

统计学中的参数估计方法

统计学中的参数估计方法统计学中的参数估计方法是研究样本统计量与总体参数之间关系的重要工具。

通过参数估计方法,可以根据样本数据推断总体参数的取值范围,并对统计推断的可靠性进行评估。

本文将介绍几种常用的参数估计方法及其应用。

一、点估计方法点估计方法是指通过样本数据来估计总体参数的具体取值。

最常用的点估计方法是最大似然估计和矩估计。

1. 最大似然估计(Maximum Likelihood Estimation)最大似然估计是指在给定样本的条件下,寻找最大化样本观察值发生的可能性的参数值。

它假设样本是独立同分布的,并假设总体参数的取值满足某种分布。

最大似然估计可以通过求解似然函数的最大值来得到参数的估计值。

2. 矩估计(Method of Moments)矩估计是指利用样本矩与总体矩的对应关系来估计总体参数。

矩估计方法假设总体参数可以通过样本矩的函数来表示,并通过求解总体矩与样本矩的关系式来得到参数的估计值。

二、区间估计方法区间估计是指根据样本数据来估计总体参数的取值范围。

常见的区间估计方法有置信区间估计和预测区间估计。

1. 置信区间估计(Confidence Interval Estimation)置信区间估计是指通过样本数据估计总体参数,并给出一个区间,该区间包含总体参数的真值的概率为预先设定的置信水平。

置信区间估计通常使用标准正态分布、t分布、卡方分布等作为抽样分布进行计算。

2. 预测区间估计(Prediction Interval Estimation)预测区间估计是指根据样本数据估计出的总体参数,并给出一个区间,该区间包含未来单个观测值的概率为预先设定的置信水平。

预测区间估计在预测和判断未来观测值时具有重要的应用价值。

三、贝叶斯估计方法贝叶斯估计方法是一种基于贝叶斯定理的统计推断方法。

贝叶斯估计将先验知识与样本数据相结合,通过计算后验概率分布来估计总体参数的取值。

贝叶斯估计方法的关键是设定先验分布和寻找后验分布。

五种估计参数的方法

五种估计参数的方法

五种估计参数的方法在统计学和数据分析中,参数估计是一种用于估计总体的未知参数的方法。

参数估计的目标是通过样本数据来推断总体参数的值。

下面将介绍五种常用的参数估计方法。

一、点估计点估计是最常见的参数估计方法之一。

它通过使用样本数据计算出一个单一的数值作为总体参数的估计值。

点估计的核心思想是选择一个最佳的估计量,使得该估计量在某种准则下达到最优。

常见的点估计方法有最大似然估计和矩估计。

最大似然估计(Maximum Likelihood Estimation,简称MLE)是一种常用的点估计方法。

它的核心思想是选择使得样本观测值出现的概率最大的参数值作为估计值。

最大似然估计通常基于对总体分布的假设,通过最大化似然函数来寻找最优参数估计。

矩估计(Method of Moments,简称MoM)是另一种常用的点估计方法。

它的核心思想是使用样本矩和总体矩之间的差异来估计参数值。

矩估计首先计算样本矩,然后通过解方程组来求解参数的估计值。

二、区间估计点估计只给出了一个参数的估计值,而没有给出该估计值的不确定性范围。

为了更全面地描述参数的估计结果,我们需要使用区间估计。

区间估计是指在一定的置信水平下,给出一个区间范围,该范围内包含了真实参数值的可能取值。

常见的区间估计方法有置信区间和预测区间。

置信区间是对总体参数的一个区间估计,表示我们对该参数的估计值的置信程度。

置信区间的计算依赖于样本数据的统计量和分布假设。

一般来说,置信区间的宽度与样本大小和置信水平有关,较大的样本和较高的置信水平可以得到更准确的估计。

预测区间是对未来观测值的一个区间估计,表示我们对未来观测值的可能取值范围的估计。

预测区间的计算依赖于样本数据的统计量、分布假设和预测误差的方差。

与置信区间类似,预测区间的宽度也与样本大小和置信水平有关。

三、贝叶斯估计贝叶斯估计是一种基于贝叶斯理论的参数估计方法。

它将参数看作是一个随机变量,并给出参数的后验分布。

贝叶斯估计的核心思想是根据样本数据和先验知识来更新参数的分布,从而得到参数的后验分布。

统计学参数估计

统计学参数估计

统计学参数估计参数估计是统计学中的一个重要概念,它是指在推断统计问题中,通过样本数据对总体参数进行估计的过程。

这一过程是通过样本数据来推断总体参数的未知值,从而进行总体的描述和推断。

在统计学中,参数是指总体的其中一种特征的度量,比如总体均值、总体方差等。

而样本则是从总体中获取的一部分观测值。

参数估计的目标就是基于样本数据来估计总体参数,并给出估计的精确程度,即估计的可信区间或置信区间。

常见的参数估计方法包括点估计和区间估计。

点估计是一种通过单个数值来估计总体参数的方法。

点估计的核心是选择合适的统计量作为估计量,并使用样本数据计算出该统计量的具体值。

常见的点估计方法包括最大似然估计和矩估计。

最大似然估计是一种寻找参数值,使得样本数据出现的概率最大的方法。

矩估计则是通过样本矩的函数来估计总体矩的方法。

然而,点估计只能提供一个参数的具体值,无法提供该估计值的精确程度。

为了解决这个问题,区间估计被引入。

区间估计是指通过一个区间来估计总体参数的方法。

该区间被称为置信区间或可信区间。

置信区间是在一定置信水平下,总体参数的真值落在该区间内的概率。

置信区间的计算通常涉及到抽样分布、标准误差和分位数等概念。

在实际应用中,参数估计经常用于统计推断、统计检验和决策等环节。

例如,在医学研究中,研究人员可以通过对患者进行抽样调查来估计其中一种药物的有效性和不良反应的发生率。

在市场调研中,市场研究人员可以通过抽取部分样本来估计一些产品的市场份额或宣传效果。

参数估计的准确性和可靠性是统计分析的关键问题。

估计量的方差和偏倚是影响估计准确性的主要因素,通常被称为估计量的精确度和偏倚性。

经典的参数估计要求估计量是无偏且有效的,即估计量的期望值等于真值,并且方差最小。

总之,参数估计是统计学中的一个重要概念,它通过样本数据对总体参数进行估计,并给出估计值的精确程度。

参数估计在统计推断、统计检验和决策等领域具有广泛的应用。

估计量的准确性和可靠性是参数估计的关键问题,通常通过方差和偏倚的分析来评价估计量的性质。

参数估计的三种方法

参数估计的三种方法

参数估计的三种方法参数估计是统计学中的一项重要任务,其目的是通过已知的样本数据来推断未知的总体参数。

常用的参数估计方法包括点估计、区间估计和最大似然估计。

点估计是一种常见的参数估计方法,其目标是通过样本数据估计出总体参数的一个“最佳”的值。

其中最简单的点估计方法是样本均值估计。

假设我们有一个总体,其均值为μ,我们从总体中随机抽取一个样本,并计算出样本的平均值x。

根据大数定律,当样本容量足够大时,样本均值会无偏地估计总体均值,即E(x) = μ。

因此,我们可以用样本的平均值作为总体均值的点估计。

另一个常用的点估计方法是极大似然估计。

极大似然估计的思想是寻找参数值,使得给定观测数据出现的概率最大。

具体来说,我们定义一个参数θ的似然函数L(θ|x),其中θ是参数,x是观测数据。

极大似然估计即求解使得似然函数取得最大值的θ值。

举个例子,假设我们有一个二项分布的总体,其中参数p表示成功的概率,我们从总体中抽取一个样本,得到x个成功的观测值。

那么,样本观测出现的概率可以表示为二项分布的概率质量函数,即L(p|x) = C(nx, x) * p^x * (1-p)^(n-x),其中C(nx, x)是组合数。

我们通过求解使得似然函数取得最大值的p值,来估计总体成功的概率。

与点估计相比,区间估计提供了一个更加全面的参数估计结果。

区间估计指的是通过样本数据推断总体参数的一个区间范围。

常用的区间估计方法包括置信区间和预测区间。

置信区间是指通过已知样本数据得到的一个参数估计区间,使得这个估计区间能以一个预先定义的置信水平包含总体参数的真值。

置信水平通常由置信系数(1-α)来表示,其中α为显著性水平。

置信区间的计算方法根据不同的总体分布和参数类型而异。

举个例子,当总体为正态分布且总体方差已知时,可以利用正态分布的性质计算得到一个置信区间。

预测区间是指通过对总体参数的一个估计,再结合对新样本观测的不确定性,得到一个对新样本值的一个区间估计。

统计学之参数估计

统计学之参数估计

统计学之参数估计
参数估计是统计学的一个重要分支,它主要是用来估计未知参数的值。

参数估计关注模型的参数值,而不是模型本身。

参数估计的主要目的是确
定模型背后的重要参数,包括均值、方差、协方差、系数、正则参数等等。

参数估计的主要方法包括极大似然估计(MLE)、贝叶斯估计、解析
估计。

MLE是最常用的参数估计方法,它的目的是寻找一些未知参数
$\theta$,使得根据已知的样本数据,其概率最大。

MLE是一种极大似然
估计,极大似然估计依赖于模型选择,模型选择是极大似然估计的基础。

MLE的关键点是估计参数,并使参数能够使似然函数是极大值。

贝叶斯估计需要对模型参数和概率分布进行假设,以求出参数的期望值。

与极大似然估计不同,贝叶斯估计注重的是参数的后验概率,它不仅
考虑参数的以前的信息,受到先验假设的影响,而且考虑参数的可能性。

解析估计是为了解决极大似然估计和贝叶斯估计的缺点而发展出来的。

解析估计不仅考虑参数的估计,还考虑参数的分布。

解析估计是一种独特
的参数估计方法,它并不依赖于概率模型,也不需要假定概率分布,只需
要估计参数的值即可。

总之,参数估计是统计学的一个重要分支。

统计学参数估计PPT课件

统计学参数估计PPT课件
实际应用中需要注意的问题
在应用参数估计时,需要注意样本的代表性、数据的准确性和可靠性等问题, 以保证估计的准确性和可靠性。
对未来研究的建议
01
进一步探讨参数估计的理论基础
可以进一步探讨参数估计的理论基础,如大数定律和中心极限定理等,
以更好地理解和掌握参数估计的方法和原理。
02
探索新的估计方法
随着统计学的发展,可以探索新的参数估计方法,以提高估计的准确性
指导决策
评估效果
基于参数估计结果,制定科学合理的 决策。
利用参数估计,评估政策、项目等实 施效果。
预测未来
通过参数估计,预测未来的趋势和变 化。
02
参数估计的基本概念
点估计
定义
点估计是用一个单一的数值来估 计未知参数的值。
举例
在调查某班级学生的平均身高时, 我们可能使用所有学生身高的总 和除以人数来估计平均身高,这 里的总和除以人数就是点估计。
最小二乘法的缺点是假设误差项独立 同分布,且对异常值敏感,可能影响 估计的稳定性。
最小二乘法的优点是简单易行,适用 于线性回归模型,且具有优良的统计 性质。
贝叶斯估计法
贝叶斯估计法是一种基于贝叶 斯定理的参数估计方法,通过 将先验信息与样本数据相结合 来估计参数。
贝叶斯估计法的优点是能够综 合考虑先验信息和样本数据, 给出更加准确的参数估计。
高维数据的参数估计问题
1 2 3
高维数据对参数估计的影响
随着数据维度的增加,参数估计的复杂度和难度 也会相应增加,容易出现维度诅咒等问题。
高维数据参数估计的方法
针对高维数据,可以采用降维、特征选择、贝叶 斯推断等方法进行参数估计,以降低维度对估计 的影响。

统计学参数估计公式

统计学参数估计公式统计学参数估计公式指的是通过统计学方法估计参数的一组数学公式。

不同的统计学参数估计公式各有特点、应用场景和优劣,它们通常用来估计描述性统计或者回归系统的参数。

本文将讨论统计学参数估计公式,并详细说明下面常见参数估计公式:极大似然估计、贝叶斯估计、最小二乘估计、局部加权线性回归和最小化重要性采样。

极大似然估计(MLE)也叫最大似然估计,是一种基于极大似然法的估计统计量的方法。

它的目的是最大化制定概率模型的参数的后验概率。

MLE得出的结果往往比矩估计更加精确。

与贝叶斯估计不同,MLE不需要选择先验分布,且不考虑实证概率,只考虑已知数据。

贝叶斯估计(Bayesian Estimation)是基于概率模型进行参数估计时,结合预先取得的知识,使用条件概率的方法。

基于已有的先验知识,贝叶斯估计将未知参数的概率分布转化为后验的概率,以此来进行估计。

贝叶斯估计法可以克服极大似然估计出现的不平滑问题,而且还能考虑实证概率的影响。

最小二乘估计(Least Square Estimation,LSE)是一种基于数据拟合的参数估计方法。

它将未知数参数表示为一个函数,并使得残差平方和最小,最小化残差平方和来估计未知参数,也就是拟合曲线最适合数据点。

实际运用中往往会遇到过度拟合和欠拟合等问题,所以LSE在多项式回归时需要采用正则化项依据损失函数来控制模型的复杂度,以避免过拟合的情况。

局部加权线性回归(Local Weighted Linear Regression,LWLR)是一种用来解决非线性问题的回归方法。

它的特点是对未知的值的预测引入了权重,在线性回归的基础上引入一个滑动窗口,把预测点以外的点的权重不断减少,越靠近预测点的点的权重越大,这样做的目的是为了使参数估计更加准确和稳定。

最小化重要性采样(Minimum Importance Sampling,MIS)是一种非参数估计参数的方法,它不会估计参数本身,而是通过采样数据而且采样频次是以后验分布的形式定义的,从而用采样数据来估计参数的分布。

统计学中的参数估计与置信区间

统计学中的参数估计与置信区间统计学是一门研究通过搜集、整理、分析数据以得出结论的学科。

在统计学中,参数估计和置信区间是两个重要的概念。

本文将介绍参数估计的概念、方法和步骤,并解释置信区间的作用和计算方法。

一、参数估计的概念及方法参数估计是通过从样本数据中推断总体参数值的过程。

总体参数是描述整个总体分布的特征,例如平均值、方差或比例。

由于总体参数无法得知,所以需要通过样本数据进行估计。

常用的参数估计方法包括点估计和区间估计。

点估计是通过一个单一的数值来估计参数值,通常使用样本均值或样本比例作为总体均值或总体比例的估计值。

例如,通过从一个人群中随机选取样本并计算其平均年龄,就可以估计该人群的平均年龄。

区间估计是通过在一个范围内给出参数的估计值,这个范围被称为置信区间。

置信区间提供了一个参数估计值的上下界,表示了参数估计的不确定性程度。

例如,我们可以计算出一个置信区间为(57岁,63岁),意味着我们有95%的把握相信真实的年龄在这个区间范围内。

二、置信区间的计算方法置信区间的计算通常涉及到总体分布的特征、样本容量和置信水平。

置信水平指的是我们对参数估计的置信程度,通常表示为95%或99%。

对于总体均值的区间估计,常用的方法是使用t分布或正态分布。

当总体标准差未知时,样本容量较小(通常小于30)或样本分布不服从正态分布时,使用t分布。

而当总体标准差已知,且样本容量较大时,使用正态分布。

置信区间的计算步骤如下:1. 根据样本数据计算样本平均值(x)或样本比例(p)。

2. 根据总体分布特征和样本容量,选择合适的分布(t分布或正态分布)。

3. 根据置信水平选择相应的分布的临界值(例如,使用z值或t 值)。

4. 根据公式计算置信区间的上下界,公式为估计值(点估计) ±临界值 ×标准误差。

标准误差表示了样本估计值和总体参数真值之间的差异。

它是由样本容量和总体分布的特征决定的。

三、参数估计与置信区间的应用参数估计和置信区间在实际应用中具有广泛的应用。

统计学中的参数估计与置信区间

统计学中的参数估计与置信区间统计学是关于收集、分析和解释数据的学科,其中包括了参数估计和置信区间的概念。

参数估计用于通过从样本中进行推断来估计总体参数的值,而置信区间则是对这个估计结果进行测量误差范围的一种方法。

一、参数估计参数估计是统计学中重要的概念,其目的是通过样本数据来估计总体参数的值。

总体参数是指总体分布的特征,例如均值、方差、比例等。

在实际研究中,很难直接获得总体数据,因此我们通常采用抽样方法,从总体中选取样本进行分析。

参数估计有两种方法:点估计和区间估计。

点估计是通过样本数据计算出一个单独的数值来估计总体参数的值,例如计算样本均值作为总体均值的估计值。

点估计简单直观,但无法确定其准确性。

因此,统计学家提出了置信区间的概念。

二、置信区间置信区间是一种用于衡量参数估计的不确定性的方法。

它提供了一个范围,其中包含了对总体参数值的估计。

置信区间由一个下限和一个上限组成,表示参数估计的可信程度。

通常,置信区间的置信水平设定为95%或90%。

置信区间的计算通常基于样本数据的分布特性和统计推断方法。

对于大样本,根据中心极限定理,可以使用正态分布来计算置信区间;对于小样本,根据t分布进行计算。

三、计算步骤下面以计算样本均值的置信区间为例来介绍计算步骤。

1. 收集样本数据,并计算样本均值。

2. 确定置信水平,例如95%。

3. 根据样本数据的特点,选择相应的分布进行计算。

若样本数据服从正态分布,可以使用正态分布进行计算;若样本数据不服从正态分布,可以使用t分布进行计算。

4. 根据所选分布的特点和样本大小,计算置信区间的下限和上限。

5. 解释置信区间的含义,例如可以说“置信区间为(下限,上限)表示我们有95%的信心相信总体均值在这个范围内”。

四、置信区间的应用置信区间的应用非常广泛,对于研究者和决策者来说都非常重要。

首先,置信区间可以用于总体参数估计。

通过置信区间,我们可以得到一个关于总体参数值的范围,而不只是一个点估计。

统计学中的参数估计方法

统计学中的参数估计方法统计学是一门研究收集、分析和解释数据的学科。

在统计学中,参数估计是其中一个重要的概念,它允许我们通过样本数据来推断总体的特征。

本文将介绍统计学中常用的参数估计方法,包括点估计和区间估计。

一、点估计点估计是一种通过样本数据来估计总体参数的方法。

在点估计中,我们选择一个统计量作为总体参数的估计值。

常见的点估计方法有最大似然估计和矩估计。

最大似然估计是一种基于样本数据的估计方法,它通过选择使得观察到的数据出现的概率最大的参数值来估计总体参数。

最大似然估计的核心思想是找到一个参数估计值,使得观察到的数据在该参数下出现的概率最大化。

最大似然估计方法在统计学中被广泛应用,它具有良好的渐进性质和统计学性质。

矩估计是另一种常用的点估计方法,它基于样本矩的性质来估计总体参数。

矩估计的核心思想是将样本矩与总体矩相等,通过求解方程组来得到参数的估计值。

矩估计方法相对简单,易于计算,但在样本较小或总体分布复杂的情况下,可能会出现估计不准确的问题。

二、区间估计区间估计是一种通过样本数据来估计总体参数的方法,它提供了参数估计的置信区间。

在区间估计中,我们通过计算样本数据的统计量和抽样分布的性质,得到一个包含真实参数的区间。

置信区间是区间估计的核心概念,它是一个包含真实参数的区间。

置信区间的计算依赖于样本数据的统计量和抽样分布的性质。

常见的置信区间计算方法有正态分布的置信区间和bootstrap置信区间。

正态分布的置信区间是一种常用的区间估计方法,它基于样本数据的统计量服从正态分布这一假设。

通过计算样本数据的均值和标准差,结合正态分布的性质,我们可以得到一个包含真实参数的置信区间。

Bootstrap置信区间是一种非参数的区间估计方法,它不依赖于总体分布的假设。

Bootstrap方法通过从原始样本中有放回地抽取样本,生成大量的重采样数据集,并计算每个重采样数据集的统计量。

通过分析这些统计量的分布,我们可以得到一个包含真实参数的置信区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
/2
1-
/2
X
x
(1 - ) % 区间包含了 % 的区间未包含
三、评价估计量的标准
无偏性:估计量抽样分布的数学期望等于被 估计的总体参数 有效性:对同一总体参数的两个无偏点估计 量,有更小标准差的估计量更有效 一致性:随着样本容量的增大,估计量的值 越来越接近被估计的总体参数
第二节 一个总体参数的区间估计
一. 总体均值的区间估计 二. 总体比例的区间估计 三. 总体方差的区间估计
一、总体均值的区间估计
总体参数 均值 比例 方差
符号表示
2
样本统计量
X P S2
1、总体均值的区间估计 (正态总体、2 已知,或非正态总体、大样本)
➢ 假定条件
➢ 总体服从正态分布,且方差(2) 已知 ➢ 非正态总体,大样本(n 30) ,可由正态分布来近似
Sn
总体均值 在1-置信水平下的置信区间为
பைடு நூலகம்
X t 2
S n
关于t 分布
类似正态分布的一种对称分布,它通常 要比正态分布平坦和分散。
分布依赖于称之为自由度的参数。随着 自由度的增大,分布也逐渐趋于正态分 布
二、总体比例的区间估计
1. 假定条件
总体服从二项分布 可以由正态分布来近似
2. 使用正态分布统计量Z Z P ~ N (0,1) (1 )
置信水平 (1 - )
3、置信水平
1. 将构造置信区间的步骤重复很多次,置信区间 包含总体参数真值的次数所占的比例称为置信 水平
2. 表示为 (1 - 为是总体参数未在区间内的比例
3. 常用的置信水平值有 99%, 95%, 90% 相应的 为0.01,0.05,0.10
4、置信区间
• 由样本统计量所构造的总体参数的估计区 间称为置信区间
n 3. 总体比例在1-置信水平下的置信区间为
P z 2
(1 )
n

P
z
2
P(1- P) ( 未知时)
n
三、总体方差的区间估计
1. 估计一个总体的方差或标准差
2. 假设总体服从正态分布
3. 总体方差 2 的点估计量为S2,且
n 1S 2 ~ 2 n 1
2 4. 总体方差在1-置信水平下的置信区间为
2 1
2 2
n1 n2
3. 12、 22已知时,两个总体均值之差1-2在 1- 置信水平下的置信区间为
( X1 X 2 ) z 2
2 1
2 2
n1 n2
4. 12、 22未知时,两个总体均值之差1-2在1-
置信水平下的置信区间为
( X1 X 2 ) z 2
S12
S
2 2
n1 n2
一、两个总体均值之差的估计
➢ 使用正态分布统计量Z
Z X ~ N (0,1) n
➢ 总体均值 在1-置信水平下的置信区间为
X z 2
n
或 X z 2
S ( 未知)
n
2、总体均值的区间估计 (正态总体 2未知、小样本)
假定条件
总体服从正态分布,且方差(2) 未知 小样本 (n < 30)
使用 t 分布统计量 t X ~ t(n 1)
点估计
法计估矩 顺序统计量法 最大似然法 最小二乘法
区间估计
1、点估计
• 用样本的估计量直接作为总体参数的估计值 ▪ 例1:用样本均值直接作为总体均值的估计 ▪ 例2:用样本方差直接作为总体方差的估计
• 没有给出估计值接近总体参数程度的信息 • 点估计的方法
矩估计法 顺序统计量法 最大似然法 最小二乘法等
n1
S
2 p
n2
Sp
11 n1 n2
一、两个总体均值之差的估计
(二)两个总体均值之差的估计(小样本: 12=22)
★ 两个样本均值之差的标准化
t
(X1
X 2 ) (1
Sp
11 n1 n2
2 )
~
t (n1
n2
2)
★ 两个总体均值之差1-2在1- 置信水平下的置
信区间为
X1 X 2
t 2 n1 n2 2
第7章 参数估计
本章主要内容
§7.1 参数估计的一般问题 §7.2 一个总体参数的区间估计 §7.3 两个总体参数的区间估计 §7.4 样本容量的确定
参数估计在统计方法中的地位
统计方法
描述统计
推断统计
参数估计 假设检验
第一节 参数估计的一般问题
一. 估计量与估计值 二. 点估计与区间估计 三. 评价估计量的标准
S
2 p
1 n1
1 n2
一、两个总体均值之差的估计
(三)两个总体均值之差的估计 (小样本: 12=22)
1. 假定条件
▪ 两个总体都服从正态分布 ▪ 两个总体方差未知且不相等:1222 ▪ 两个独立的小样本(n1<30和n2<30)
n 1S 2
2
2
n
1
2
n 1S 2
2 1 2
n 1
第三节 两个总体参数的区间估计
一. 两个总体均值之差的区间估计 二. 两个总体比例的之差区间估计 三. 两个总体方差比的区间估计
两个总体参数的区间估计
总体参数 均值之差 比例之差
方差比
符号表示
1 2 1 2
2 1
2 2
样本统计量
X1 X2 P1 P2
S12
S
2 2
一、两个总体均值之差的估计
(一)大样本条件下,两个总体均值之差的估计
1. 假定条件
▪ 两个总体都服从正态分布,12、 22已知 ▪ 若不是正态分布, 可以用正态分布来近似(n130和
n230) ▪ 两个样本是独立的随机样本
2. 使用正态分布统计量Z
Z ( X1 X 2 ) (1 2 ) ~ N (0,1)
(二)两个总体均值之差的估计(小样本: 12=22)
假定条件
▪ 两个总体都服从正态分布 ▪ 两个总体方差未知但相等:12=22 ▪ 两个独立的小样本(n1<30和n2<30) 总体方差的合并估计量
S
2 p
(n1
1)S12
(n2
1)S
2 2
n1 n2 2
估计量X1-X2的抽样标准差
S
2 p
一、估计量与估计值
1. 估计量:用于估计总体参数的随机变量 如样本均值,样本比例、样本方差等
例如: 样本均值就是总体均值 的一个估计量
2. 参数用 表示,估计量用 ˆ表示
3. 估计值:估计参数时计算出来的统计量的具体值 如果样本均值 x =80,则80就是的估计值
二、点估计与区间估计
估计方法
2、区间估计
• 在点估计的基础上,给出总体参数估计的一个区间范 围,该区间由样本统计量加减抽样误差而得到的
• 置信水平:根据样本统计量的抽样分布对样本统计量 与总体参数的接近程度给出的概率度量
• 置信区间构成:置信上限、置信下限 • 区间长度的影响因素:
总体数据的离散程度,用 来测度 样本容量n
相关文档
最新文档