粮仓温湿度监测系统项目设计方案

合集下载

基于STM32的大型粮仓温湿度监控系统设计

基于STM32的大型粮仓温湿度监控系统设计

基于STM32的大型粮仓温湿度监控系统设计一、本文概述本文旨在探讨基于STM32微控制器的大型粮仓温湿度监控系统的设计。

随着粮食储存技术的不断发展,对粮仓环境监控的要求也越来越高。

温湿度是影响粮食储存质量的关键因素,因此设计一种能够实时、准确地监测和调控粮仓内部温湿度的系统具有重要意义。

本文将从系统设计的背景、目的、主要研究内容和技术路线等方面进行全面概述。

本文将介绍粮仓温湿度监控系统的研究背景,包括粮食储存的重要性、温湿度对粮食储存质量的影响以及现有监控系统的不足。

明确本文的设计目标,即设计一种基于STM32微控制器的大型粮仓温湿度监控系统,实现粮仓内部温湿度的实时监测、数据分析和远程控制。

接着,本文将详细介绍系统的主要研究内容,包括硬件设计、软件编程、数据采集与处理、通信协议的选择与实现等。

硬件设计部分将涉及STM32微控制器的选型、温湿度传感器的选择与连接、电源电路的设计等;软件编程部分将讨论如何实现数据的实时采集、处理与传输,以及系统的稳定性和可靠性保障;数据采集与处理部分将探讨如何从传感器获取准确的温湿度数据,并进行相应的数据处理和分析;通信协议的选择与实现部分将讨论如何选择合适的通信协议,实现远程监控和控制功能。

本文将总结系统的技术路线和实现方法,包括系统的整体架构设计、各个模块的协同工作以及系统的优化与改进。

通过本文的研究,旨在为大型粮仓温湿度监控系统的设计提供一种新的解决方案,为粮食储存行业的智能化和自动化发展提供有益参考。

二、系统总体设计在大型粮仓温湿度监控系统中,系统总体设计是项目的核心部分,它决定了整个系统的架构、功能和性能。

本设计基于STM32微控制器,充分利用其强大的处理能力和丰富的外设接口,构建一个稳定、可靠的温湿度监控系统。

系统总体设计需要明确监控系统的基本需求。

对于粮仓而言,温湿度是影响粮食储存质量的重要因素,因此系统需要实时监测粮仓内的温湿度数据,并根据预设的阈值进行报警。

13粮库温湿度监控系统的设计

13粮库温湿度监控系统的设计

粮库温湿度监控系统的设计题目说明
粮库通常有很多粮囤,囤内温度过高或湿度或大时,粮食会发生变质。

试设计一套粮库温度与湿度的DCS监控系统。

在值班室中即可监控各粮屯的温度与湿度。

粮仓为框架式钢结构,要求整体强度大、稳定性好、抗震不变形。

仓体所有构件均镀锌后涂漆,可充分保证使用寿命。

仓板为预制高强复合板,板面为彩涂钢板,内设保温层,仓顶为轻质保温彩钢夹芯板,保温性能好,气密性好,不受外界温度干扰。

单个粮囤如下图所示。

一、题目要求
1、粮库中有3个粮囤,粮囤的直径约为5m,高6m(不包括坡顶)与值班室距离为200米左右;
2、每个粮囤的温湿度传感器分布如上图,其测温传感器为12×4+4×4=64个,湿度传感器为12×
3+4×3=48个;
3、在每个粮囤中至少有两台抽分机和两台鼓分机(一用一备),根据设定的温度和湿度由系统控制自
动工作;
4、在值班室的监视屏中即可能看到粮囤中测点的温湿度和分机运行的状态,同时在每个粮囤的现场
显示温湿度。

5、分机除自动工作方式外,还应有手动工作方式。

二、设计任务
1、设计出系统控制电路原理图
1)主电路
2)控制电路
3)根据主电路和控制电路,计算并选择合适的电气元器件,并列表。

2、监控系统组态设计
1)总体信息组态
2)控制站I/O组态
3)控制方案组态
a)程序的流程图或SFC图
b)控制程序
4)流程图画面设计
5)其它监控画面
3、写出设计说明书一份。

粮仓温湿度实时检测系统设计

粮仓温湿度实时检测系统设计

1 引言粮食是一个国家生存的根本,为了防备战争、灾荒及其它突发性事件,粮食的安全储藏具有重要意义。

根据国家粮食保护法规,必须定期抽样检查粮仓各点的粮食温度与湿度,以便及时采取相应的措施,防止粮食的变质。

但大部分粮仓目前还是采取人工测温的方法,这不仅使粮仓工作人员工作量增大,且工作效率低,尤其是大型粮仓的温度检测任务如不能及时彻底完成,则有可能会造成粮食大面积变质。

据有关资料统计,目前,我国各个地方及垦区的各种大型粮仓都还存在着程度不同的粮食储存变质问题。

我国每年因粮食变质而损失的粮食达数亿斤,直接造成的经济损失是惊人的[1]。

对粮仓粮食安全储藏的主要参数是粮仓的温度和湿度,这两者之间又是互相关联的。

粮食在正常储藏过程中,含水量一般在12%以下是安全状态,不会产生温度突变,一旦粮仓进水、结露等使粮食的含水量达到20%以上时,由于粮粒受潮,胚芽萌发,新陈代谢加快而产生呼吸热,使局部粮食温度突然升高,必然引起粮食“发烧”和霉变,并可能形成连锁反应,从而造成不可挽回的损失[2]。

此次设计的是粮仓温湿度实时检测系统,是对一个粮仓的温湿度进行控制,以保证粮仓储粮的安全。

粮仓温湿度控制系统是以MCS-51系列单片机为核心构成控制系统。

本课题完成了整个系统的硬件设计,提出了一种可以应用于中小型粮仓的温湿度控制系统。

2 系统总体分析与设计2.1 系统功能及系统的组成和工作原理2.1.1 总体方案根据设计功能要求,系统可分如下部分:·温度监控:对粮仓温度进行测量,并通过升温或降温达到储粮的最佳温度。

·湿度监控:对粮仓湿度进行测量,并通过喷雾或去湿达到储粮的最佳湿度。

·控制处理:当温度、湿度越限时报警,并根据报警信号提示采取一定手段控制。

·显示:LED就地显示输入值和相应的温湿度。

2.1.2 实施措施·实际环境温度与给定界限比较,执行加热/制冷措施。

·实际环境湿度与给定界限比较,执行加湿/去湿措施。

仓库温湿度检测系统设计

仓库温湿度检测系统设计

仓库温湿度检测系统设计1.引言仓库是储存物品的重要场所,对于一些物品而言,温湿度的控制非常重要。

例如,一些易腐烂的食品需要低温干燥的环境才能存放长时间,而一些高温敏感的电子设备则需要保持低湿度来防止损坏。

因此,设计一个仓库温湿度检测系统对于仓库管理非常重要。

2.系统概述2.1温湿度传感器温湿度传感器是用于测量仓库内部温湿度的设备。

常见的温湿度传感器有电子传感器和光学传感器。

系统需要选择适合的传感器来满足温湿度检测的需求。

2.2数据采集模块数据采集模块负责从温湿度传感器中读取数据,并将数据传输到数据处理模块。

可以通过有线或无线方式传输数据。

如果仓库面积较大或温湿度变化快速,无线方式可能更适合。

2.3数据处理模块数据处理模块接收来自数据采集模块的数据,并进行处理和分析。

可以使用微控制器或单片机来实现数据处理功能。

数据处理模块需要实时监控仓库温湿度状态,并根据预先设置的阈值进行判断和报警。

2.4报警系统报警系统用于在温湿度超出预设范围时发出警报。

可以使用声音、光线、手机短信等方式进行报警,并进行记录和通知相关人员。

3.系统设计在设计过程中需要考虑以下几个关键点:3.1传感器选择根据仓库大小、温湿度变化情况和系统预算等因素选择适合的温湿度传感器。

考虑到传感器精度和稳定性等因素,建议选择专业的温湿度传感器。

3.2数据采集与传输根据仓库的实际情况选择有线或无线方式进行数据采集与传输。

有线方式通常更稳定可靠,但无线方式更适合仓库面积较大或需要移动传感器的情况。

3.3数据处理与报警数据处理模块需要接收并处理来自数据采集模块的数据。

可以通过设置阈值,在数据超出预设范围时触发报警系统。

同时,数据处理模块需要进行实时监控,并记录历史数据以便后续分析。

3.4报警系统报警系统需要能够及时准确地发出警报,并记录报警事件。

可以设置不同的报警级别以便根据不同情况采取相应措施。

4.系统实施4.1硬件实施根据系统设计,选择合适的传感器和数据处理模块,并进行搭建和调试。

粮仓温、湿度控制系统设计

粮仓温、湿度控制系统设计

课程设计粮仓温、湿度控制系统设计设计人:肖志洋辅导教师:陈建国指标要求:1、温度控制在20℃以下;2、湿度控制在30%RH以下;3、有温、湿度显示。

设计要求:1、择合适的传感器,要说明选择理由。

2、叙述传感器的工作原理。

3、选择信号处理电路,并说明其工作原理。

4、选择控制元件,并说明怎样达到控制目的。

课程设计背景及目的在技术飞速发展的今天,人们对各个方面的自动化的要求越来越高。

自动化的控制与友好的人机交换界面已慢慢进入寻常百姓家,并以其高性价比和简单的操作深受人们的欢迎。

本课程设计,通过微控制器采集粮仓的温湿度数据,通过闭环控制的原理尽量避免人为干预实现对粮仓温湿度的自动化控制与调节,且把温湿度数据实时显示在数码管上。

其应用范围远大于粮仓的温湿度控制,可以用于存放精密仪器的实验室,生产制造等需要严格的温湿度要求的条件下。

摘要本系统通过微控制芯片A T89C2051接收温度,湿度传感器采集的信号。

对信号进行处理判断,按要求控制制冷器,抽湿机启动来保持粮仓温度在20℃以下,湿度在30%RH以下。

一,方案比较与选择为了达到设计要求,提出了以下三种设计方案。

方案一,温度传感器选择NTC热敏电阻(KC104G410G:R25=10K);湿度传感器用KSC-6V 集成相对湿度传感器,其相对湿度0~100%RH对应的输出为0~100mV。

把温度传感器接在电桥的一个桥臂上,调节电桥使电桥处于平衡,随温度的变化电桥上输出电压信号,通过放大,经A/D转换,送单片机处理,显示且判断来控制相应的继电器动作使粮仓内温度维持在20℃以下;湿度传感器输出的电压信号同样经放大器放大到0~5V,经A/D转换,送单片机处理,显示且判断来控制相应的继电器动作使抽湿机启,停止,从而保持粮仓内湿度在30%RH以下,同时单片机把当前的温湿度数据送数码管显示。

其方框图如图1。

图1方案二,测量温度选择DALLAS公司生产的数字温度传感器DS18B20,其为单总线器件,具有线路简单,体积小等特点,测量温度十分方便。

粮库粮堆温湿度监测建设方案

粮库粮堆温湿度监测建设方案

粮食储存温湿度系统方案一、粮食监测温湿度因素 (2)二、系统介绍 (3)三、系统功能介绍 (3)四、粮库监测系统结构图示 (4)五、系统监控软件简介 (4)六、温湿度传感器参数 (5)七、针对客户系统实施建议: (6)一、粮食监测温湿度因素据科学依据表明,影响粮食储存因素有很多方面,粮食储存环境的温湿度是至关重要的因素之一!对于粮食中的虫害来讲,我国储存中的粮食每年因虫害造成的损失是非常之大的,对于大多数害虫来讲,低于17℃或者高于40℃都不适合害虫的生长和繁殖,低于-4℃或高于45℃,害虫基本不能生存;另外害虫的繁殖和生长需要一定的水分,粮食中的湿度低于12%,害虫难以繁殖!可见,良好的温湿度储存环在某种程度上会抑制虫害的生长和繁殖;较高的温湿度环境能加速微生物的繁殖,并在繁殖过程中产生分泌物,将粮食的营养分解,同事放出水和热量,是粮食发霉,产生霉变,失去粮食的食用价值,造成了极大的损失;由于微生物品种不同,其生长环境条件对温湿度的要求也是不一样的,但如果将温度控制在10℃以下,湿度控制在65%RH以下,就能抑制微生物的生长,从而避免对粮食的危害!粮食是有生命的物质,其本质决定了它不断的进行呼吸作用,呼吸作用越强不但影响粮食的营养,而且产生大量的水分和热量,从而导致粮食的质量下降。

如果储存环境温湿度过高,除促使粮食强烈呼吸外,还会造成粮食的腐烂,增加粮食的损失率了,此可见粮食的呼吸作用与储存环境的温度和湿度有一定的关系;综上述,只要控制好储存环境中的温湿度就能抑制粮食的呼吸、害虫和微生物的生长和繁殖,从而保证了粮食的质量和损失率!二、系统介绍温度部分:粮食内测温采用高精度进口PT100温度传感器进行测量,通过线性电路设计转化成稳定性强远程传输的RS485信号,传感器具有耐腐蚀性强,密封性好,精度高等优点。

粮食内部测湿采用高性能进口元件湿度传感器进行采集测量,传感器具有精度高、常年运行稳定性强、整体线性良好等优点。

粮仓粮库环境温湿度监测系统设计方案

粮仓粮库环境温湿度监测系统设计方案

粮仓粮库环境温湿度综合监控管理系统设计方案目录第一部分:概述(1)粮食仓储概述 (03)(2)粮仓粮库环境温湿度监控系统应用背景 (04)(3)粮仓粮库环境综合监控管理系统 (04)第二部分:系统组成结构◇上位管理主机 (05)◇数据通讯部分 (05)◇现场控制监测点 (05)第三部分:控制模式◇控制方式 (06)第四部分:功能特点(1)粮库环境温湿度监测 (07)(2)O2、CO2浓度监测• (07)(3)数据存储功能 (07)(4)设备联动控制功能 (08)(5)防火自动报警功能 (09)(6)现场报警功能 (09)(7)远程传输和网络管理功能 (09)第五部分:监测软件数据平台(1)友好的用户登陆管理界面 (10)(2)实时\历史、曲线\报表数据分析 (10)(3)多种形式的报警功能 (11)(4)远程控制 (11)(5)监控终端 (11)第一部分:概述(1)粮食仓储概述我国现有14亿人口,粮食储藏好坏是关系到人民健康、市场供给、国家稳定的大事。

随着人口增长迅速、耕地逐年减少、人类对社会物质生活的需求愈来愈高。

粮食的利用与保护得到社会的更加重视,人类必须杜绝粮食浪费与霉烂现象发生,珍惜粮食。

我国是世界上最大粮食生产和消费国。

据统计,我国粮食收获后在脱粒、晾晒、贮存、运输等过程中的损失高达15%,远远超过联合国粮农组织规定的5%,在这些损失中因未达到安全水分造成霉变、发芽等损失的粮食又占到5%。

粮食在储藏期间,如果水分超标,粮堆内部的水分就表现出向表面及粮粒间隙中的空气缓慢游离的趋势,因粮食水分从不流动的空气中逸出比较困难,它在粮粒间聚集,当湿度达到饱和点时即开始凝结,随之产生发酵和局部温度升高现象,这又促使粮粒释放出水分和加速相应的发酵过程。

当环境温度升高,粮食中带有的粉尘、杂质、特别是有机物杂质加速了上述过程,严重威胁到安全储粮,导致粮食腐烂。

因此粮仓粮库环境应保持通风、干燥,内外整洁有序。

粮食仓储温度监控系统的设计毕业设计

粮食仓储温度监控系统的设计毕业设计

粮食仓储温度监控系统的设计毕业设计一、前言粮食是人们日常生活中必不可少的食物,而粮食的储存就显得尤为重要。

在粮食储存过程中,温度是影响粮食质量的重要因素之一。

因此,设计一个能够监控粮食仓储温度的系统对于确保粮食质量具有重要意义。

二、需求分析1.功能需求(1)采集温度数据:系统需要能够实时采集仓库内各个区域的温度数据。

(2)显示温度数据:系统需要将采集到的温度数据以图表或数字等形式进行展示。

(3)报警功能:当仓库内某个区域的温度超过设定阈值时,系统需要及时报警提醒管理员。

2.性能需求(1)准确性:系统需要能够准确地采集和显示温度数据。

(2)稳定性:系统需要具备较高的稳定性,避免出现误报或漏报等情况。

(3)实时性:系统需要具备较高的实时性,能够及时反映仓库内各个区域的温度变化情况。

3.安全需求(1)防火防爆:系统需要具备防火防爆等安全特性,确保在仓库内发生火灾或爆炸等情况时能够及时报警。

(2)数据安全:系统需要具备较高的数据安全性,确保温度数据不会被非法获取或篡改。

三、系统设计1.硬件设计(1)传感器:采用DS18B20数字温度传感器,可实现高精度温度测量,并具有多点采集和长距离传输等优点。

(2)主控板:采用STM32F103主控板,可实现高速运算和多种通信接口。

(3)显示屏:采用OLED显示屏,可实现低功耗、高亮度、高对比度等特性。

(4)报警器:采用蜂鸣器或LED灯等报警装置,当温度超过设定阈值时能够及时发出警报。

2.软件设计(1)传感器读取程序:通过STM32F103主控板读取DS18B20数字温度传感器采集到的温度数据,并将其存储到内存中。

(2)用户界面程序:通过OLED显示屏将内存中的温度数据以图表或数字等形式进行展示,并提供设置阈值和报警方式等功能。

(3)报警程序:当温度超过设定阈值时,通过蜂鸣器或LED灯等报警装置及时提醒管理员。

四、系统测试1.硬件测试(1)传感器测试:将DS18B20数字温度传感器分别放置在不同位置进行测试,检查其是否能够准确地采集温度数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

粮仓温湿度监测系统项目设计方案“国以民为本,民以食为天”,“兵马未动,粮草先行”,这些都充分说明粮食对国家的重要性⑴。

从理论上讲国家掌握的粮食越多越好,但从现代经济学的角度看,国家只要能控制住一定数量的可以灵活支配、质量良好的粮食,既可达到“备战备荒”、宏观调控的目的,又可节省资金用于发展经济。

一般来说:粮食存放在粮仓中,大型的粮仓可存放数以万计的粮食。

而且这些粮食存放的时间有长有短。

为了保证存放在粮仓中的粮食不致腐烂变质,就必须使粮仓内的温湿度保持在一定的范围以内。

为了达到以上的要求,必不可少的就是既稳定又精确的粮情监测系统。

粮情监测系统是通过计算机检测粮食储备库中粮食的基本温湿度情况,并结合其他粮情信息(如入仓时间、品种、仓型、天气状况等)进行综合分析。

利用微机技术对粮仓进行监测,用户可方便地构造自己需要的数据采集系统。

在综合研究国内粮库管理现状和发展的前提下,吸收了国内多种粮库粮情温湿度监测系统的成功经验后,我们设计了自己的仓库温湿度监测系统。

该系统具有可靠性和高性价比,而且操作维修简便,具有检测、数显等诸多功能。

1.2设计的目的和意义科学储粮是粮食生产的一个重要环节,若管理不当,粮食发霉或生虫会造成极大浪费。

粮库管理中最重要的问题是监测粮堆中的温湿度变化。

粮库一般由几十个甚至上百个由水泥或钢板构成的圆型仓组成,仓高20~30 m。

现在,我国在粮仓建设上己实现规范化,但是监测手段一直未能实现同步现代化[2]。

我国许多储备粮库每年都因测控设备的不完善而导致部分粮食霉变,许多大型储备粮库的测控设备仍需高价进口,因此国家准备在未来的几年内对全国所有的粮库进行翻新和改造工作,要求规范粮库管理,实现粮库管理现代化。

影响储粮安全的最主要因素是粮堆内的温度和湿度,这就要求能有一种有效的、低成本的仪表来实现监测控制功能,使得管理人员能够方便有效地进行监测操作。

如果用单片机作为前沿机对现场进行数据采集,通过对采集的数据进行分析(温度设定,实时温度显示,报警电路)然后通过单片机串行口控制电机启停进行温湿度控制。

利用单片机技术对粮仓进行监测,用户可以方便地够造自己所需要的数据采集系统,在任何时候把粮仓现场的信息实时地传到控制室,管理人员不进入现场就可以按照所需的温湿度要求对粮仓内的温度情况进行控制,提高了生产效率,增强了粮仓内存储安全,获得了粮仓的实时管理,实现自动化。

微机测量是微机设计的第一步,是微机测量技术的现场部分,即测量粮仓中的温湿度,并使用单片机对测量的数据进行处理并对粮仓内的温湿度进行控制。

1.3相关领域国内外设计方法国内外有很多仓库温湿度监测系统的方法,主要有以下几种。

1、基于CAN总线的粮情监控系统的设计与实现基于CAN总线的粮情监控系统主要由监控计算机和各仓房智能测控节点构成,具体分为通用计算机、USBCAN网络适配器、CAN总线网络和若干个仓房智能测控节点。

该系统将完成以AT89C52控制器为中心的数据采集与通风控制的仓房节点的设计,其中最重要的工作是完成仓房温度测量网络的设计⑶。

由于仓房数据采集一般以温度采集为主,其测量点数目之多,使温度测量的难度加大,因此仓房温度的测量一直是粮情监控系统设计的关键。

在设计中将采用单总线数字式温度传感器DS18B20组成单总线数字式测温网络,并最大限度的缩短和简化电缆布局。

系统的湿度传感器选用电容式传感器,电容式传感器输出为0~20mA的电流信号,经过250欧电阻转为电压信号,此信号再经过A/D转换器TLC1549转化为AT89C52所能采集的串行数字信号,同时,为减小TLC1549内部输入阻抗的影响,在其输入端放置了LM158组成的压随电路。

基于CAN总线的粮情监控系统的主要任务是完成对各仓房的温湿度的实时巡检,对采集数据进行处理分析来掌握粮食的储存情况,并按照要求实时控制各仓房的通风设备。

其中USBCAN网络适配器主要负责的任务是实现USB接口与CAN总线之间的数据交互,由于监控计算机没有CAN总线接口,不能直接提供CAN通信功能,系统通过USBCAN网络适配器使监控计算机间接地连入到CAN 总线网络中。

仓房智能测控节点的任务是完成对粮仓内的温湿度的采集和通风设备的控制,并能通过CAN总线和监控计算机通信。

特点:CAN现场总线技术作为最有前途的现场总线之一,其可靠性高,使用环境能力强,交错能力突出,性价比高,有灵活的网络拓扑结构,高度分散的系统结构和高智能化的现场设备。

2、远程温湿度测控系统研究远程温湿度测控系统主要由温湿度采集器,温湿度测控平台,控制器,执行机构,远程通讯模块和控制中心软件等部分组成,系统采用了总线结构,模块化设计,各部分既可独立工作,又可联网工作,组建方便,并具有良好的扩充性。

智能型温湿度采集器采用国际上先进的温敏和湿敏元件,传递温湿度参数;温湿度测控平台内置微处理器,智能化设计,可独立工作又可方便组网,还可监测并管理各个温湿度测控器的工作,指令各相应机构,实现环境的检测和控制,同时,控制平台的通讯功能使其可作为下位机接受上位机和计算机的管理和控制,通过电力载波、电话线或通讯电缆等通讯手段可接入总体测控系统中心网络。

1)温湿度采集器(信号采集):用于测量环境温湿度,采用温敏电阻和高分子湿敏电容高精度测温测湿,智能化设计,自动校准温湿度基准。

2)控制器:接受温湿度测控平台指令,控制执行机构起停。

3)执行机构:指用于实现加热、制冷、加湿、除湿等功用的设备,如加热器、制冷机、加湿机、除湿机等。

4)测控平台:测控平台是温、湿度测控系统的重要组成部分,是联系温、湿度测控及信号采集器和计算机管理控制中心(上位机)的枢纽。

一方面传送报警设定参数给测量端,并获取各点的温湿度值和开关变量;另一方面将温湿度值、状态和开关变量上传给计算机管理控制中心。

巡检测控仪提供液晶显示器显示时间、通道号、温度、湿度以及抽风除湿等状态。

系统状态有通风、强制通风、抽湿、强制抽湿、故障、锁定、查询,可连续设定温湿度控制值,根据设定指令自动监控温湿度测控器的工作,控制整个系统的运行,同时可通过通讯模块一与计算机管理控制中心(上位机)通讯联网,接受计算机管理控制中心(上位机)的工作指令。

(可选带汉字打印机)。

5)通讯(链路)模块:连接计算机管理控制中心(上位机)与测控平台,使测控平台纳入整体计算的控制管理中心体系6)计算机管理控制中心(上位机):A、可对多个测控平台进行远程实时显示、检测;B、可对各个测控平台的历史数据进行存储分析,并进行相应的处理;C、可对平台的各个测控参数进行设置和控制;D可以定时的搜索各个测控平台,及时的汇报各平台的状况。

特点:系统的设计可靠,操作简单方便,全自动化,优选分析软件,智能控制,而且安装简便,维护简单,不仅适用于国防工程、人防工程等,而且也可广泛适用于大型建筑、工厂车间、仓库(房)、温室花棚、蔬菜塑料大棚等对温湿度要求较高的场所。

另外,相关于智能化以及相关产品的研发,既有利于推动工控技术的发展,又能带来可观的经济效益和社会效益。

缺点是所测量的温湿度数据不够精确。

3、无线温、湿度仓贮自动测控系统的研究无线稳、湿度仓贮自动测控系统主要监测、控制仓库现场的温度和湿度等参数,实时显示和监测各个仓库的环境情况,通过控制室计算机的分析处理,实现现场的控制,从而提高仓库的科学管理化、控制自动化水平。

系统由温、湿度数据采集、无线收发、单片机数据接收处理及微机数据显示几部分组成。

数据采集发送部分主要以89C51单片机作为核心主机,以单片智能化湿度/温度传感器作为从机加上数据无线发送模块。

单片机接收数据并通过串行口将数据发送给计算机,计算机对接收到的数据进行处理和显示。

整个系统采用对分布的传感器进行分时扫描的工作方式,控制端上电后将主动向分布的传感器按照预设的编号发起连接请求,与传感器建立数据传输通道。

传感器端将采集到的仓贮现场数据在经过简单的处理后,经过无线发送模块发送到控制器的接受端,控制端接收到数据后,按照用户的需要进行分析和处理并产生图表。

同时控制端也可以按照预先设定的标号,对某一个或者多个传感器进行扫描,以确定是否为突发的干扰错误。

系统通讯接口主要包括一个主控芯片AT89C51单片机、一个RS232接口电路芯片MAX232、一个DTMF编解码电路芯片MT888O、无线调频发射电路和接收电路等DTMF 编、解码采用硬件电路MT8880芯片,它是一种带呼叫进展滤波器的单片双音多频收发器。

MT8880有一个标准的微处理器总线接口,可直接与单片机I/O端口连接,CPU通过它控制发送器和接收器工作,与该接口有关的是片内的数据转移寄存器、控制寄存器和状态寄存器。

无线收发电路设计主要是挪威Nordic公司最新推出的一款数传频段为433MHz的单片无线收发一体化的nRF401芯片,它将高频发射、高频接收、PLL合成、FSK调制、FSK解调和多频道切换等功能进行高度集成,具有性能优异、价格低廉和使用方便等特点,nRF401芯片能和串口直接相连,且简单的单片机I/O输出可直接控制无线收发芯片的收发工作,无线通信系统设计简便⑷o 特点:采用无线传输技术的系统唯一缺陷是在传感器收发数据的校准的时候比较繁琐,花费了大量的时间和精力,但是一经校准,维护工作简单容易,测量数据的准确率高。

4、智能化粮情监控系统的研究与开发储粮的主要物理参数是粮食的温度、水分以及仓库内、外的温度、湿度,这些参数的快速、准确、自动监测对于减少粮食损耗具有重要意义。

粮情监控系统是能够对粮食自动进行测温、测湿及测水分,实现粮情的自动监测,完成粮食状态的分析与估计的智能系统。

智能化粮情监控系统利用计算机构成整个粮食仓储区管理系统,系统设计成主从工作方式,主机应具备通讯、数据显示、数据存储、数据分析等主要管理功能;下位机系统应该具备通讯、控制及参数输入等基本功能。

粮情监控系统采用温度传感器来采集粮食的温度,粮仓中各个测温点在测控分机的控制之下被循环接入测量电路。

由于每个粮仓的测温点较多,那么每一个都设置了一个测控分机,以确保其有足够的测量能力。

测控分机与中心控制室的距离较远,为了增加信号的传输距离,系统采用RS485总线与通讯主机相连,而通讯主机收到测控分机输出的数据信号,经过光电隔离、74LS14数据整形,然后将0~SV的数字信号转换为上位机可以接受的(-12) V~ (+12) V数字信号,通过串行通讯口RS232传给上位机,上位机据此信号实现数据实时显示、曲线浏览、粮库管理等功能。

上位机:系统选用标准的PC机作为上位机,安放在中心控制室,该部分是整个系统的核心部分。

无论是和下位机通讯,还是系统的综合管理,都完全依赖本控制中心。

主要完成的功能有通讯功能,管理功能,显示机打印功能,还有报警提示功能。

相关文档
最新文档