全国高考真题专题汇编导数

全国高考真题专题汇编导数
全国高考真题专题汇编导数

专题三 导数

(2014)各省市高考题

18.(12分)(2014?安徽)设函数f (x )=1+(1+a )x ﹣x 2﹣x 3,其中a >0. (Ⅰ)讨论f (x )在其定义域上的单调性;

(Ⅱ)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 18.(13分)(2014?北京)已知函数f (x )=xcosx ﹣sinx ,x ∈[0,]

(1)求证:f (x )≤0; (2)若a <

<b 对x ∈(0,

)上恒成立,求a 的最大值与b 的最小值.

22.(12分)(2014?广西)函数f (x )=ln (x+1)﹣(a >1).

(Ⅰ)讨论f (x )的单调性;

(Ⅱ)设a 1=1,a n+1=ln (a n +1),证明:<a n ≤

20.(14分)(2014?福建)已知函数f (x )=e x ﹣ax (a 为常数)的图象与y 轴交于点A ,曲线y=f (x )在点A 处的切线斜率为﹣1.

(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;

(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <ce x .

22.[2014·湖北卷] π为圆周率,e =2.718 28…为自然对数的底数.

(1)求函数f (x )=ln x

x 的单调区间;

(2)求e 3,3e

,e π,πe ,,3π,π3这6个数中的最大数与最小数;

(3)将e 3,3e ,e π,πe ,3π

,π3这6个数按从小到大的顺序排列,并证明你的结论.

22.(2014湖南) (本小题满分13分) 已知常数0>a ,函数.2

2)1ln()(+-

+=x x

ax x f (1) 讨论)(x f 在区间),0(∞+上的单调性;

(2)若)(x f 存在两个极值点1x ,2x ,且0)()(21>+x f x f ,求a 的取值范围.

19.(本小题满分16分)已知函数()e e x x f x -=+其中e 是自然对数的底数. (1)证明:()f x 是R 上的偶函数;

(2)若关于x 的不等式()e 1x mf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围;

(3)已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立.试比较1e a -与e 1a -的大小,并证明你的结论.

14.(5分)(2014?江西)若曲线y=e ﹣x

上点P 的切线平行于直线2x+y+1=0,则点P 的坐标是 _________ .

19.(12分)(2014?江西)已知函数f (x )=(x 2+bx+b )(b ∈R )

(1)当b=4时,求f (x )的极值;

(2)若f (x )在区间(0,)上单调递增,求b 的取值范围.

21.(12分)(2014?辽宁)已知函数 f (x )=(cosx ﹣x )(π+2x )﹣(sinx+1) g (x )=3(x ﹣π)cosx ﹣4(1+sinx )ln (3﹣)

证明:

(Ⅰ)存在唯一x 0∈(0,),使f (x 0)=0;

(Ⅱ)存在唯一x 1∈(

,π),使g (x 1)=0,且对(Ⅰ)中的x 0,有x 0+x 1<π.

8.(2014新课标二卷)(5分)设曲线y=ax ﹣ln (x+1)在点(0,0)处的切线方程为y=2x ,则a=( )

A . 0

B . 1

C . 2

D . 3

21.(12分)已知函数f (x )=e x ﹣e ﹣

x ﹣2x . (Ⅰ)讨论f (x )的单调性;

(Ⅱ)设g (x )=f (2x )﹣4bf (x ),当x >0时,g (x )>0,求b 的最大值; (Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).

21. (2014新课标一卷)(本小题满分12分)设函数1

(0ln x x

be f x ae x x

-=+,曲线()y f x =在点(1,(1)f )

处的切线为(1)2y e x =-+. (I )求,a b ; (Ⅱ)证明:()1f x >.

20.( 本小题满分13分)

设函数())ln 2

(2x x

k x e x f x +-=(k 为常数, 2.71828

e =是自然对数的底数)

(I )当0k ≤时,求函数()f x 的单调区间;

(II )若函数()f x 在()0,2内存在两个极值点,求k 的取值范围。

21(2014陕西).(本小题满分14分) 设函数

()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数.

(Ⅰ)11()(),()(()),n n g x g x g x g g x n N ++=

=∈,求()n g x 的表达式;

(Ⅱ)若

()()f x ag x ≥恒成立,求实数a 的取值范围;

(Ⅲ)设n N +∈,比较(1)(2)()g g g n +++与()n f n -的大小,并加以证明.

21.(14分)(2014?四川)已知函数f (x )=e x ﹣ax 2﹣bx ﹣1,其中a ,b ∈R ,e=2.71828…为自然对数的底数. (1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围.

(20)(本小题满分14分) 已知函数x f x

x

ae a

R ,x R .已知函数y

f x 有两个零点12,x x ,且12x x .

(Ⅰ)求a 的取值范围; (Ⅱ)证明

2

1

x x 随着a 的减小而增大; (Ⅲ)证明 12x x 随着a 的减小而增大.

6.(2014浙江)已知函数32

()f x x ax bx c =+++ ,且0(1)(2)(3)3f f f <-=-=-≤( ) A.3c ≤ B.36c <≤ C.69c <≤ D. 9c > 22.(本题满分14分)

已知函数()3

3().f x x x a a R =+-∈

(Ⅰ)若()f x 在[]1,1-上的最大值和最小值分别记为(),()M a m a ,求()()M a m a -; (Ⅱ)设,b R ∈若()2

4f x b +≤????对[]1,1x ∈-恒成立,求3a b +的取值范围.

20.(12分)(2014?重庆)已知函数f (x )=ae 2x ﹣be ﹣

2x ﹣cx (a ,b ,c ∈R )的导函数f′(x )为偶函数,且曲线y=f (x )在点(0,f (0))处的切线的斜率为4﹣c .

(Ⅰ)确定a ,b 的值;

(Ⅱ)若c=3,判断f (x )的单调性; (Ⅲ)若f (x )有极值,求c 的取值范围.

2015各省市高考题)

1.【2015高考福建,理10】若定义在R 上的函数()f x 满足()01f =-,其导函数()f x '满足()1f x k '>>,则下列结论中一定错误的是( ) A .11

f k k ??<

??? B .111f k k ??

> ?-?? C .1111f k k ??

< ?--?? D .111k f k k ??

> ?--??

【考点定位】函数与导数.

【名师点睛】联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,属于难题.

2.【2015高考陕西,理12】对二次函数2

()f x ax bx c =++(a 为非零常数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( ) A .1-是()f x 的零点 B .1是()f x 的极值点 C .3是()f x 的极值 D . 点(2,8)在曲线()y f x =上 【考点定位】1、函数的零点;2、利用导数研究函数的极值.

【名师点晴】本题主要考查的是函数的零点和利用导数研究函数的极值,属于难题.解题时一定要抓住重要字眼“有且仅有一个”和“错误”,否则很容易出现错误.解推断结论的试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊值进行检验,也可作必要的合情推理.

3.【2015高考新课标2,理12】设函数'

()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,

'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( )

A .(,1)(0,1)-∞-

B .(1,0)(1,)-+∞

C .(,1)

(1,0)-∞--D .(0,1)(1,)+∞

【考点定位】导数的应用、函数的图象与性质.

【名师点睛】联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等

式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,属于难题.

4.【2015高考新课标1,理12】设函数()f x =(21)x

e x ax a --+,其中a 1,若存在唯一的整数0x ,使得

0()f x 0,则a 的取值范围是( )

(A)[-

32e ,1)(B)[-32e ,34)(C)[32e ,34)(D)[3

2e

,1)

【考点定位】本题主要通过利用导数研究函数的图像与性质解决不等式成立问题

【名师点睛】对存在性问题有三种思路,思路1:参变分离,转化为参数小于某个函数(或参数大于某个函数),则参数该于该函数的最大值(大于该函数的最小值);思路2:数形结合,利用导数先研究函数的图像与性质,再画出该函数的草图,结合图像确定参数范围,若原函数图像不易做,常化为一个函数存在一点在另一个函数上方,用图像解;思路3:分类讨论,本题用的就是思路2.

5.【2015高考陕西,理16】如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为.

【考点定位】1、定积分;2、抛物线的方程;3、定积分的几何意义.

【名师点晴】本题主要考查的是定积分、抛物线的方程和定积分的几何意义,属于难题.解题时一定要抓住重要字眼“原始”和“当前”,否则很容易出现错误.解本题需要掌握的知识点是定积分的几何意义,即由直线x a =,x b =,0y =和曲线()y f x =所围成的曲边梯形的面积是

()b

a

f x dx ?.

6.【2015高考天津,理11】曲线2

y x =与直线y x =所围成的封闭图形的面积为. 【考点定位】定积分几何意义与定积分运算.

【名师点睛】本题主要考查定积分几何意义与运算能力.定积分的几何意义体现数形结合的典型示范,既考查微积分的基本思想又考查了学生的作图、识图能力以及运算能力.

【2015高考湖南,理11】2

0(1)x dx ?-=.

【考点定位】定积分的计算.

【名师点睛】本题主要考查定积分的计算,意在考查学生的运算求解能力,属于容易题,定积分的计算通常有两类基本方法:一是利用牛顿-莱布尼茨定理;二是利用定积分的几何意义求解. 7.【2015高考新课标2,理21】(本题满分12分) 设函数2()mx

f x e

x mx =+-.

(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;

(Ⅱ)若对于任意12,[1,1]x x ∈-,都有12()()1f x f x e -≤-,求m 的取值范围. 【考点定位】导数的综合应用. 【名师点睛】(Ⅰ)先求导函数'

()(1)2mx

f x m e

x =-+,根据m 的范围讨论导函数在(,0)-∞和(0,)+∞的符

号即可;(Ⅱ)12()()1f x f x e -≤-恒成立,等价于12max ()()1f x f x e -≤-.由12,x x 是两个独立的变量,故可求研究()f x 的值域,由(Ⅰ)可得最小值为(0)1f =,最大值可能是(1)f -或(1)f ,故只需

(1)(0)1,

(1)(0)1,f f e f f e -≤-??

--≤-?

,从而得关于m 的不等式,因不易解出,故利用导数研究其单调性和符号,从而得解.

8.【2015高考江苏,19】(本小题满分16分) 已知函数),()(2

3

R b a b ax x x f ∈++=. (1)试讨论)(x f 的单调性;

(2)若a c b -=(实数c 是a 与无关的常数),当函数)(x f 有三个不同的零点时,a 的取值范围恰好是),2

3()23

,1()3,(+∞--∞ ,求c 的值. 【考点定位】利用导数求函数单调性、极值、函数零点

【名师点晴】求函数的单调区间的步骤:①确定函数y =f(x)的定义域;②求导数y′=f′(x),令f′(x)=0,解此方程,求出在定义区间内的一切实根;③把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;④确定f′(x)在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性.

已知函数的零点个数问题处理方法为:利用函数的单调性、极值画出函数的大致图像,数形结合求解. 已知不等式解集求参数方法:利用不等式解集与对应方程根的关系找等量关系或不等关系. 9.【2015高考福建,理20】已知函数f()ln(1)x x ,(),(k ),g x kx R

(Ⅰ)证明:当0x

x x 时,f();

(Ⅱ)证明:当1k 时,存在00x ,使得对0(0),x x 任意,恒有f()()x g x ;

(Ⅲ)确定k 的所以可能取值,使得存在0t ,对任意的(0),x ,t 恒有2|f()()|x g x x .

【考点定位】导数的综合应用.

【名师点睛】在解函数的综合应用问题时,我们常常借助导数,将题中千变万化的隐藏信息进行转化,探究这

类问题的根本,从本质入手,进而求解,利用导数研究函数的单调性,再用单调性来证明不等式是函数、导数、不等式综合中的一个难点,解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或最值,从而证得不等式,注意()()f x g x >与min max ()()f x g x >不等价,min max ()()f x g x >只是

()()f x g x >的特例,但是也可以利用它来证明,在2014年全国Ⅰ卷理科高考21题中,就是使用该种方法

证明不等式;导数的强大功能就是通过研究函数极值、最值、单调区间来判断函数大致图象,这是利用研究基本初等函数方法所不具备的,而是其延续.

11.【2015高考山东,理21】设函数()()()

2ln 1f x x a x x =++-,其中a R ∈. (Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若()0,0x f x ?>≥成立,求a 的取值范围.

【考点定位】1、导数在研究函数性质中的应用;2、分类讨论的思想.

【名师点睛】本题考查了导数在研究函数性质中的应用,着重考查了分类讨论、数形结合、转化的思想方法,意在考查学生结合所学知识分析问题、解决问题的能力,其中最后一问所构造的函数体现了学生对不同函数增长模型的深刻理解.

12.【2015高考安徽,理21】设函数2

()f x x ax b =-+.

(Ⅰ)讨论函数(sin )f x 在(,)22

ππ

-

内的单调性并判断有无极值,有极值时求出极值; (Ⅱ)记2000()f x x a x b =-+,求函数0(sin )(sin )f x f x -在[]22

ππ

-

,上的最大值D ; (Ⅲ)在(Ⅱ)中,取000a b ==,求2

4

a z

b =-满足D 1≤时的最大值.

【考点定位】1.函数的单调性、极值与最值;2.绝对值不等式的应用.

【名师点睛】函数、导数解答题中贯穿始终的是数学思想方法,在含有参数的试题中,分类与整合思想是

必要的,由于是函数问题,所以函数思想、数形结合思想也是必要的,把不等式问题转化为函数最值问题、把方程的根转化为函数零点问题等,转化与化归思想也起着同样的作用,解决函数、导数的解答题要充分注意数学思想方法的应用.

13.【2015高考天津,理20(本小题满分14分)已知函数()n ,n

f x x x x R =-∈,其中*

n ,n 2N ∈≥. (I)讨论()f x 的单调性;

(II)设曲线()y f x 与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x ,求证:对于任意的正实

数x ,都有()()f x g x ≤;

(III)若关于x 的方程()=a(a )f x 为实数有两个正实根12x x ,,求证:21|-|

21a x x n

【考点定位】1.导数的运算;2.导数的几何意义;3.利用导数研究函数性质、证明不等式.

【名师点睛】本题主要考查函数的性质与导数之间的关系以及利用函数证明不等式.第(I)小题求导后分n 为奇偶数讨论函数的单调性,体现了数学分类讨论的重要思想;第(II)(III)中都利用了构造函数证明不等式这一重要思想方法,体现数学中的构造法在解题中的重要作用,是拨高题.

14.【2015高考重庆,理20】 设函数()()23x

x ax

f x a R e +=∈

(1)若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点()()

1,1f 处的切线方程; (2)若()f x 在[)3,+∞上为减函数,求a 的取值范围。

【考点定位】复合函数的导数,函数的极值,切线,单调性.考查综合运用数学思想方法分析与解决问题的能力.

【名师点晴】导数及其应用通常围绕四个点进行命题.第一个点是围绕导数的几何意义展开,设计求曲线的切线方程,根据切线方程求参数值等问题,这类试题在考查导数的几何意义的同时也考查导数的运算、函数等知识,试题的难度不大;第二个点是围绕利用导数研究函数的单调性、极值(最值)展开,设计求函数的单调区间、极值、最值,已知单调区间求参数或者参数范围等问题,在考查导数研究函数性质的同时考查分类与整合思想、化归与转化思想等数学思想方法;第三个点是围绕导数研究不等式、方程展开,涉及不等式的证明、不等式的恒成立、讨论方程根等问题,主要考查通过转化使用导数研究函数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用;第四个点是围数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用;本题涉及第一个点和第二个点,主要注意问题的转化,转化为不等式恒成立,转化为二次函数的性质.

15.【2015高考四川,理21】已知函数2

2

()2()ln 22f x x a x x ax a a =-++--+,其中0a >. (1)设()g x 是()f x 的导函数,评论()g x 的单调性;

(2)证明:存在(0,1)a ∈,使得()0f x ≥在区间∞(1,+)内恒成立,且()0f x =在∞(1,+)内有唯一解. 【考点定位】本题考查导数的运算、导数在研究函数中的应用、函数的零点等基础知识,考查推理论证能力、运算求解能力、创新意识,考查函数与方程、数形结合、分类与整合,化归与转化等数学思想.

【考点定位】本题考查导数的运算、导数在研究函数中的应用、函数的零点等基础知识,考查推理论证能力、运算求解能力、创新意识,考查函数与方程、数形结合、分类与整合,化归与转化等数学思想. 【名师点睛】本题作为压轴题,难度系数应在0.3以下.导数与微积分作为大学重要内容,在中学要求学生掌握其基础知识,在高考题中也必有体现.一般地,只要掌握了课本知识,是完全可以解决第(1)题的,所以对难度最大的最后一个题,任何人都不能完全放弃,这里还有不少的分是志在必得的.解决函数题需要的一个重要数学思想是数形结合,联系图形大胆猜想. 在本题中,结合待证结论,可以想象出()f x 的大致图象,要使得()0f x ≥在区间∞(1,+)内恒成立,且()0f x =在∞(1,+)内有唯一解,则这个解0x 应为极小值点,且极小值为0,当0(1,)x x ∈时,()f x 的图象递减;当0(,)x x ∈+∞时,()f x 的图象单调递增,顺着这个思想,便可找到解决方法.

16.【2015高考湖北,理22】已知数列{}n a 的各项均为正数,1

(1)()n n n b n a n n

+=+∈N ,e 为自然对数的底

数.

(Ⅰ)求函数()1e x f x x =+-的单调区间,并比较1

(1)n n

+与e 的大小;

(Ⅱ)计算

11b a ,1212b b a a ,123123

b b b

a a a ,由此推测计算1212n

n

b b b a a a 的公式,并给出证明; (Ⅲ)令1

12

()n

n n c a a a =,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T , 证明:n n eS T <.

【考点定位】导数的应,数列的概念,数学归纳法,基本不等式,不等式的证明.

【名师点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.

运用数学归纳法应注意以下三点:(1)n =n 0时成立,要弄清楚命题的含义.(2)由假设n =k 成立证n =k +1时,要推导详实,并且一定要运用n =k 成立的结论.(3)要注意n =k 到n =k +1时增加的项数. 17.【2015高考新课标1,理21】已知函数f (x )=31

,()ln 4

x ax g x x ++=-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;

(Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{

()min (),()(0)h x f x g x x =>,讨论h (x )零点的

个数.

【考点定位】利用导数研究曲线的切线;对新概念的理解;分段函数的零点;分类整合思想

【名师点睛】本题主要考查函数的切线、利用导数研究函数的图像与性质、利用图像研究分段函数的零点,试题新颖.对函数的切线问题,主要在某一点的切线与过某一点点的切线不同,在某点的切线该点是切点,过某点的切线该点不一定是切点,对过某点的切线问题,设切点,利用导数求切线,将已知点代入切线方程,解出切点坐标,即可求出切线方程. 18.【2015高考北京,理18】已知函数()1ln

1x

f x x

+=-.

(Ⅰ)求曲线()y f x =在点()()00f ,处的切线方程; (Ⅱ)求证:当()01x ∈,

时,()323x f x x ??

>+ ??

?; (Ⅲ)设实数k 使得()33x f x k x ??

>+ ???

对()01x ∈,

恒成立,求k 的最大值. 考点:1.导数的几何意义;2.利用导数研究函数的单调性,证明不等式;3.含参问题讨论. 【名师点睛】本题考查导数的几何意义和利用导数研究函数性质问题,本题第一步为基础,第二、三步属于中等略偏难问题,首先利用导数的几何意义求出切线斜率和切点坐标,写出切线方程,其次用作差法构造函数,利用导数研究函数的单调性,证明不等式,最后一步对参数k 进行分类讨论研究. 19.【2015高考广东,理19】设1a >,函数a e x x f x

-+=)1()(2

. (1) 求)(x f 的单调区间 ;

(2) 证明:)(x f 在(),-∞+∞上仅有一个零点; (3) 若曲线()y

f x 在点P 处的切线与x 轴平行,且在点(,)M m n 处的切线与直线OP 平行(O 是坐标

原点),证明:12

3--

≤e

a m . 【考点定位】导数与函数单调性、零点、不等式,导数的几何意义等知识.

【名师点睛】本题主要考查导数与函数单调性、零点、不等式恒成立,导数的几何意义等基础知识,属于中高档题,解答此题关键在于第(1)问要准确求出()f x 的导数,第(2)问首先要说明()0,a 内有零点再结合函数在(),-∞+∞单调性就易证其结论,第(3)问由导数的几何意义易得()2

2

1m m e a e

+=-对比要证

明的结论后要能认清1m e m ≥+的放缩作用并利用导数证明1m e m ≥+成立,则易证1m ≤

. 【2015高考湖南,理21】.已知0a >,函数()sin ([0,))ax

f x e x x =∈+∞,记n x 为()f x 的从小到大的第

n *()n N ∈个极值点,证明:

(1)数列{()}n f x 是等比数列 (2)若

a ≥

*

n N ∈,|()|n n x f x <恒成立.

【考点定位】1.三角函数的性质;2.导数的运用;3.恒成立问题.

【名师点睛】本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.

2009至2018年北京高考真题分类汇编之导数大题

2009至2018年北京高考真题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2009年-2018年北京高考真题的分类汇编。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共10小题,共0分)1.(2013年北京高考真题数学(文))已知函数2()sin cos f x x x x x (1)若曲线()y f x 在点(,())a f a 处与直线y b 相切,求a 与b 的值。(2)若曲线()y f x 与直线y b 有两个不同的交点,求b 的取值范围。2.(2012年北京高考真题数学(文))已知函数2()1(0)f x ax a ,3()g x x bx .(Ⅰ)若曲线()y f x 与曲线()y g x 在它们的交点(1,)c 处具有公共切线,求,a b 的值;(Ⅱ)当3a ,9b 时,若函数()()f x g x 在区间[,2]k 上的最大值为28,求k 的取值范围.3.(2011年北京高考真题数学(文))已知函数()()x f x x k e . (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值. 4.(2009年北京高考真题数学(文))姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

高考数学真题汇编——函数与导数

高考数学真题汇编——函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D. 【答案】D

【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,, , 据此可得:.本题选择D选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 【答案】D 点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则

高考真题导数第一问分类汇总

切线问题 1 已知函数31()4 f x x ax =++,()ln g x x =-.当a 为何值时,x 轴为曲线()y f x =的切线; 2 设函数1 (0ln x x be f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. 3已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.求a 、b 的值; 4 设函数()()23x x ax f x a R e +=∈若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点()()1,1f 处的切线方程; 5已知函数f(x)=e x -ax(a 为常数)的图像与y 轴交于点A ,曲线y =f(x)在点A 处的切线斜率为-1. 求a 的值及函数f(x)的极值; 6设函数,曲线在点处的切线方程为, 7已知函数.求曲线在点处的切线方程; 8设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.求a ,b ,c ,d 的值; ()a x f x xe bx -=+()y f x =(2,(2))f (1)4y e x =-+()e cos x f x x x =-()y f x =(0,(0))f

单调性问题 1已知函数)(x f 满足212 1)0()1(')(x x f e f x f x +-=-.求)(x f 的解析式及单调区间; 2 讨论函数2()2 x x f x e x -=+ 的单调性,并证明当x >0时,(2)20x x e x -++>; 3已知函数()2x x f x e e x -=--. 讨论()f x 的单调性; 4 设1a >,函数a e x x f x -+=)1()(2.求)(x f 的单调区间 ; 5已知函数f (x )=a e 2x -b e -2x -cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的 切线的斜率为4-c . (1)确定a ,b 的值; (2)若c =3,判断f (x )的单调性; 6设,已知定义在R 上的函数在区间内有一个零点,为的导函数.求的单调区间; 7已知函数()ln()x f x e x m =-+. 设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; a ∈Z 432 ()2336f x x x x x a =+--+(1,2)0x ()g x ()f x ()g x

(完整版)专题05导数与函数的极值、最值—三年高考(2015-2017)数学(文)真题汇编.doc

1. 【 2016 高考四川文科】已知函数的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】 D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 的解,附近,如 果时,,时,则是极小值点,如果时,,时,,则是极大值点, 2. 【 2015 高考福建,文A.充分而不必要条 件12】“对任意 B.必要而不充分条件 ,”是“ C .充分必要条件 D ”的() .既不充分也不必 要条件 【答案】 B 【解析】当时,,构造函数,则 .故在单调递增,故,则;当时,不等式等价于,构造函数 ,则,故在递增,故 ”是“,则.综上 ”的必要不充分条件,选 所述,“ 对任 意B. ,

【考点定位】导数的应用. 【名师点睛】 本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用, 根 据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 3. (2014 课标全国Ⅰ,文 12) 已知函数 f ( x ) = ax 3 - 3 2 + 1,若 f ( ) 存在唯一的零点 x 0 ,且 x x x 0>0,则 a 的取值范围是 ( ) . A . (2 ,+∞ ) B . (1 ,+∞) C . ( -∞,- 2) D .( -∞,- 1) 答案: C 解析:当 a = 0 时, f ( x ) =- 3x 2+ 1 存在两个零点,不合题意; 当 a >0 时, f ′(x ) = 3ax 2- 6x = , 令 ′( ) = 0,得 x 1 = 0, , fx 所以 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一的零点,需 ,但这时零点 x 0 一定小于 0,不合题意; 当 a <0 时, f ′(x ) = 3ax 2- 6x = , 令 f ′(x ) = 0,得 x 1=0, ,这时 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一零点,应满足 ,解得 a <- 2( a > 2 舍去 ) ,且这时 零点 x 0 一定大于 0,满足题意,故 a 的取值范围是 ( -∞,- 2) . 名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想, 较难题 . 注意区别函数的零点与极值点 . 4. 【 2014 辽宁文 12】当 时,不等式 恒成立,则实数 a 的取 值范围是()

近五年高考试题分类汇编-导数部分(附答案解析)

2018年全国高考试题分类汇编-导数部分(含解析) 1.(2018·全国卷I 高考理科·T5)同(2018·全国卷I 高考文科·T6)设函数f (x )=x3+(a -1)x2+ax.若f (x )为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为( ) A.y=-2x B.y=-x C.y=2x D.y=x 2.(2018·全国卷II 高考理科·T13)曲线y=2ln(x+1)在点(0,0)处的切线方程为 3.(2018·全国卷II 高考文科·T13)曲线y=2lnx 在点(1,0)处的切线方程为 4.(2018·全国Ⅲ高考理科·T14)曲线y=(ax +1)ex 在点(0,1)处的切线的斜率为-2,则a= . 5.(2018·天津高考文科·T10)已知函数f(x)=exlnx,f ′(x)为f(x)的导函数,则f ′(1)的值为 . 6.(2018·全国卷I 高考理科·T16)已知函数f (x )=2sinx+sin2x,则f (x )的最小值是 . 7.(2017·全国乙卷文科·T14)曲线y=x 2 + 1 x 在点(1,2)处的切线方程为 . 8.(2017·全国甲卷理科·T11)若x=-2是函数f (x )=(2x +ax-1)1x e -的极值点,则f (x )的极小值为 ( ) A.-1 B.-23e - C.53e - D.1 9.(2017 10.(2017递增,则称f (x )A.f (x )=2-x 11.(2017数a 12.(2017则称f (x )具有M ①f (x )=2-x ;②f (x

13.(2017·全国乙卷理科·T16)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O.D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3 )的最大值为 . 14.(2017·天津高考文科·T10)已知a ∈R ,设函数f (x )=ax-lnx 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为 . 15.(2016·全国卷Ⅰ高考文科·T12)若函数f (x )=x-1 3 sin2x+asinx 在(-∞,+∞)上单调递增,则a 的取值范围是( ) A.[-1,1] B.11,3 ? ? -?? ?? C.11,33??- ???? D.11,3? ? --???? 16.(2016·四川高考理科·T9)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的 切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 17.(2016·四川高考文科·T6)已知a 为函数f (x )=x 3 -12x 的极小值点,则a=( ) A.-4 B.-2 C.4 D.2 18.(2016·四川高考文科·T10)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的切线,l 1 与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 ( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 19.(2016·山东高考文科·T10)同(2016·山东高考理科·T10) 若函数y=f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f (x )具有T 性质.下列函数中具有T 性质的是 ( ) A.y=sinx B.y=lnx C.y=e x D.y=x 3 20.(2016·全国卷Ⅱ理科·T16)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b= .

高考文科数学专题复习导数训练题(汇编)

高考文科数学专题复习导数训练题(文) 一、考点回顾和基础知识 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义. 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用. 3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值. 2.导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 3.求导数的四则运算法则: ''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=?+++=? ''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数)

高考真题汇编(函数与导数)

函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为 A. B. C. D. 【答案】D 【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,,,据此可得:.本题选择D选项.

点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C. 点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D.

高考文科数学导数真题汇编(带答案)

高考数学文科导数真题汇编答案 一、客观题组 4 5. 7.设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是

8设函数f (x )= 2 x +lnx 则 ( ) A .x=12为f(x)的极大值点 B .x=1 2为f(x)的极小值点 C .x=2为 f(x)的极大值点 D .x=2为 f(x)的极小值点 9、函数y= 12 x 2 -㏑x 的单调递减区间为 (A )(-1,1] (B )(0,1] (C.)[1,+∞) (D )(0,+∞) 11(2018年高考1卷) 12(2019年高考1卷) 一、 客观题答案1B ; 2.D; 3.y=x+1; 4.A . 5.y=2x-2 6D ,7C; 8D; 9B; 10.C 11.D; 12.y=3x 二、大题组 【2011新课标】21. 已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。 (1)求a 、b 的值; (2)证明:当0x >,且1x ≠时, f (x )>ln x x -1 【解析】

(1)22 1 ( ln ) '()(1)x x b x f x x x α+-= - + 由于直线230x y +-=的斜率为1 2 - ,且过点(1,1), 故(1)1,1'(1),2f f =???=-?? 即1,1,22 b a b =???-=-?? 解得1a =,1b =。 (2)由(1)知f (x )=x x x 11ln ++,所以f (x )-ln x x -1=11-x 2 (2ln x -x 2-1 x ), 考虑函数,则2 2 222)1()1(22)(x x x x x x x h --=---=', 所以x ≠1时h ′(x )<0,而h (1)=0 故)1,0(∈x 时,h (x )>0可得,),1(+∞∈x 时,h (x )<0可得, 从而当,且时,. 【2012新课标】21. 设函数f (x ) = e x -ax -2 (1)求f (x )的单调区间 (2)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 【解析】 (1) f (x )的定义域为(,)-∞+∞,()x f x e a '=-, 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增. 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. (2)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0) (1) x x k x x e +<+>-①. 令1()(1) x x g x x e +=+-,则221(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+= --. 由(1)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, 所以()h x ,在(0,)+∞存在唯一的零,故()g x '在(0,)+∞存在唯一的零点. 设此零点为a ,则(1,2)a ∈. 当(0,)x a ∈时,()0g x '<;当(,)x a ∈+∞时,()0g x '>. 所以()g x 在(0,)+∞的最小值为()g a . 又由()0g a '=,可得2a e a =+,所以()1(2,3)g a a =+∈. 由于①式等价于()k g a <,故整数k 的最大值为2 【2013新课标1】20. 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值; ln ()1x f x x > -ln ()1x f x x >-0x >1x ≠ln ()1 x f x x >-

2011-2015全国高考卷文科-导数专题汇编(带答案)

导 数 专 题 题型1 根据导数的几何意义研究曲线的切线 1.(2012全国文13)曲线()3ln 1y x x =+在点()1,1处的切线方程为________. 2. (2015全国I 文14)已知函数 ()31f x ax x =++的图像在点()()1,1f 处的切线过点()2,7,则 a = . 3. (2015全国II 文16) 已知曲线ln y x x =+在点()11,处的切线与曲线()221y ax a x =+++相切,则a = . 4.(2009,全国卷1) 已知函数42 ()36f x x x =-+.. (Ⅰ)讨论()f x 的单调性; (Ⅱ)设点P 在曲线()y f x =上,若该曲线在点P 处的切线l 通过坐标原点,求l 的方程。 【解】(1)3 '()464(f x x x x x x =-=- 当(,)2x ∈-∞- 和(0,2 x ∈时,'()0f x <; 当(x ∈和)x ∈+∞时,'()0f x > 因此,()f x 在区间(,2-∞-和(0,2 是减函数, ()f x 在区间(2 - 和)+∞是增函数。 (Ⅱ)设点P 的坐标为00(,())x f x ,由l 过原点知,l 的方程为 0'()y f x x = 因此 000()'()f x x f x =, 即 423 0000036(46)0x x x x x -+--= 整理得 22 00(1)(2)0x x +-= 解得 0x = 或 0x = 因此切线l 的方程为 y =- 或 y =。 题型2 判断函数的单调性、极值与最值 5.(2013全国II 文11).已知函数3 2 ()f x x ax bx c =+++,下列结论中错误的是( ) . A. 0x R ?∈,0()0f x = B. 函数()y f x =的图象是中心对称图形 C. 若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减

导数历年高考真题精选及答案

导数历年高考真题精选及答案 一.选择题 1. (2011年高考山东卷文科4)曲线2 11y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是 (A)-9 (B)-3 (C)9 (D)15 2.(2011年高考山东卷文科10)函数2sin 2 x y x = -的图象大致是 3.(2011年高考江西卷文科4)曲线x y e =在点A (0,1)处的切线斜率为( ) A.1 B.2 C.e D. 1e 4.2011年高考浙江卷文科10)设函数()()2 ,,f x ax bx c a b c R =++∈,若1x =-为函数 ()x f x e 的一个极值点,则下列图象不可能为()y f x =的图象是 5.(2011年高考湖南卷文科7)曲线sin 1 sin cos 2 x y x x =-+在点(,0)4M π处的切线的斜率为 ( ) A .1 2 - B .12 C .22- D . 22 6.【2012高考重庆文8】设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2 x =-

处取得极小值,则函数()y xf x '=的图象可能是 7.【2012高考浙江文10】设a >0,b >0,e 是自然对数的底数 A. 若e a +2a=e b +3b ,则a >b B. 若e a +2a=e b +3b ,则a <b C. 若e a - 2a=e b -3b ,则a >b D. 若e a -2a=e b -3b ,则a <b 8.【2012高考陕西文9】设函数f (x )= 2 x +lnx 则 ( ) A .x=12为f(x)的极大值点 B .x=1 2 为f(x)的极小值点 C .x=2为 f(x)的极大值点 D .x=2为 f(x)的极小值点 9.【2012高考辽宁文8】函数y= 12 x 2 -㏑x 的单调递减区间为 (A )(-1,1] (B )(0,1] (C.)[1,+∞) (D )(0,+∞) 10.【2102高考福建文12】已知f (x )=x 3-6x 2+9x-abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0;②f (0)f (1)<0;③f (0)f (3)>0;④f (0)f (3)<0. 其中正确结论的序号是 A.①③ B.①④ C.②③ D.②④ 11.2012高考辽宁文12】已知P,Q 为抛物线x 2 =2y 上两点,点P,Q 的横坐标分别为4,-2, 过P,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为 (A) 1 (B) 3 (C) -4 (D) -8 12..(2009年广东卷文)函数x e x x f )3()(-=的单调递增区间是 ( ) A. )2,(-∞ B.(0,3) C.(1,4) D. ),2(+∞ 13.(2009江西卷文)若存在过点(1,0)的直线与曲线3 y x =和215 94 y ax x =+-都相切,则a 等于

全国卷高考试题分类汇编 导数及其应用

专题三 导数及其应用 (一)导数的几何意义、定积分与微积分基本定理 1.(2019全国Ⅰ理13)曲线在点处的切线方程为____________. 2.(2019全国Ⅲ理6)已知曲线在点处的切线方程为y =2x +b ,则 A . B .a=e ,b =1 C . D . , 3.(2018全国卷Ⅰ)设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线() y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x = (二)导数的综合应用 4.(2017新课标Ⅱ)若2x =-是函数2 1 ()(1)x f x x ax e -=+-的极值点,则 21()(1)x f x x ax e -=+-的极小值为 A .1- B .32e -- C .3 5e - D .1 5.(2016全国I) 函数2 || 2x y x e =-在[–2,2]的图像大致为 A . B . C . D . 6.(2015新课标Ⅱ)设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时, '()()xf x f x -0<,则使得f (x )>0成立的x 的取值范围是 A .()(),10,1-∞-U B .()()1,01,-+∞U 2 3()e x y x x =+(0)0,e ln x y a x x =+1e a (,)e 1a b ==-,1e 1a b -==,1e a -=1b =-

C .()(),11,0-∞--U D .()()0,11,+∞U 7.(2015新课标Ⅰ)设函数()(21)x f x e x ax a =--+,其中1a <,若存在唯一的整数0x , 使得0()0f x <,则a 的取值范围是 A .3[,1)2e - B .33[,)24e - C .33[,)24e D .3 [,1)2e 8.(2019全国Ⅲ理20)已知函数. (1)讨论的单调性; (2)是否存在 ,使得在区间的最小值为且最大值为1?若存在,求 出的所有值;若不存在,说明理由. 9.(2019全国Ⅰ理20)已知函数,为的导数.证明: (1)在区间存在唯一极大值点; (2)有且仅有2个零点 10.(2019全国Ⅱ理20)已知函数. (1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点; (2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线的切线. 11.(2018全国卷Ⅰ)已知函数1 ()ln f x x a x x = -+. (1)讨论()f x 的单调性; (2)若()f x 存在两个极值点12,x x ,证明: 1212 ()() 2-<--f x f x a x x . 12.(2018全国卷Ⅱ)已知函数2 ()e =-x f x ax . (1)若1=a ,证明:当0≥x 时,()1≥f x ; (2)若()f x 在(0,)+∞只有一个零点,求a . 13.(2018全国卷Ⅲ)已知函数2 ()(2)ln(1)2f x x ax x x =+++-. (1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; 3 2 ()2f x x ax b =-+()f x ,a b ()f x [0,1]1-,a b ()sin ln(1)f x x x =-+()f x '()f x ()f x '(1,)2 π -()f x ()1 1 ln x f x x x -=- +e x y =

十年高考真题分类汇编 数学 专题 导数与定积分

十年高考真题分类汇编(2010—2019)数学 专题04导数与定积分 1.(2019·全国2·T 文T10)曲线y=2sin x+cos x 在点(π,-1)处的切线方程为( ) A.x-y-π-1=0 B.2x-y-2π-1=0 C.2x+y-2π+1=0 D.x+y-π+1=0 2.(2019·全国3·T 理T6文T7)已知曲线y=ae x +xln x 在点(1,ae)处的切线方程为y=2x+b,则 ( ) A.a=e,b=-1 B.a=e,b=1 C.a=e -1 ,b=1 D.a=e -1 ,b=-1 3.(2018·全国1·理T5文T6)设函数f(x)=x 3 +(a-1)x 2 +ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( ) A.y=-2x B.y=-x C.y=2x D.y=x 4.(2017·全国2·理T11)若x=-2是函数f(x)=(x 2 +ax-1)e x-1 的极值点,则f(x)的极小值为( ) A.-1 B.-2e -3 C.5e -3 D.1 5.(2017·浙江·T7)函数y=f(x)的导函数y=f'(x)的图象如图所示,则函数y=f(x)的图象可能是 ( ) 6.(2016·山东·理T10)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T 性质.下列函数中具有T 性质的是( ) A.y=sin xB.y=ln x C.y=e x D.y=x 3 7.(2016·全国1·文T12)若函数f(x)=x-1 3sin 2x+asin x 在(-∞,+∞)单调递增,则a 的取值范围是( ) A.[-1,1] B.[-1,1 3] C.[-1 3,1 3] D.[-1,-1 3] 8.(2016·四川·理T9)设直线l 1,l 2分别是函数f(x)={-lnx ,01图象上点P 1,P 2处的切线,l 1与l 2垂直 相交于点P,且l 1,l 2分别与y 轴相交于点A,B,则△PAB 的面积的取值范围是( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞)

(完整版)高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)=ae2x+(a﹣2)e x﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)=x﹣1﹣alnx. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2)e x. (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤ax+1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数. (Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极

,求证: ) 10.已知函数f(x)=x3﹣ax2,a∈R, (1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程; (2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f (x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0; (ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)=e x(e x﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

【K12高考数学】2017年高考真题分类汇编(理数):专题2导数(解析版)

2017年高考真题分类汇编(理数):专题2导数 一、单选题(共3题;共6分) 1、(2017?浙江)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是() A、 B、 C、 D、 2、(2017?新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为() A、﹣1 B、﹣2e﹣3 C、5e﹣3 D、1 3、(2017?新课标Ⅲ)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()

A、﹣ B、 C、 D、1 二、解答题(共8题;共50分) 4、(2017?浙江)已知函数f(x)=(x﹣)e﹣x(x≥). (Ⅰ)求f(x)的导函数; (Ⅱ)求f(x)在区间[,+∞)上的取值范围. 5、(2017?山东)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(13分) (Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)=g(x)﹣af(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值. 6、(2017?北京卷)已知函数f(x)=e x cosx﹣x.(13分) (1)求曲线y=f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)在区间[0,]上的最大值和最小值. 7、(2017·天津)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数. (Ⅰ)求g(x)的单调区间; (Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0; (Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥. 8、(2017?江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′

2010-2019学年高考新课标全国I卷数学(文)真题分类汇编专题16 函数与导数(2)(解析版)

专题16 函数与导数(2) 函数与导数大题:10年10考,每年1题.函数的载体上:对数函数很受“器重”,指数函数也较多出现,两种函数也会同时出现(2015年).第2小题:2019年不等式恒成立问题,2018年证明不等式,2017年不等式恒成立问题,2016年函数的零点问题,2015年证明不等式,2014年不等式有解问题(存在性),2013年单调性与极值,2012年不等式恒成立问题,2011年证明不等式,2010年不等式恒成立问题. 1.(2019年)已知函数f (x )=2sin x ﹣x cos x ﹣x , f ′(x )为f (x )的导数. (1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围. 【解析】(1)∵f (x )=2sin x ﹣x cos x ﹣x ,∴f ′(x )=2cos x ﹣cos x +x sin x ﹣1=cos x +x sin x ﹣1, 令g (x )=cos x +x sin x ﹣1,则g ′(x )=﹣sin x +sin x +x cos x =x cos x , 当x ∈(0,2π)时,x cos x >0,当x ∈(2 π,π)时,x cos x <0, ∴当x =2π时,极大值为g (2π)=12π->0, 又g (0)=0,g (π)=﹣2, ∴g (x )在(0,π)上有唯一零点, 即f ′(x )在(0,π)上有唯一零点; (2)由(1)知,f ′(x )在(0,π)上有唯一零点x 0,使得f ′(x 0)=0, 且f ′(x )在(0,x 0)为正,在(x 0,π)为负, ∴f (x )在[0,x 0]递增,在[x 0,π]递减, 结合f (0)=0,f (π)=0,可知f (x )在[0,π]上非负, 令h (x )=ax , 作出图象,如图所示:

全国高考真题专题汇编导数

专题三 导数 (2014)各省市高考题 18.(12分)(2014?安徽)设函数f (x )=1+(1+a )x ﹣x 2﹣x 3,其中a >0. (Ⅰ)讨论f (x )在其定义域上的单调性; (Ⅱ)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 18.(13分)(2014?北京)已知函数f (x )=xcosx ﹣sinx ,x ∈[0,] (1)求证:f (x )≤0; (2)若a < <b 对x ∈(0, )上恒成立,求a 的最大值与b 的最小值. 22.(12分)(2014?广西)函数f (x )=ln (x+1)﹣(a >1). (Ⅰ)讨论f (x )的单调性; (Ⅱ)设a 1=1,a n+1=ln (a n +1),证明:<a n ≤ . 20.(14分)(2014?福建)已知函数f (x )=e x ﹣ax (a 为常数)的图象与y 轴交于点A ,曲线y=f (x )在点A 处的切线斜率为﹣1. (1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ; (3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <ce x . 22.[2014·湖北卷] π为圆周率,e =2.718 28…为自然对数的底数. (1)求函数f (x )=ln x x 的单调区间; (2)求e 3,3e ,e π,πe ,,3π,π3这6个数中的最大数与最小数; (3)将e 3,3e ,e π,πe ,3π ,π3这6个数按从小到大的顺序排列,并证明你的结论. 22.(2014湖南) (本小题满分13分) 已知常数0>a ,函数.2 2)1ln()(+- +=x x ax x f (1) 讨论)(x f 在区间),0(∞+上的单调性; (2)若)(x f 存在两个极值点1x ,2x ,且0)()(21>+x f x f ,求a 的取值范围.

2019年高考数学(理)真题汇编:专题03 导数及其应用

专题03 导数及其应用 1、【2019高考全国Ⅲ理数】已知曲线e ln x y a x x =+在点(1,e)a 处的切线方程为 2y x b =+,则( ) A .e,1a b ==- B .e,1a b == C .1 e 1,a b -== D .1 ,e 1b a -==- 2、【2019高考全国Ⅲ理数】设函数()sin()(0)5 f x x ωωπ =+>,已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2)π有且仅有3个极大值点 ②()f x 在(0,2)π有且仅有2个极小值点 ③()f x 在(0, )10 π 单调递增 ④ω的取值范围是1229,510?? ???? 其中所有正确结论的编号是( ) A .①④ B .②③ C .①②③ D .①③④ 3、【2019高考天津卷理数】已知R a ∈,设函数222,1 ()ln ,1 x ax a x f x x a x x ?-+≤=?->?若关于x 的 不等式()0f x ≥在R 上恒成立,则a 的取值范围为( ) A.[]0,1 B.[]0,2 C.[]0,e D.[]1,e 4、【2019高考全国Ⅰ理数】曲线2 3()e x y x x =+在点(0,0)处的切线方程为_______. 5、【2019高考浙江卷】已知R a ∈,函数3 ()f x ax x =-,若存在R t ∈,使得 2 |(2)()|3 f t f t +-≤ ,则实数a 的最大值是____. 6、【2019高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4 (0)y x x x =+>上的一个动点,则点P 到直线0x y +=的距离的最小值是__________

相关文档
最新文档