励磁涌流
励磁涌流特点

励磁涌流特点
以下是 7 条关于励磁涌流特点的内容:
1. 哎呀呀,励磁涌流第一个特点就是数值很大呢!就好像突然来了一股很强的洪流!比如说,当变压器刚通电的那一瞬间,那电流可就像洪水猛兽一样涌出来啦,吓人一跳!
2. 嘿,励磁涌流还具有衰减快的特点呢!就像一阵狂风,来得快去得也快。
你想想看,刚才还那么大的电流,不一会儿就迅速变小了,是不是很神奇?就好比短跑选手冲过终点后迅速减速一样。
3. 嘿呀,它还有一个特点是包含大量的非周期分量!这可不好理解了吧。
那就想象一下,就像是一锅大杂烩里有各种奇奇怪怪的东西混在一起,这些非周期分量就是那些特别的存在。
比如在电力系统中,励磁涌流里的这些非周期分量可不容忽视哟!
4. 哇塞,励磁涌流的出现具有随机性呢!这就像是抽奖,你永远不知道它啥时候会冒出来。
可能这一次变压器启动很平稳,下一次突然就来了个大的励磁涌流,老天爷都猜不到呢!就像你出门会不会遇到意外惊喜一样,谁知道呢?
5. 瞧啊,励磁涌流还有一个特点,会导致波形出现畸变!这就好像原本整齐的队伍突然变得歪七扭八啦!比如说在某些情况下,励磁涌流让电流的波形变得奇奇怪怪的,可有意思啦。
6. 想不到吧,励磁涌流还会产生高次谐波呢!这就如同在一首曲子里突然多了很多奇怪的音符。
打个比方,在电力世界里,励磁涌流就是那个制造这些特殊音符的家伙,让情况变得复杂起来啦。
7. 得记住呀,励磁涌流的尖顶波特性也很重要呢!它就好像是一个尖尖的小山包。
比如在一些测量仪器上,就可以很明显地看到这样的尖顶波呢,是不是很特别呢?
总之,励磁涌流的特点可不少,这些特点都对电力系统有着重要的影响呢!。
发电机励磁涌流产生的原因

发电机励磁涌流产生的原因引言发电机励磁涌流问题是发电机运行中常见的一个问题。
当发电机由停止状态转为运行状态时,会产生励磁涌流,这可能会对发电机和整个电力系统造成负面影响。
本文将深入探讨励磁涌流产生的原因及其影响,并提出相应的解决方法。
励磁涌流的定义励磁涌流是指在发电机启动的瞬间,由于励磁系统中磁场的建立而引起的暂态过程中的电流急剧增长现象。
这种电流的增长速度非常快,可能会达到发电机额定电流的数倍,因此励磁涌流对发电机和电力系统而言都是一种不可忽视的问题。
励磁涌流产生的原因励磁涌流产生的原因主要包括以下几个方面:1.磁场建立的延迟:当发电机启动时,励磁系统需要一段时间来建立稳定的磁场。
在这个过程中,励磁线圈中会出现较大的电流,导致励磁涌流的产生。
2.励磁线圈的电感:励磁线圈是由许多匝数较多的线圈组成的,它们之间的电感相互耦合。
当磁场建立的过程中,由于电感产生的互感作用,电流会在线圈之间迅速传播,形成励磁涌流。
3.发电机轴的机械性能:发电机轴的机械性能决定了励磁系统的机械惯性。
在发电机启动瞬间,由于励磁线圈的电感和电流的急剧增长,励磁系统会产生很大的机械冲击力,这也是励磁涌流产生的重要原因之一。
4.发电机内部电容的充放电:发电机内部存在着电容,当磁场建立的过程中,电容会逐渐充电,导致励磁涌流的产生。
励磁涌流的影响励磁涌流对发电机和电力系统都会产生一定的影响,主要包括以下几个方面:1.电流冲击:励磁涌流会导致电流瞬间增大,可能会超过发电机和电力系统的额定电流。
这会对设备和电网的安全运行造成威胁,甚至导致设备的损坏。
2.发电机振动和噪声:励磁涌流会引起发电机内部的机械冲击,导致发电机振动和噪声的增加,可能影响发电机的稳定性和寿命。
3.电网稳定性:励磁涌流会对电网产生瞬态扰动,可能导致电网的电压和频率波动,进而影响整个电力系统的稳定性和可靠性。
4.发电机保护系统的动作:励磁涌流会引起保护系统的动作,导致发电机的停机和重新启动,给电力系统带来一定的负荷调整问题。
简述单相变压器励磁涌流的特点

简述单相变压器励磁涌流的特点【简述单相变压器励磁涌流的特点】一、什么是励磁涌流励磁涌流是指在单相变压器的磁路中,由于磁感应强度的变化引起的电流大幅度波动现象。
二、励磁涌流的形成原因1. 变压器的磁路由于剩磁导致的非线性特性是形成励磁涌流的主要原因。
在变压器剩磁的基础上,励磁电流的变化引起磁感应强度的变化,从而引起励磁涌流。
2. 变压器的饱和特性也是引起励磁涌流的原因之一。
当励磁电流较小时,磁感应强度与励磁电流成线性关系,但当励磁电流超过一定值时,磁感应强度将达到饱和状态,导致励磁电流的变化引起磁感应强度的变化,从而引起励磁涌流。
三、励磁涌流的特点1. 阻抗变化:励磁涌流会引起变压器磁路的阻抗变化。
当励磁电流较小时,变压器磁路的阻抗较小,而当励磁电流超过一定值后,磁路的饱和导致励磁涌流的出现,使得磁路的阻抗增大。
这种阻抗变化导致励磁涌流对电源的电压产生影响,可能引起电源电压的波动。
2. 涌流幅度大:励磁涌流的幅度较大,一般在2-10倍额定电流之间。
这种大幅度的涌流对变压器的磁路、绕组和绝缘材料产生冲击,可能引起磁路的麻麻、绕组的焦耳损耗、绝缘材料的老化和损坏。
3. 最大值出现滞后:在变压器刚刚通电时,由于初始状况下没有磁通存在,变压器的励磁电流为零。
而在短时间内,励磁电流会迅速升高,当达到稳定状态后维持在一定数值。
这种励磁电流的最大值出现在刚通电后的一段时间内,而且最大值的出现会和电源电压的正弦波形相位有一定的滞后。
4. 高频成分:由于励磁电流的波动频率一般与电源电压的频率相等或相近,励磁涌流中存在着一定的高频成分。
这些高频成分可能对变压器和周围的其他设备造成干扰,并引起谐波污染。
四、励磁涌流的影响励磁涌流对变压器及其周围设备的影响主要体现在以下几个方面:1. 变压器工作温升的升高:励磁涌流会导致变压器的磁路产生冲击,加剧了铁芯中的焦耳损耗,从而使变压器的工作温升更高。
2. 谐波产生:励磁涌流中存在一定的高频成分,这些高频成分会引起变压器的谐波污染,对变压器及其周围其他设备的正常运行产生干扰。
和应涌流和励磁涌流的区别

和应涌流和励磁涌流的区别"和应涌流"和"励磁涌流"是电力系统中涉及到变压器运行的两个重要概念,它们的区别如下:
和应涌流 (Inrush Current):
定义:和应涌流是在变压器投入运行时瞬间出现的高电流。
它是由于变压器磁路中的空气间隙和磁通的突然变化导致的。
原因:和应涌流主要由于变压器的磁路在初次通电时需要建立磁场,而这个过程需要较大的电流。
特点:和应涌流的持续时间很短,通常在几个周期内就会消失。
励磁涌流 (Excitation Current):
定义:励磁涌流是在变压器正常运行时,在变压器绕组中流动的一种低频电流。
原因:励磁涌流是由于变压器的磁场需要持续维持,因此在正常运行过程中会有一定的励磁电流。
特点:励磁涌流的幅值较小,是正常运行状态下的一部分,与变压器的负载无关。
总的来说,和应涌流和励磁涌流的主要区别在于产生的原因和特点。
和应涌流是在变压器刚投入运行时由于建立磁场而产生的瞬时高电流,而励磁涌流是在变压器正常运行过程中持续存在的较小电流。
励磁涌流波形

励磁涌流波形在电力系统中,励磁涌流是一种非常常见的现象。
它会对电力设备和系统造成严重的损坏,甚至会导致设备和系统的故障。
因此,了解励磁涌流的特性和影响是非常重要的。
本文将介绍励磁涌流的波形特性,以及对电力设备和系统的影响。
【励磁涌流的波形特性】励磁涌流是由于励磁电流在开关或断路器的断开时,产生的高频振荡电流。
这种电流会导致电磁场的变化,从而产生涌流。
涌流是一种瞬时的电流,其波形特性与励磁电流、开关或断路器的特性有关。
通常,励磁涌流的波形可以分为三个部分:1. 上升沿励磁电流在开关或断路器断开时,会产生一个瞬间的电压,导致电流瞬间增加。
这个过程被称为上升沿。
上升沿的时间非常短,一般在几微秒到几毫秒之间。
2. 涌流峰值上升沿之后,涌流电流会快速达到一个峰值。
这个峰值通常是励磁电流的两倍或更高。
涌流峰值的大小取决于励磁电流的大小和开关或断路器的特性。
3. 下降沿涌流峰值之后,涌流电流会逐渐下降,直到达到稳态。
这个过程被称为下降沿。
下降沿的时间通常比上升沿长,可以达到几十毫秒。
【励磁涌流对电力设备和系统的影响】励磁涌流会对电力设备和系统造成严重的影响。
以下是其主要影响:1. 设备损坏励磁涌流会导致设备内部的电压和电流突然增加,从而导致设备损坏。
这种损坏可以是瞬时的,也可以是持续的。
例如,变压器的绕组、开关和断路器的触点等都会因为励磁涌流而受到损坏。
2. 系统故障励磁涌流会导致系统的电压和电流产生瞬间的变化,从而导致系统故障。
例如,电力系统中的保护装置可能会误动作,导致系统的断电。
3. 电磁干扰励磁涌流会产生高频振荡电流,从而对周围的电子设备产生干扰。
这种干扰可能会导致设备的故障或误操作。
【励磁涌流的控制方法】为了减少励磁涌流对电力设备和系统的影响,需要采取相应的控制方法。
以下是几种常用的控制方法:1. 限流电阻限流电阻是一种用于限制涌流电流的电阻器。
它可以减少励磁涌流对设备和系统的影响。
限流电阻的大小取决于励磁电流的大小和开关或断路器的特性。
变压器励磁涌流原理

变压器励磁涌流原理
变压器励磁涌流是指在刚开始接通变压器时,由于电感元件励磁过程中磁感应强度逐渐增大的关系,导致变压器中的电流迅速增加,形成一个短暂的高峰电流。
励磁涌流的主要原因有以下几点:
1. 电感元件的电流变化滞后于电压变化。
由于电感元件的特性,当电压突然改变时,电感元件中的电流并不会立即改变,而是需要一定的时间来达到稳态。
在这个过程中,电流会迅速增加,导致励磁涌流。
2. 初级绕组和次级绕组之间的电容效应。
变压器的初级绕组和次级绕组之间会存在一定的电容效应。
当变压器接通时,由于电容的充电过程,会导致涌流的产生。
3. 磁芯饱和和磁滞。
在刚开始接通变压器时,由于磁感应强度逐渐增大,磁芯中会出现饱和和磁滞现象。
这些现象会导致磁路中的电流迅速变大,从而产生涌流。
励磁涌流对变压器和电网造成的影响主要有以下几点:
1. 过大的励磁涌流会导致变压器绕组和瓷套的过热,甚至引发绝缘击穿,导致设备损坏。
2. 励磁涌流还会对电网造成短暂的过电压,对其他设备和线路造成影响。
为了减小励磁涌流的影响,可以采取以下措施:
1. 使用励磁变压器。
励磁变压器是在主变压器旁边并列连接一个励磁变压器,通过调节励磁变压器的励磁电流来抑制励磁涌流。
2. 采用软起动方式。
通过逐步升高初始电压,使得励磁涌流逐步增加,避免突然产生过大的涌流。
3. 提前预热变压器。
在正式接入电网之前,可以对变压器进行预热,使其达到临界电压之后再投入运行,从而减小励磁涌流的影响。
励磁涌流

励磁涌流1 概述变压器是根据电磁感应原理制成的一种静止电器,用于把低电压变成高电压或把高电压变成低电压,是交流电输配系统中的重要电气设备。
当变压器合闸时,可能产生很大的电流,本文主要论述该电流的产生和影响。
2 励磁涌流的特点当合上断路器给变压器充电时,有时可以看到变压器电流表的指针摆得很大,然后很快返回到正常的空载电流值,这个冲击电流通常称之为励磁涌流,特点如下:1)涌流含有数值很大的高次谐波分量(主要是二次和三次谐波),因此,励磁涌流的变化曲线为尖顶波。
2)励磁涌流的衰减常数与铁芯的饱和程度有关,饱和越深,电抗越小,衰减越快。
因此,在开始瞬间衰减很快,以后逐渐减慢,经~1s后其值不超过~In。
3)一般情况下,变压器容量越大,衰减的持续时间越长,但总的趋势是涌流的衰减速度往往比短路电流衰减慢一些。
4)励磁涌流的数值很大,最大可达额定电流的8~10倍。
当整定一台断路器控制一台变压器时,其速断可按变压器励磁电流来整定。
3 励磁涌流的大小合闸瞬间电压为最大值时的磁通变化在交流电路中,磁通Φ总是落后电压u90°相位角。
如果在合闸瞬间,电压正好达到最大值时,则磁通的瞬间值正好为零,即在铁芯里一开始就建立了稳态磁通,如图1所示。
在这种情况下,变压器不会产生励磁涌流。
合闸瞬间电压为零值时的磁通变化当合闸瞬间电压为零值时,它在铁芯中所建立的磁通为最大值(-Φm)。
可是,由于铁芯中的磁通不能突变,既然合闸前铁芯中没有磁通,这一瞬间仍要保持磁通为零。
因此,在铁芯中就出现一个非周期分量的磁通Φfz,其幅值为Φm。
这时,铁芯里的总磁通Φ应看成两个磁通相加而成,如图2所示。
铁芯中磁通开始为零,到1/2 T时,两个磁通相加达最大值,Φ波形的最大值是Φ1波形幅值的两倍。
因此,在电压瞬时值为零时合闸情况最严重。
虽然我们很难预先知道在哪一瞬间合闸,但是总会介于上面论述的两种极限情况之间。
变压器绕组中的励磁电流和磁通的关系由磁化特性所决定,铁芯越饱和,产生一定的磁通所需的励磁电流就愈大。
变压器的励磁涌流产生原因及特点

变压器的励磁涌流产生原因及特点
产生原因:
1.铁芯非线性特性:在励磁过程中,铁芯会经历从饱和到非饱和的过程,而在饱和和非饱和状态下,铁芯的磁导率存在较大的差异。
当励磁电
流突变时,铁芯的饱和状态发生变化,导致磁通密度的非线性变化,进而
产生励磁涌流。
2.电压突变:在电压突变的瞬间,变压器的磁通密度变化较大,导致
涌流现象的出现。
特点:
1.波动范围大:励磁涌流的幅值会随着励磁电流的大小和励磁电源特
性的不同而变化。
通常情况下,励磁涌流的波动幅值会比较大,但是短暂,并且随着时间的推移会逐渐回归正常工作状态。
2.涌流时间短:励磁涌流一般持续的时间比较短暂,通常在数十毫秒
到数百毫秒之间。
3.作用范围广:励磁涌流会对整个变压器回路产生影响,不仅会造成
励磁线圈中的涌流,也会对次级绕组和电网产生影响。
4.会影响电机和负载设备:励磁涌流在电机和负载设备上产生的过电
压和过电流可能会导致电机和负载设备的损坏。
5.会引起设备振动和噪声:励磁涌流会引起变压器的振动和噪声,对
设备和周围环境造成不良影响。
励磁涌流对变压器和电网的影响是不可忽视的,因此在实际应用中需
要采取一些措施来限制和减小励磁涌流的影响,例如采用特殊的励磁变压
器、引入励磁涌流限制电抗器等。
此外,合理调整变压器的设计和励磁电源的参数也能有效减小励磁涌流的幅值和时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
励磁涌流1 概述变压器是根据电磁感应原理制成的一种静止电器,用于把低电压变成高电压或把高电压变成低电压,是交流电输配系统中的重要电气设备。
当变压器合闸时,可能产生很大的电流,本文主要论述该电流的产生和影响。
2 励磁涌流的特点当合上断路器给变压器充电时,有时可以看到变压器电流表的指针摆得很大,然后很快返回到正常的空载电流值,这个冲击电流通常称之为励磁涌流,特点如下:1)涌流含有数值很大的高次谐波分量(主要是二次和三次谐波),因此,励磁涌流的变化曲线为尖顶波。
2)励磁涌流的衰减常数与铁芯的饱和程度有关,饱和越深,电抗越小,衰减越快。
因此,在开始瞬间衰减很快,以后逐渐减慢,经0.5~1s后其值不超过(0.25~0.5)In。
3)一般情况下,变压器容量越大,衰减的持续时间越长,但总的趋势是涌流的衰减速度往往比短路电流衰减慢一些。
4)励磁涌流的数值很大,最大可达额定电流的8~10倍。
当整定一台断路器控制一台变压器时,其速断可按变压器励磁电流来整定。
3 励磁涌流的大小3.1 合闸瞬间电压为最大值时的磁通变化在交流电路中,磁通Φ总是落后电压u90°相位角。
如果在合闸瞬间,电压正好达到最大值时,则磁通的瞬间值正好为零,即在铁芯里一开始就建立了稳态磁通,如图1所示。
在这种情况下,变压器不会产生励磁涌流。
3.2 合闸瞬间电压为零值时的磁通变化当合闸瞬间电压为零值时,它在铁芯中所建立的磁通为最大值(-Φm)。
可是,由于铁芯中的磁通不能突变,既然合闸前铁芯中没有磁通,这一瞬间仍要保持磁通为零。
因此,在铁芯中就出现一个非周期分量的磁通Φfz,其幅值为Φm。
这时,铁芯里的总磁通Φ应看成两个磁通相加而成,如图2所示。
铁芯中磁通开始为零,到1/2 T时,两个磁通相加达最大值,Φ波形的最大值是Φ1波形幅值的两倍。
因此,在电压瞬时值为零时合闸情况最严重。
虽然我们很难预先知道在哪一瞬间合闸,但是总会介于上面论述的两种极限情况之间。
变压器绕组中的励磁电流和磁通的关系由磁化特性所决定,铁芯越饱和,产生一定的磁通所需的励磁电流就愈大。
由于在最不利的合闸瞬间,铁芯中磁通密度最大值可达2Φm,这时铁芯的饱和情况将非常严重,因而励磁电流的数值大增,这就是变压器励磁涌流的由来。
励磁涌流比变压器的空载电流大100倍左右,在不考虑绕组电阻的情况下,电流的峰值出现在合闸后经过半周的瞬间。
但是,由于绕组具有电阻,这个电流是要随时间衰减的。
对于容量小的变压器衰减得快,约几个周波即达到稳定,大型变压器衰减得慢,全部衰减持续时间可达几十秒。
综上所述,励磁涌流和铁芯饱和程度有关,同时铁芯的剩磁和合闸时电压的相角可以影响其大小。
4 励磁涌流的影响励磁涌流对变压器并无危险,因为这个冲击电流存在的时间很短。
当然,对变压器多次连续合闸充电也是不好的,因为大电流的多次冲击,会引起绕组间的机械力作用,可能逐渐使其固定物松动。
此外,励磁涌流有可能引起变压器的差动保护动作,故进行变压器操作时应当注意。
两种削弱励磁涌流的方法2007-02-01 来源:西部工控网浏览:37摘要:合空载电力变压器时会产生数值相当大励磁涌流,易造成变压器差动保护装置误动作。
针对这一问题,介绍了两种削弱励磁涌流方法:控制三相合闸时间或变压器低压侧加装电容器。
理论分析和实践均证明这两种方法是行之有效,但利用控制三相合闸时间来削弱励磁涌流实际应用中更具有潜力。
关键词:励磁涌流;变压器;控制开关;电容1概述电力变压器空载合闸投入电网或外部故障切除后电压恢复时,变压器非线性,会产生数值相当大励磁涌流,严重情况下其峰值可达额定电流10到20倍[1],导致变压器保护误动作。
解决这一问题,目前变压器差动保护都采用了或门制动方式,即三相电流中有一相制动,则三相全部制动。
这样虽解决了涌流时误动问题,但当变压器有涌流时,发生单相或两相内部故障,差动保护因健全相涌流制动而不动作。
大型变压器时间常数都很长,一般涌流过程超过5 s[2],发生上述故障时,主保护等到振荡消失才能动作,实际就是拒动。
理论分析和动模试验都证实了这种现象。
保证差动保护装置正确动作,必须要降低励磁涌流幅值。
目前,削弱励磁涌流方法主要有两种:控制三相开关合闸时间,或变压器低压侧并联电容器。
本文将对这两种方法原理、效果一一介绍。
2控制三相开关合闸时间以削弱励磁涌流2.1理论基础该方法理论基础是:将变压器看作一个强感性负载,即看作一个非线性电感,当合闸时,变压器上电压变压器内部也产生一个磁通,当变压器有剩磁时,合闸后所产生磁通和剩磁极性相同,则变压器内部总磁通就会电压升高而增加,励磁涌流也会随之增加,合闸后所产生磁通和剩磁极性相反,则变压器内部总磁通就会电压升高而减小,削弱了励磁涌流;合闸时变压器内无剩磁,则可合闸角为90°(即电压峰值时)时合闸,这样变压器内产生磁通最小,产生励磁涌流也最小。
单相变压器中,可以很容易分析出如下结果。
单相变压器无漏抗,电源为无穷大,如图1所示:此时有此处把变压器基本磁化曲线作折线处理,如图2所示:其中:α为接入相位角(合闸角);Ψr为变压器剩磁。
从式(1)中可以看出,当α=0°时,产生最大涌流峰值,当α=90°时,励磁涌流峰值最小。
,控制合闸时间来削弱励磁涌流幅值是一种行之有效方法。
2.2三相变压器中应用三相变压器中,尽管三相之间有电磁耦合以及剩磁影响,但三相绕组内磁通变化规律,控制三相开关合闸时间(即合闸角度),亦可以大幅度降低变压器内感应磁通,削弱励磁涌流幅值。
上述思想,以及变压器三相绕组内剩磁形式,提出了两种合闸策略。
2.2.1快速合闸策略即一相先合闸角度为90°时合闸,另外两相1/4工频周期后合闸。
这是,设三相绕组中均无剩磁,A 相先最优时间,即是合闸角度为90°时合闸,此时A相绕组中产生磁通最小,B、C相中产生幅值为磁通最大值一半、相位超前A相180°感应磁通,如图3所示,此时,B、C两相合闸最佳时间就是1/4工频周期后合闸,这样就保证B、C两相绕组中磁通正常范围之内,消除或削弱了励磁涌流。
该方法适用于三相绕组中剩磁为零,以及三相独立控制合闸情况。
仿真计算,实施该策略后,合闸时间分散度为0.5 ms情况下,励磁涌流幅值与三相随机合闸相比,减少了94.4%[4]。
2.2.2延迟合闸策略单相先合闸,另外两相2~3工频周期后合闸。
该方法理论依据是铁芯磁通平衡效应:设A相先合闸,之后B、C相产生感应磁通,两相内剩磁不同,则内部感应磁通相同,如图4所示。
设Φc>Φb,则当Φc到达饱和点后,Φb还停未饱和区,此时变压器非线性,LC<LB,B、C相绕组上电压相同,UC>UB,则绕组内部,B相绕组内磁通变化速度要比C相绕组内快,最后,B、C两相内部磁通趋于平衡,同时也消剩磁效应。
该方法适用于已知单相绕组中剩磁,三相独立合闸情况。
仿真计算,实施该策略后,合闸时间分散度为1.0 ms情况下,励磁涌流幅值减少幅度为85%~93%[4]。
3变压器低压侧并联电容器励磁涌流是变压器内磁通饱和而引起,采取措施限制绕组内磁通达到饱和点,也就达到削弱或消除励磁涌流目。
变压器低压侧并联电容器就是基于这种思想提出,变压器低压侧并联电容值适当大小电容器,变压器低压侧产生磁通就和高压侧磁通极性相反,这样就排绕组内磁通饱和可能性[5]。
该方法优点是控制三相合闸角为多少,均能有效削弱励磁涌流。
缺点对电容器电容值选取,电容值过大或过小均不能满足要求。
电容值过大,会使变压器与电容器组合成系统谐振频率降低,使变压器难以被激磁;电容值过小,会无法满足削弱励磁涌流需要。
荷兰PGEM公司1992年一台66 MVA,150/11 kV 变压器上做过试验,不同电容器值下,励磁涌流峰值如表1所示[6]。
从表1可以看出,电容器值不同,励磁涌流峰值变化很大,故采取此方法前,必须知道变压器励磁特性,对变压器空合闸时暂态现象进行模拟,以选取合适电容值。
4结论本文讨论了两种削弱励磁涌流方法,两种方法各有优缺点。
变压器低压侧并联合适电容器需要对变压器励磁特性进行精确模拟,而实际工程中,要到一个真实变压器励磁特性是比较困难,,控制开关合闸时间技术不断发展,第一种方法更有潜力。
变压器不平衡电流对差动保护的影响摘要:该文通过分析变压器不平衡电流的产生原因,提出相应的防范措施,以提高差动保护动作的选择性、速动性、灵敏性、可靠性,确保变压器的安全稳定运行。
1 差动保护原理简述变压器差动保护作为变压器的主保护,目前电网中的110 kV变压器的差动保护大多采用由多微机实现的比率差动保护。
之所以采用比率制动特性,是为了防止区外故障引起不平衡的差动电流造成保护误动。
由多微机实现的比率差动保护的动作特性如图1所示。
差动保护动作电流为Id,制动电流为Ir,差动保护电流启动值为Icdqp,比率差动制动系数为Kbl,变压器的额定电流为Ie,图中的阴影部分为保护动作区。
如图2所示,输入变压器的电流:I1,I2,I3,由(I1 + I2 + I3)构成变压器的差动电流,即Id = (I1 + I2 + I3)作为差动继电器的动作量。
在正常运行或外部故障时,在继电器中电流Id在理想状态下等于零,因此差动保护不动作。
然而,由于变压器实际运行中引起的种种不平衡电流,使得差动继电器的动作电流增大,从而降低了保护的灵敏度。
2 产生不平衡电流的原因不平衡电流的产生有稳态和暂态两方面。
稳态情况下不平衡电流:·变压器各侧绕组接线方式不同;·变压器各侧电流互感器的型号和变比不相同,实际的电流互感器变比和计算变比不相同;·带负荷调分接头引起变压器变比的改变。
暂态情况下不平衡的电流:·变压器空载投入电源时或外部故障切除,电压恢复时产生的励磁涌流。
·短路电流的非周期分量主要为电流互感器的励磁涌流,使其铁芯饱和,误差增大而引起不平衡电流。
3 不平衡电流的影响及相应的防范措施变压器差动保护的不平衡电流直接影响到差动保护的选择性、速动性、灵敏性和可靠性。
故此,分析其影响并采取相应的防范措施对提高变压器差动保护性能是十分重要的。
3.1 变压器高低压侧绕组接线方式不同的影响及其防范措施变压器接线组别对差动保护的影响。
如Yy0接线的变压器,因为一二次绕组对应相的电压同相位,所以一二次两侧对应相的相位几乎完全相同。
但当变压器采用Yd11接线时,因为三角形接线侧的线电压,在相位上相差30°,所以其对应相的电流相位关系也相差30°,即三角形侧电流比星形侧的同一相电流,在相位上超前30°,因此即使变压器两侧电流互感器二次电流的数值相等,在差动保护回路中就会出现不平衡电流。