一次函数应用专题
第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册一、利用一次函数模型解决实际问题例1.实验表明,在某地,温度在15℃至25℃的范围内,一种蟋蟀1min的平均鸣叫次数y可近似看成该地当时温度x(℃)的一次函数.已知这种蟋蟀在温度为16℃时,1min平均鸣叫92次;在温度为23℃时,1min平均鸣叫155次.(1)求y与x之间的函数表达式;(2)当这种蟋蟀1min平均鸣叫128次时,该地当时的温度约是多少?变式1.如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位:cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm,求此时碗的数量最多为多少个?变式2.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.二、利用一次函数解决行程问题例2.小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.变式1.在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A 地路程s(米)之间的函数图象.(1)a=,乐乐去A地的速度为;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.变式2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s (km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h,C点的坐标为.(2)慢车出发多少小时后,两车相距200km.变式3.某物流公司的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公司的一辆货车B从甲地出发送货至乙地.货车A、货车B距甲地的距离y(km)与时间x(h)之间的关系如图所示.(1)求货车B距甲地的距离y与时间x的关系式;(2)求货车B到乙地后,货车A还需多长时间到达甲地.三、利用一次函数解决最低费用和最高利润问题例3.某校开设棋类社团,购买了五子棋和象棋.五子棋比象棋的单价少8元,用1000元购买的五子棋数量和用1200元购买的象棋数量相等.(1)两种棋的单价分别是多少?(2)学校准备再次购买五子棋和象棋共30副,根据学生报名情况,购买五子棋数量不超过象棋数量的3倍.问购买两种棋各多少副时费用最低?最低费用是多少?变式1.眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用960元购进的A款文创产品和用780元购进的B款文创产品数量相同.每件A款文创产品进价比B款文创产品进价多15元.(1)求A,B两款文创产品每件的进价各是多少元?(2)已知A款文创产品每件售价为100元,B款文创产品每件售价为80元,根据市场需求,商店计划再用不超过7400元的总费用购进这两款文创产品共100件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?变式 2.近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如表:价格/类别短款长款进货价(元/件)8090销售价(元/件)100120(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?变式3.某小区物管中心计划采购A,B两种花卉用于美化环境.已知购买2株A 种花卉和3株B种花卉共需要21元;购买4株A种花卉和5株B种花卉共需要37元.(1)求A,B两种花卉的单价.(2)该物管中心计划采购A,B两种花卉共计10000株,其中采购A种花卉的株数不超过B种花卉株数的4倍,当A,B两种花卉分别采购多少株时,总费用最少?并求出最少总费用.变式4.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见如表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.变式5.成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A 种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.变式6.某县著名传统土特产品“豆笋”、“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.(1)分别求出每件豆笋、豆干的进价;(2)某特产店计划用不超过10440元购进豆笋、豆干共200件,且豆笋的数量不低于豆干数量的,该特产店有哪几种进货方案?(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?变式7.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?四、利用一次函数解决含参数的最高利润问题例4.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.变式1.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?变式2.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.变式3.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:衬衫价格甲乙m m﹣10进价(元/件)260180售价(元/件)若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠a元(60<a<80)出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?五、利用一次函数解决方案问题例5.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.变式1.某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.。
一次函数生活中的实际应用题目

一次函数生活中的实际应用题目一次函数是数学中的一种函数类型,表示为 y = kx + b 的形式,其中 k 是函数的增减速度,b 是函数的零点。
一次函数在生活中有许多实际应用,以下是一些实际问题的例子:1. 温度计:一次函数可以用来描述温度的变化情况。
当温度上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示温度变化的水平方向。
例如,在摄氏 0 度和 100 度之间,温度每增加 1 度,温度计上的指针会上升多少格,就可以用一次函数来描述。
2. 流量控制:一次函数在流量控制中被广泛应用,特别是在水管和发动机的设计之中。
当水流量为恒定值时,一次函数可以用来描述水流量和水压之间的关系。
例如,如果想控制水流量为一定值,可以通过调节水管中的阀门大小来控制水压,从而实现流量的控制。
3. 存款利率:一次函数可以用来描述存款利率的变化情况。
当利率上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示利率变化的水平方向。
例如,如果利率上升 1%,银行的存款利率会相应上涨多少元,就可以用一次函数来描述。
4. 股票价格:一次函数可以用来描述股票价格的变化情况。
当股票价格上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示股票价格变化的水平方向。
例如,如果股票价格上升 1%,投资者获得的回报率会相应上涨多少个百分点,就可以用一次函数来描述。
5. 植物生长:一次函数可以用来描述植物的生长情况。
当植物的生长速度加快或减缓时,一次函数的斜率会发生变化,而常数 b 则表示植物的生长速度保持不变的水平方向。
例如,如果想预测植物在未来几天内的生长速度,可以使用一次函数来计算。
一次函数 应用专题(1)(有详细答案)

一次函数 应用专题(1)1.(2014·益阳)某电器超市销售每台进价分别为200元、170元的A ,B 两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A 种 型号B 种 型号 第一周 3台 5台 1 800元 二周4台10台3 100元(进价、售价均保持不变,利润=销售收入-进货成本) 【思路点拨】(1)设A,B 两种型号的电风扇销售单价分别为x 元,y 元,根据3台A 种型号5台B 种型号的电风扇收入1800元,4台A 种型号、10台B 种型号的电风扇收入3100元,列方程组求解.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇()a -30台,根据金额不多于5400元,列不等式求 (3)设利润为1400元,列方程求出a 的值为20,不符合(2)的条件,可知不能实现目标. 解.【自主解答】(1)设A ,B 两种型号电风扇的销售单价分别为x 元,y 元. 依题意得⎩⎨⎧=+=+3100104180053y x y x 解得⎩⎨⎧==5020y x 答:A ,B 两种型号电风扇的销售单价分别为250元,210元. (2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇()a -30台. 依题意得()540030170200≤-+a a ,解得:10≤a .答:超市最多采购A 种型号电风扇10台时,采购金额不多于5400元. (3)依题意有()()()140030170210200250=--+-a a解得20=a ,此时,a >10. 所以在(2)的条件下超市不能实现利润1400元的目标.2.(2014·福州)现有A,B 两种商品,买2件A 商品和1件B 商品用了90元,买3件A 商品和2件B 商品共用了160元.(1)求A,B 两种商品每件多少元?(2)如果小亮准备购买A,B 两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低? 【解析】(1)设A 商品每件x 元,B 商品每件y 元. 依题意,得 ⎩⎨⎧=+=+16023902y x y x 解得⎩⎨⎧==210250y x答:A 商品每件20元,B 商品每件50元.(2)设小亮准备购买A 商品a 件,则购买B 商品()a -10件.依题意,()()⎩⎨⎧≤-+≥-+350105020300105020a a a a 得 解得3265≤≤a根据题意,a 的值应为整数,所以a =5或a =6.方案一:当a =5时,购买费用为()35051050520=-⨯+⨯(元); 方案二:当a =6时,购买费用为()32061050620=-⨯+⨯ (元).∵350>320,∴购买A 商品6件,B 商品4件的费用最低.答:有两种购买方案,方案一:购买A 商品5件,B 商品5件;方案二:购买A 商品6件,B 商品4件.其中方案二费用最低.3.( 2014·嘉兴)某汽车专卖店销售A,B 两种型号的新能源汽车.上周售出1辆A 型车和3辆B 型车,销售额为96万元;本周已售出2辆A 型车和1辆B 型车,销售额为62万元. (1)求每辆A 型车和B 型车的售价各为多少元.(2)甲公司拟向该店购买A,B 两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?【解析】(1)设每辆A 型车的售价为x 万元,每辆B 型车的售价为y 万元. 由题意得⎩⎨⎧=+=+622963y x y x 解得⎩⎨⎧==2618y x 答:每辆A 型车的售价为18万元,每辆B 型车的售价为26万元.(2)设购买A 型车a 辆,则购买B 型车(6-a)辆. 由题意得()()⎩⎨⎧≤-+≥-+1406261813062618a a a a 解得4132≤≤a∵a 是正整数,∴2=a 或3=a .∴共有两种方案.方案一:购买2辆A 型车和4辆B 型车. 方案二:购买3辆A 型车和3辆B 型车.4.(2013·宿迁) 某公司有甲种原料260kg ,乙种原料270kg ,计划用这两种原料生产A 、B 两种产品共40件.生产每件A 种产品需甲种原料8kg ,乙种原料5kg ,可获利润900元;生产每件B 种产品需甲种原料4kg ,乙种原料9kg ,可获利润1100元.设安排生产A 种产品x 件.(1)完成下表(2)安排生产A 、B 两种产品的件数有几种方案?试说明理由;(3)设生产这批40件产品共可获利润y 元,将y 表示为x 的函数,并求出最大利润. 解:(1)x 8, ()x -409(2)()()⎩⎨⎧≤-+≤-+27040952604048x x x x 255.22≤≤∴x 23=x 、24、25共有三种方案:方案一:A 产品23件,B 产品17件方案二:A 产品24件,B 产品16件 方案三:A 产品25件,B 产品15件(3)()44000200401100900+-=-+=x y x x y当23=x 时,y 有最大值39400元5.(2011日照)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中y (元). (1)求y 关于x 的函数关系式,并求出x 的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?解: (1)根据题意知,调配给甲连锁店电冰箱(x -70)台,调配给乙连锁店空调机(x -40)台,电冰箱(10-x )台,则()()()101504016070170200-+-+-+=x x x x y即1680020+=x y .∵⎪⎪⎩⎪⎪⎨⎧≥-≥-≥-≥0100400700x x x x∴10≤x ≤40. ∴1680020+=x y (10≤x ≤40); (2)按题意知:()()()()101504016070170200-+-+-+-=x x x x a y即()1680020+-=x a y .∵a -200>170,∴a <30. 当0<a <20时,40=x ,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台; 当20=a 时,x 的取值在10≤x ≤40内的所有方案利润相同; 当20<a <30时,x =10,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台;6. (2011孝感)健身运动已成为时尚,某公司计划组装A 、B 两种型号的健身器材共40套,捐赠给社区健身中心.组装一套A 型健身器材需甲种部件7个和乙种部件4个,组装一套B 型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.(1)公司在组装A 、B 两种型号的健身器材时,共有多少种组装方案;(2)组装一套A 型健身器材需费用20元,组装一套B 型健身器材需费用18元.求总组装费用最少的组装方案,最少组装费用是多少? 解:(1)设该公司组装A 型器材x 套,则组装B 型器材(x -40)套,依题意,得73(40)24046(40)196x x x x +-≤⎧⎨+-≤⎩ 解得22≤x ≤30. 由x 为整数,∴x 取22,23,24,25,26,27,28,29,30.∴组装A 、B 两种型号的健身器材共有9种组装方案. (2)总的组装费用()7202401820+=-+=x x x y . ∵2=k >0,∴y 随x 的增大而增大. ∴当x =22时,总的组装费用最少,最少组装费用是2×22+720=764元. 总组装费用最少的组装方案:组装A 型器材22套,组装B 型器材18套.7.(2011济宁)“五一”期间,为了满足广大人民的消费需求,某商店计划用160000元购进一批家电,这批家电的进价和售价如下表:类别 彩电 冰箱 洗衣机 进价 2000 1600 1000 售价 2200 1800 1100(1)若全部资金用来购买彩电和洗衣机共100台,问商家可以购买彩电和洗衣机各多少台?(2)若在现有资金160000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,请你算一算有几种进货方案?哪种进货方案能使商店销售完这批家电后获得的利润最大?并求出最大利润.(利润=售价-进价) 解:(1)设商店购买彩电x 台,则购买洗衣机(x -100)台。
2024年中考数学一轮复习考点精讲课件—一次函数的应用

.
【详解】解:如图, = = 6,∵ ∠ = 60°,∴ 4,3 3 ,
∵点在边上且横坐标为8,∴ 8, 3 , 10,3 3 ,
∵直线过定点,∴ ⊥ 时,点到所在直线的距离取得最大值.
∵ 0, −
5 3
3
∴ 3 = 8 −
, 8, 3 ,设解析式为 = −
考点一 一次函数的实际应用
【变式】(2021·河南平顶山·统考二模)小明和小亮相约从学校前往博物馆,其中学校距离博物馆900米.小明因有
事,比小亮晚一些出发,图中1 = 1 、2 = 2 + 分别是小明、小亮行驶的路程与小明追赶时间之间的关系.
(1)观察图象可知,小亮比小明先走了_______米.
2
20
故答案为:5;3; 3
20
km;
3
考点一 一次函数的实际应用
题型03 行程问题
【例3】(2022·浙江绍兴·统考一模)绍兴首条智慧快速路于今年3月19日正式通车.该快速路上,两站相距
20km,甲、乙两名杭州亚运会会务工作志愿者从站出发前往站附近的比赛场馆开展服务.甲乘坐无人驾驶小
巴,乙乘坐无人驾驶汽车.图中,分别表示甲、乙离开站的路程 km 与时间 min 的函数关系的图象.
(2)求1 、2 的值,并解释2 的实际意义.
(3)通过计算说明,谁先到博物馆.
【详解】
(1)根据图像可以看出小明走的时候,小亮已经走了 100 米.故答案为:100.
(2)将 = 20, = 60代入1 = 1 ,得60 = 201 ,∴1 = 3;
分别将 = 0时, = 100; = 20时, = 140代入2 = 2 + 得
∴A种物品购买7个,B种物品购买13个最省钱.
专题20.3 一次函数的应用(第1课时)(解析版)

第二十章一次函数专题20.3 一次函数的应用(第1课时)基础巩固一、单选题(共6小题)1.一辆货车与客车都从A地出发经过B地再到C地,总路程200千米,货车到B地卸货后再去C地,客车到B地部分旅客下车后再到C地,货车比客车晚出发10分钟,则以下4种说法:①货车与客车同时到达B地;②货车在卸货前后速度不变;③客车到B地之前的速度为20千米/时;④货车比客车早5分钟到达C地;4种说法中正确的个数是()A.1个B.2个C.3个D.4个【答案】A【分析】①由函数图可以得出货车到达B地用时30分钟,客车到达B地用时40分钟,根据货车比客车晚出发10分钟就可以得出货车与客车同时到达B地;②分别求出货车卸货前后的速度并作比较就可以得出结论;③由路程÷时间=速度就可以得出结论;④由函数图象可以得出货车到达C地的时间是80分钟,客车到达C地的时间是85分钟就可以得出,但是客车先出发了10分钟,故货车比客车晚5分钟到达C地.【解答】解:①函数图可以得出货车到达B地用时30分钟,客车到达B地用时40分钟,∵车比客车晚出发10分钟,∴货车与客车同时到达B地.故正确②货车在卸货前的速度为:80÷0.5=160千米/时,货车在卸货后的速度为:120÷0.5=240千米/时.∵160≠240,∴货车在卸货前后速度不相等.故错误;③客车到B地之前的速度为:80÷=120千米/时≠20千米/时.故错误;④由函数图象可以得出货车到达C地所有时间是80分钟,客车到达C地所用时间是85分钟,∵客车先出发了10分钟,∴货车是客车出发90分钟后到达的C地,∴货车比客车晚5分钟到达C地.故错误.故选:A.【知识点】一次函数的应用2.一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,而后只出水不进水,直到水全部排出.假设每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则下列说法错误的是()A.每分钟的进水量为5升B.每分钟的出水量为3.75升C.OB的解析式为y=5x(0≤x≤4)D.当x=16时水全部排出【答案】D【分析】根据题意和函数图象可以求得每分钟的进水量和出水量,从而可以解答本题.【解答】解:由题意可得,每分钟的进水量为:20÷4=5(L),∴OB的解析式为y=5x(0≤x≤4);每分钟的出水量为:[5×8﹣(30﹣20)]÷8=3.75(L),30÷3.75=8(min),8+12=20(min),∴当x=20时水全部排出.故选:D.【知识点】一次函数的应用3.甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A.甲车的平均速度为60km/hB.乙车的平均速度为100km/hC.乙车比甲车先到B城D.乙车比甲车先出发1h【答案】D【分析】根据图象逐项分析判断即可.【解答】解:由图象知:A.甲车的平均速度为=60km/h,故A选项不合题意;B.乙车的平均速度为=100km/h,故B选项不合题意;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.【知识点】一次函数的应用4.如图,表示甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶的路程是()A.0.5千米B.1千米C.1.5千米D.2千米【答案】A【分析】分别根据甲、乙的图象计算出各自的速度即可求出每分钟乙比甲多行驶的路程.【解答】解:由甲的图象可知甲的速度为:12÷24=0.5千米/分,由乙的图象可知乙的速度为:12÷(18﹣6)=1千米/分,所以每分钟乙比甲多行驶的路程是0.5千米.故选:A.【知识点】一次函数的应用5.小明和小亮在同一条笔直的跑道上进行500米匀速跑步训练,他们从同一地点出发,先到达终点的人原地休息,已知小明先出发2秒,在跑步的过程中,小明和小亮的距离y(米)与小亮出发的时间x(秒)之间的函数关系如图所示,下列说法错误的是()A.小明的速度是4米/秒B.小亮出发100秒时到达终点C.小明出发125秒时到达了终点D.小亮出发20秒时,小亮在小明前方10米【答案】D【分析】根据题意和函数图象中的数据,可以判断各个选项中的说法是否正确,从而可以解答本题.【解答】解:由图可得,小明的速度为8÷2=4(米/秒),故选项A正确;小亮出发100秒时到达终点,故选项B正确;小明出发500÷4=125秒时到达终点,故选项C正确;小亮出发20秒时,小明走的路程是8+4×20=88(米),小亮走的路程是500÷100×20=100(米),此时小亮在小明前方100﹣88=12米处,故选项D错误;故选:D.【知识点】一次函数的应用6.某市体育馆将举办明星足球赛,为此体育馆推出两种团体购票方案(设购票张数为x张,购票总价为y元).方案一:购票总价由图中的折线OAB所表示的函数关系确定;方案二:提供8000元赞助后,每张票的票价为50元.则两种方案购票总价相同时,x的值为()A.80B.120C.160D.200【答案】D【分析】根据题意,可以分别求得方案一和方案二对应的函数解析式,然后令它们的函数值相等,即可得到两种方案购票总价相同时,x的值.【解答】解:设OA段对应的函数解析式为y=kx,12000=100k,得k=120,即OA段对应的函数解析式为y=120x,设AB段对应的函数解析式为y=ax+b,,得,即AB段对应的函数解析式为y=60x+6000,由题意可得,方案二中y与x的函数关系式为y=50x+8000,令50x+8000=120x,得x=,∵x为整数,∴x=应舍去,令60x+6000=50x+8000,得x=200,即当x=200时,两种方案购票总价相同,故选:D.【知识点】一次函数的应用二、填空题(共8小题)7.我国很多城市水资源缺乏,为了加强居民的节水意识,某自来水公司采取分段收费标准,某市居民月交水费y(元)与用水量x(吨)之间的关系如图所示,若某户居民4月份用水20吨,则应交水费元.【答案】44【分析】根据函数图象中的数据,可以求得超出10吨水时,每吨水的价格,从而可以计算出某户居民4月份用水20吨,则应交水费多少元.【解答】解:由图象可知,超出10吨的部分,每吨水的价格是(31﹣18)÷(15﹣10)=2.6(元),当用水20吨时,应交水费:18+(20﹣10)×2.6=44(元),故答案为:44.【知识点】一次函数的应用8.某衬衣定价为100元时,每月可卖出2000件,受成本影响,该衬衣需涨价,已知价格每上涨10元,销售量便减少50件.那么,每月售出衬衣的总件数y(件)与衬衣价格x(元)之间的关系式为.【答案】y=-5x+2500【分析】根据某衬衣定价为100元时,每月可卖出2000件,价格每上涨10元,销售量便减少50件,即可得到月售出衬衣的总件数y(件)与衬衣价格x(元)之间的关系式.【解答】解:由题意可得,y=2000﹣×50=﹣5x+2500,故答案为:y=﹣5x+2500.【知识点】一次函数的应用9.空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y=x+331;当x=22℃时,某人看到烟花燃放5s后才听到声音,则此人与燃放烟花所在地的距离为m.【答案】1721【分析】根据题意,可以求得当x=22℃时,对应速度y的值,然后根据路程=速度×时间,即可得到当x =22℃时,某人看到烟花燃放5s后才听到声音,则此人与燃放烟花所在地的距离.【解答】解:当x=22时,y=×22+331=344.2,则当x=22℃时,某人看到烟花燃放5s后才听到声音,则此人与燃放烟花所在地的距离为:344.2×5=1721(m),故答案为:1721.【知识点】一次函数的应用10.上海市居民用户燃气收费标准如表:年用气量(立方米)每立方米价格(元)第一档0﹣﹣﹣310 3.00第二档310(含)﹣﹣﹣520(含) 3.30第三档520以上 4.20某居民用户用气量在第一档,那么该用户每年燃气费y(元)与年用气量x(立方米)的函数关系式是.【答案】y=3x(0≤x<310)【分析】根据该居民用户用气量在第一档,利用“总价=单价×数量.”即可求出该用户每年燃气费y(元)与年用气量x(立方米)的函数关系式.【解答】解:根据题意得第一档燃气收费标准为3.00(元/立方米),∴该用户每年燃气费y(元)与年用气量x(立方米)的函数关系式是y=3x(0≤x<310).故答案为:y=3x(0≤x<310).【知识点】一次函数的应用11.“赛龙舟”是我国的一个传统运动项目.某天,甲乙两队在一个笔直的湖面进行“赛龙舟”比赛,全程300米.两队同时出发,刚出发,乙队就以明显优势领先,甲队发现形式不利,迅速调整比赛状态,把速度提升了,并以提升后的速度赛完全程,假设乙队全程是匀速比赛状态,甲队提速前和提速后也分别是匀速运动,甲、乙两队之间的距离y(米)与乙队行驶x(秒)之间的关系如图所示,则甲队到达终点时,乙队离终点还有米.【分析】根据题意和函数图象中的数据,可以先求出乙的速度,再根据图象中的数据,可以求出甲开始的速度,从而可以得到甲提速后的速度,再根据图象中的数据,可以得到甲到达终点的时间,从而可人计算出甲队到达终点时,乙队离终点的距离.【解答】解:由图可得,乙队的速度为300÷100=3(米/秒),设甲队开始的速度为a米/秒,15(3﹣a)=(45﹣15)×[a(1+)﹣3],解得a=2,∴甲队提速后的速度为2×(1+)=3.5(米/秒),∴甲队到达终点用的时间为:15+(300﹣15×2)÷3.5=15+=15+77=92(秒),∴甲队到达终点时,乙队离终点还有3×(100﹣92)=3×7=3×=(米),故答案为:.【知识点】一次函数的应用12.开学前夕,某服装厂接到为一所学校加工校服的任务,要求5天内加工完220套校服,服装厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止,设甲乙两车间各自加工校服数量y(套)与甲车间加工时间x(天)之间的关系如图①所示;未加工校服w(套)与甲加工时间x(天)之间的关系如图②所示,请结合图象回答下列问题:(1)甲车间每天加工校服套;(2)乙车间维修设备后,乙车间加工校服数量y(套)与x(天)之间函数关系式是.【答案】【第1空】20【第2空】y=35x-55【分析】(1)根据题意和函数图象中的数据,可以计算出甲车间每天加工校服数量;(2)根据函数图象中的数据,可以计算出乙车间维修设备后,乙车间加工校服数量y(套)与x(天)之间函数关系式.【解答】解:(1)由图①可得,甲车间每天加工校服:(220﹣120)÷5=100÷5=20(套),故答案为:20;(2)由图象可得,a=(220﹣185)﹣20=35﹣20=15,设乙车间维修设备后,乙车间加工校服数量y(套)与x(天)之间函数关系式是y=kx+b,∵点(2,15),(5,120)在函数y=kx+b的图象上,∴,解得,即乙车间维修设备后,乙车间加工校服数量y(套)与x(天)之间函数关系式是y=35x﹣55,故答案为:y=35x﹣55.【知识点】一次函数的应用13.某市出租车计费办法如图所示,如果小张在该市乘坐出租车行驶了10千米,那么小张需要支付的车费为元.【答案】30.8【分析】设超过3千米的函数解析式为y=kx+b,根据题意列出方程组,利用待定系数法求得解析式,然后把x=10代入即可求得.【解答】解:由图象可知,出租车的起步价是14元,在3千米内只收起步价,设超过3千米的函数解析式为y=kx+b,则,解得,∴超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2.4x+6.8,∴出租车行驶了10千米则y=2.4×10+6.8=30.8(元),故答案为30.8.【知识点】一次函数的应用14.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费,每月收取水费y(元)与用水量x(吨)之间的函数关系如图所示.按上述分段收费标准,小明家三、四月份分别交水费29元和18元,则四月份比三月份节约用水吨.【答案】4【分析】分别利用待定系数法求出y=2x(0≤x<10),y=3x﹣10(x>10),然后把y=29和y=18代入对应的函数关系式中求出对应的自变量x的值,再求差即可.【解答】解:设0≤x<10的函数解析式为y=mx,把(10,20)代入y=kx得20=10m,解得m=2,所以y=2x(0≤x<10),把y=18代入y=2x,得x=9,即四月份用了9吨水,设x>10的函数解析式为y=kx+b,把(10,20)和(20,50)代入y=kx+b得,解得,所以y=3x﹣10(x>10),当y=29时,把y=29代入y=3x﹣10得3x﹣10=29,解得x=13,即三月份用了13吨水,13﹣9=4(吨),即四月份比三月份节约用水4吨.故答案为:4.【知识点】一次函数的应用拓展提升三、解答题(共6小题)15.甲、乙两人开车匀速从同一地点到距离出发地480千米处的景点旅游,甲出发半小时后,乙以每小时80千米的速度沿同一路线行驶,两车分别到达目的地后停止.甲、乙两车之间的距离y(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示.(1)甲行驶的速度是千米/小时.(2)求乙车追上甲车后,y与x之间的函数关系式,并写出自变量x的取值范围.(3)求甲车出发多长时间两车相距75千米.【答案】60【分析】(1)根据题意结合图象列式计算即可;(2)分别求出相应线段的两个端点的坐标,再运用待定系数法解答即可;(3)把y=80代入(2)的结论解答即可.【解答】解:(1)甲行驶的速度为:30÷0.5=60(千米/小时),故答案为:60.(2)如图所示:设甲出发x小时后被乙追上,根据题意得:60x=80(x﹣0.5),解得x=2,即甲出发2小时后被乙追上,∴点A的坐标为(2,0),480÷80+0.5=6.5(时),即点B的坐标为(6.5,90),设AB的解析式为y=kx+b,由点A,B的坐标可得:,解得,所以AB的解析式为y=20x﹣40(2≤x≤6.5);(3)根据题意得20x﹣40=75或60x=480﹣75,解得x=或答:甲车出发小时或小时两车相距75千米.【知识点】一次函数的应用16.某种动物的身高y(dm)是其腿长x(dm)的一次函数.当动物的腿长为6dm时,身高为45.5dm;当动物的腿长为14dm时,身高为105.5dm.(1)写出y与x之间的关系式;(2)当该动物腿长10dm时,其身高为多少?【分析】(1)根据题意,可以先设出y与x的函数关系式为y=kx+b,然后再根据当动物的腿长为6dm时,身高为45.5dm;当动物的腿长为14dm时,身高为105.5dm,即可求得该函数的解析式;(2)将x=10代入(1)中的函数解析式,即可得到相应的身高.【解答】解:(1)设y与x之间的关系式为y=kx+b,,得,即y与x之间的关系式是y=7.5x+0.5;(2)当x=10时,y=7.5×10+0.5=75.5,答:当该动物腿长10dm时,其身高为75.5dm.【知识点】一次函数的应用17.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示.其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30时,求y与x之间的函数关系式;(2)若小李4月份上网35小时,他应付多少元的上网费用?【分析】(1)根据函数图象中的数据,可以得到当x≥30时,y与x之间的函数关系式;(2)将x=35代入(1)中的函数解析式,即可求得小李4月份上网35小时,他应付多少元的上网费用.【解答】解:(1)设当x≥30时,y与x之间的函数关系式是y=kx+b,,解得,,即当x≥30时,y与x之间的函数关系式是y=3x﹣30;(2)当x=35时,y=3×35﹣30=105﹣30=75,即小李4月份上网35小时,他应付75元的上网费用.【知识点】一次函数的应用18.表示汽车性能的参数有很多,例如:长宽高、轴距、排量、功率、扭矩、转速、百公里油耗等等.为了了解某种车的耗油量,某专业检测人员对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t(h)0123…邮箱剩余油量Q(L)100948882…①根据上表可知,每小时耗油升;②根据上表的数据,写出用Q与t的关系式:;③汽车油箱中剩余油量为55L,则汽车行驶了小时.【答案】【第1空】6【第2空】Q=100-6t【第3空】7.5【分析】①根据表中数据即可得到结论;②由表格可知,开始油箱中的油为100L,每行驶1小时,油量减少6L,据此可得t与Q的关系式;③求汽车油箱中剩余油量为55L,则汽车行使了多少小时即是求当Q=55时,t的值.【解答】解:(1)据上表可知,每小时耗油100﹣94=6 升;(2)关键题意得:Q=100﹣6t;(3)当Q=55时,55=100﹣6t,6t=45,t=7.5.答:汽车行使了7.5小时.故答案为:①6;②Q=100﹣6t;③7.5.【知识点】一次函数的应用19.某地长途汽车客运公规定旅客可随携带一定质量的行李,如果超过规定需要购买行李票,行李票费用y元是行李质量xkg的一次函数,如图所示.(1)求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量是多少?【分析】(1)利用待定系数法求一次函数解析式解答;(2)令y=0时求出x的值即可.【解答】解:(1)由图可知,函数图象经过点(60,6),(80,10),所以,,解得;所以解析式为:y=0.2x﹣6;(2)令y=0,则0.2x﹣6=0,解得x=30,所以,旅客最多可免费携带行李的质量为30kg.【知识点】一次函数的应用20.为了迎接疫情彻底结束后的购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且甲种运动鞋的数量不超过100双,问该专卖店共有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?【分析】(1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可;(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200﹣x)双,然后根据总利润列出一元一次不等式组,求出不等式组的解集后,再根据鞋的双数是正整数解答;(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.【解答】解:(1)依题意得,,整理得,3000(m﹣20)=2400m,解得m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解得95≤x≤100,∵x是正整数,100﹣95+1=6,∴共有6种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤100),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=100时,W有最大值,W最大=22000﹣100a,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;W最大=16000;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=95时,W有最大值,W最大=21700﹣92a;即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.【知识点】一次函数的应用、一元一次不等式的应用、分式方程的应用。
一次函数的应用练习题及答案

一次函数的应用练习题及答案一次函数是数学中一个非常基础且常见的函数类型,其形式为 y = ax + b。
在现实生活中,我们经常会遇到一次函数的应用场景。
本文将提供一些基于一次函数的应用练习题,并附带答案,希望能够帮助读者更好地理解一次函数的概念和应用。
练习题1:某公司的年工资总额与员工人数之间存在一次函数关系。
已知当公司的员工人数为100人时,年工资总额为500万元;当员工人数为200人时,年工资总额为800万元。
求该公司年工资总额与员工人数的一次函数表达式,并根据该函数回答以下问题:a) 当员工人数为300人时,年工资总额是多少?b) 当员工人数为0人时,年工资总额是多少?解答:设年工资总额为 y,员工人数为 x。
根据题意,我们可以列出两个方程:100a + b = 500200a + b = 800通过解这个方程组,我们可以得到 a 的值为 1.5,b 的值为 350。
因此,该公司的年工资总额与员工人数的一次函数表达式为 y = 1.5x + 350。
a) 当员工人数为 300 人时,将 x = 300 代入函数表达式中,可得年工资总额为 1.5 * 300 + 350 = 850 万元。
b) 当员工人数为 0 人时,将 x = 0 代入函数表达式中,可得年工资总额为 1.5 * 0 + 350 = 350 万元。
练习题2:某手机品牌的某款手机的售价与销量之间存在一次函数关系。
已知当该手机的销量为3000部时,售价为2000元/部;当销量为5000部时,售价为1500元/部。
求该手机的售价与销量的一次函数表达式,并根据该函数回答以下问题:a) 当销量为4000部时,售价是多少?b) 当销量为0部时,售价是多少?解答:设售价为 y,销量为 x。
根据题意,我们可以列出两个方程:3000a + b = 20005000a + b = 1500通过解这个方程组,我们可以得到 a 的值为 -0.1,b 的值为 500。
一次函数的应用

一次函数的应用
一次函数可以应用于很多实际问题中,以下是一些常见的
应用示例:
1. 经济学:一次函数可以用来表示成本、收入、利润等经
济指标与产量或销量之间的关系。
特别是在线性需求模型中,一次函数可以用来表示价格和数量之间的关系。
2. 工程学:一次函数可以用来表示物理量之间的线性关系,比如运动的速度和时间的关系、电阻和电流之间的关系等。
在工程设计和控制中,一次函数可以用来建立系统输入和
输出之间的关系。
3. 计划和预测:一次函数可以用来预测未来的趋势或变化。
通过拟合历史数据,可以使用一次函数来预测未来的趋势,并进行计划和决策。
4. 统计分析:一次函数可以用来描述两个变量之间的关系,并进行回归分析。
通过最小二乘法可以得到一次函数的最
佳拟合线,从而可以用来解释和预测变量之间的关系。
5. 材料科学:一次函数可以用来描述材料的线性弹性特性。
材料的应力和应变之间的关系可以通过一次函数来表示,
并用来研究材料的应力-应变性能。
总之,一次函数在很多领域中都有着广泛的应用。
通过建
立变量之间的线性关系,可以帮助我们分析和理解问题,
并进行预测和决策。
专题一次函数的实际应用

专题一次函数的实际应用利用函数模型解决实际问题的过程:首先,设变量(自变量和因变量),建立变量之间的函数关系式,把实际问题转化为函数问题;其次,研究函数性质,把我变量之间的对应关系和变化规律,解决函数问题;第三,解释函数问题解实际意义,得到实际问题的解。
例1 “黄金1号”玉米种子的价格为5 元/kg,如果一次购买2 kg 以上的种子,超过2 kg 部分的种子的价格打8 折.求出付款金额 y (单位:元)与购买种子数量x(单位:kg)之间的函数解析式,并画出函数图象.变式1 一个试验室在0:00-2:00保持20℃的恒温,在2:00-4:00匀速上升,每小时上升5℃.(1).求出试验室温度T(单位:℃)关于时间t(单位:h)的函数解析式;(2).画出函数图像.例2 一个有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示:(1)求0≤x≤4时,y随x变化的函数关系式;(2)求4≤x≤12时,y随x变化的函数关系式;例3 某生态体验园推出了甲、乙两种消费卡,设入园次数为x时所需费用为y元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.变式1 甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.(1)以x(单位:元)表示商品原价,y(单位:元)表示购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;(2)在同一直角坐标系中画出(1)中函数的图象;(3)春节期间如何选择这两家商场去购物更省钱?例4 A城有肥料200吨,B城有300吨,现在要把这些肥料全部运往C,D两乡,从A城往C,D两乡运送肥料的费用分别为20元/t和25元/t,从B往C,D运输费用分别是15元/t和24元/t,C乡需240吨,D乡需260.(1).设从A城运往C乡x吨肥料,分别用含有x代数式表示出从A 城运往D乡的肥料,从B城运往C乡的肥料,从B城运往D乡的肥料,并求出x的取值范围;(2).怎样调运可使总运费最少?变式3 无锡阳山地区有A、B两村盛产水蜜桃,现A村有水蜜桃200吨,B村有水蜜桃300吨计划将这些水蜜桃运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C,D两处的费用分别为每吨15元和18元,设从A村运往C仓库的水蜜桃重量为x吨,A、B两村运往两仓库的水蜜桃运输费用分别为yA元和yB元 .(1)分别求出yA、yB与x之间的函数关系式;(2)试讨论A、B两村中,哪个村的运费较少;(3)考虑到B村的经济承受能力,B村的水蜜桃运费不得超过4830元在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.(4)由于更换车型,使A村运往C村的费用每吨增加a元(0<a<6),请问怎样调运,才能使两村运费之和最小?例5 某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如下:(1)共需租多少辆汽车?(2)租用甲种客车x辆,求出x的值;(3)给出最节省费用的租车方案.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数的应用专题一次函数的应用1.(2015•铁岭)一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S(km)与慢车行驶时间t(h)之间的函数图象如图所示,下列说法:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km 其中正确的个数是()A.1个B.2个C.3个D.4个2.(2015•河北区一模)设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车原地返回.设x秒后两车间的距离为y米,关于y关于x的函数关系如图所示,则甲车的速度是()米/秒.A.25 B.20 C.45 D.153.(2015•松北区一模)甲、乙两车沿相同路线以各自的速度从A地去往B地,如图表示其行驶过程中路程y(千米)随时间t(小时)的变化图象,下列说法:①乙车比甲车先出发2小时;②乙车速度为40千米/时;③A、B两地相距200千米;④甲车出发80分钟追上乙车.其中正确的个数为()A.1个B.2个C.3个D.4个4.(2015•道外区三模)甲、乙两人在一段长1200米的直线公路上进行跑步练习,起跑时乙在起点,甲在乙前面,若甲乙同时起跑至乙到达终点的过程中,甲乙之间的距离y(米)与时间t(秒)之间的函数关系如图所示,有下列说法:①甲的速度为4米/秒;②50秒时乙追上甲;③经过25秒时甲乙相距50米;④乙到达终点时甲距终点40米.其中正确的说法有()A. 1个B.2个C.3个D.4个二.填空题(共5小题)5.(2015•黄石模拟)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x小时,两车之间的距离为y千米,图中的折线表示y与x之间的函数关系.根据图象可知:当x为时,两车之间的距离为300千米6. .(2015•鞍山一模)小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l1、l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则x= h时,小敏、小聪两人相距7km.7.(2015•临海市一模)甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前3天完成任务;(在④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有.横线上填写正确的序号)8. (2015•武汉模拟)某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是.解答题:(行程问题)8.(2013年广东湛江)周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟后,妈妈驾车沿相同路线前往湖光岩,如图是他们离家的路程)(kmy与小明离家时间)(hx的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD所在直线的函数解析式.9.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶。
设行驶的时间为x(时),两车之间的距离为y(距离),图中折线表示从两车出发至快车达到乙地过程中y与x之间的函数关系。
(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达乙地后停止行驶,请你在图中画出快车从乙地返回甲地过程中y关于x的函数的大致图像。
10.(2015•建邺区二模)小林家、小华家与图书馆依次在一条直线上.小林、小华两人同时各自从家沿直线匀速步行到图书馆借阅图书,已知小林到达图书馆花了20分钟.设两人出发x(分钟)后,小林离小华家的距离为y(米),y与x的函数关系如图所示.(1)小林的速度为米/分钟,a= ,小林家离图书馆的距离为米;(2)已知小华的步行速度是40米/分钟,设小华步行时与家的距离为y1(米),请在图中画出y1(米)与x(分钟)的函数图象;(3)小华出发几分钟后两人在途中相遇?11.(2014•虎丘区校级一模)甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从B地返回的速度多大时,才能比乙车先回到A地?12.(2013•锦州)甲、乙两车分别从A,B两地同时出发相向而行.并以各自的速度匀速行驶,甲车途经C地时休息一小时,然后按原速度继续前进到达B地;乙车从B地直接到达A 地,如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.(1)直接写出a,m,n的值;(2)求出甲车与B地的距离y(千米)与甲车出发时间x(小时)的函数关系式(写出自变量x的取值范围);(3)当两车相距120千米时,乙车行驶了多长时间?(方案择优问题)13.青神竹编,工艺精美,受到人们的喜爱,有一客商到青神采购A、B两种竹编工艺品回去销售,其进价和回去的售价如右表所示.若该客商计划采购A、B两种竹编工艺品共60件,所需总费用为y元,其中A型工艺品x件.(1)请写出y与x之间的函数关系式;(不求出x的取值范围).(2)若该客商采购的B型工艺品不少于14件,且所获总利润要求不低于2500元,那么他有几种采购方案?写出每种采购方案,并求出最大利润.14.某超市经销A、B两种商品,A种商品每件进价20元,售价30元;B种商品每件进价35元,售价48元.(1)该超市准备用800元去购进A、B两种商品若干件,怎样购进才能使超市经销这两种商品所获利润最大?(其中B种商品不少于7件)(2)在“五•一”期间,该商场对A、B两种商品进行如下优惠促销活动:促销活动期间小颖去该超市购买A种商品,小华去该超市购买B种商品,分别付款210元与268.8元.促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元?15.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题:(1)分别写出yA、yB与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.16.端午节期间,某校“慈善小组”筹集到1240元善款,全部用于购买水果和粽子,然后到福利院送给老人,决定购买大枣粽子和普通粽子共20盒,剩下的钱用于购买水果,要求购买水果的钱数不少于180元但不超过240元.已知大枣粽子比普通粽子每盒贵15元,若用300元恰好可以买到2盒大枣粽子和4盒普通粽子.(1)请求出两种口味的粽子每盒的价格;(2)设买大枣粽子x盒,买水果共用了w元.①请求出w关于x的函数关系式;②求出购买两种粽子的可能方案,并说明哪一种方案使购买水果的钱数最多.(分段函数)17.某加油站五月份营销一种油品的销售利润y(万元)与销售量x(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元(销售利润=(售价-成本价)×销售量).请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x为多少时,销售利润为4万元;(2)分别求出线段AB与BC所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在OA、AB、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)18.如图①,在长方形ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q 两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.(1)请解释图中点H的实际意义?(2)求P、Q两点的运动速度;(3)将图②补充完整;(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.作业:1.某气象研究中心观测一场沙尘暴从发生到结束全过程,开始时风暴平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时,一段时间,风暴保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1千米/时,最终停止.结合风速与时间的图象,回答下列问题:(1)在y轴()内填入相应的数值;(2)沙尘暴从发生到结束,共经过多少小时?(3)求出当x≥25时,风速y(千米/时)与时间x(小时)之间的函数关系式;(4)若风速达到或超过20千米/时,称为强沙尘暴,则强沙尘暴持续多长时间?2.为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如折线图,请根据图象回答下列问题:(1)当用电量是180千瓦时时,电费是元;(2)第二档的用电量范围是;(3)“基本电价”是元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?。