七年级数学上册 第3章 整式的加减 3.1 列代数式 3.1.2 代数式教案 华东师大版
初中数学华东师大七年级上册(2023年新编)第3章 整式的加减升幂排列与降幂排列教学设计2

升幂排列与降幂排列(教学设计)一、课标要求(一)知识目标1、理解多项式按某个字母升幂排列或降幂排列的意义,并会判断给定的多项式按某个字母升幂排列或降幂排列。
2、会把一个多项式按某个字母升幂排列或降幂排列。
(二)过程性目标通过学生的自主学习找出多项式的多种排列中排列整齐的两种形式,即按某个字母升幂排列或降幂排列,体验数学中的排序思想和所蕴含的数学美,在通过例题与练习理解和巩固多项式的升幂排列或降幂排列。
(三)情感态度目标在引导学生进行升幂排列或降幂排列的同时让学生发现数学中的形象美,培养学生的审美情操。
二、教学背景(一)教学内容分析引导学生进行升幂排列或降幂排列的同时让学生发现数学中的形象美,培养学生的审美情操.理解多项式按某个字母升幂排列或降幂排列的意义,并会把一个多项式按某个字母升幂排列或降幂排列。
(二)学情分析学生在学了多项式的有关知识的基础上,学习多项式的升(降)幂排列,通过学习本节内容让学生发现数学中的形象美,培养学生的审美情操.同时为今后的有关计算和解方程提供方便。
三、教学重点和难点把一个多项式按某个字母升幂排列或降幂排列既是重点(也是难点)四、教学过程与手段复习:(师生活动)多项式的有关概念(1)多项式的定义?(2)多项式的项、系数、次数及字母的指数?如:1)1(2++x x 232135)3(x x x --+ (一)创设情景1、试一试:(学生活动)随意抽取一个学习小组,让他们去讲台上站成一排,一般没有特殊要求,学生会自己喜好随意站列。
询问孩子们这样列队看起来好看吗?再要求该小组成员按高矮顺序排列,再问孩子们;“你们觉得怎样排列更好看?”相信孩子们都会选择后者。
通过一个小游戏,让孩子们感知顺序的重要性。
2.运用加法交换律,任意交换多项式x 2+x +1中各项的位置,可以得到多少种排列方式?请把它们写出来.在这些排列方式中,你认为哪几种比较整齐?是什么特点致使这两种排列比较整齐?3、探索归纳在众多的排列方式中,像x 2+x +1与1+x +x 2这样的排列比较整齐(可让学生分组讨论,来归纳这两种排列的共同特点。
湖北省武穴市实验中学七年级数学上册 第三章 归纳整合导学案 华东师大版

【知识框架】用字母表示数【专题解读】感触中考:本章“整式的加减”是中考命题的重要 考亚,也是中学数学的生要工具,它是其它数学内容的重要基础,基本的技能来源于此,中考试题的主要要求有⑴会用代数式表示实际问题中的数量关系,并能掌握一定的解题策略,巧求代数式的值。
⑵巧用同类项及多项式的结构特征,对一些复杂问题进行分析及变式应用⑶本章既考查学⑷表示数的思想,分类讨论的思想,又考查学生的运行能力,观察能力,解决实际问题的能力,语言文字表达能力以及探索、发现问题的能力。
例1:(2004福建夏门)为鼓励节约用电,某居民用户用电收费标准作如下规定是:每户每月用电不超过100度,那么每度电价按b 元收费,某居民在一个月内用电160度,该户居民这个月应缴纳电费是__________元(用含a 、b 的代数式表示)解析:按照收费标准把160度分解为两部分,100度、60度、前面的100度按每度a 元收费,后面的60度按每度b 元收费,则应缴纳电费(100a+60b )元答案:(100a+60b )元例2(2004山东泰安)若x=1时,代数式ax 3+bx+7的值为4,则当x=-1时,代数式ax 3+bx+7的值为( )A7 B12 C11 D10解析:这是一道代数式求值问题,其中汲及一些简单的解题技巧。
当x=1时,则a+b+7=4即a+b=-3当x=-1时,原式=-a-b+7=-(a+b )+7=3+7=10 答案:D例3:(2004,黑龙江)如果代数式4y 2-2y+5的值为7,那么代数式2y 2-y+1的值等于( ) A2 B3 C-2 D4解析:这也属于特殊的代数式求值的技巧性问题,由题意知4y 2-2y+5=7∴4y 2-2y=2 即2y 2-y=1 ∴2y 2-y+1=2 答案:A例4(2004山东淄博)某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前为负,10时以后为正,例如9:15记为-1,10:45记为1等等,依次类推,上午7:45应记为( )A3 B-3 C-2.5 D-7.45解析:7:45——10时相差135分钟,以45分钟为1个时间单位,则7:45记为-3。
华东师大版七年级数学上册第3章第3节单项式优质课件

(4)小馨每月从零花钱中拿出x元钱捐给希望工程, 一年下来小馨共捐款___1_2_x__元.
你所列出的这些代数式 有什么共同特点?
知识点 1 单项式
知1-讲
定义:如果一个式子是数或字母的积,那么这个式子叫 单项式.单独的一个数或一个字母也是单项式.
知识点 2 单项式的系数与次数
知2-讲
1.系数:单项式中的数字因数叫做这个单项式的系数.
次数:单项式中所有字母的指数的和叫做这个单项
式的次数.
2.注意:(1)当一个单项式的系数是1或-1时,“1”通
常省略不写,例如ab2和-abc的系数分别是1、-1;
(2)单项式的系数是带分数时,通常写成假分数,如
5
2
(2) 2 πab3 的系数是____3__π__,次数是___4_____;
3
(3) - m2n
4
的系数是____-__14__,次数是____3____;
(4)写出一个单项式,使它的系数为
-
1 2
,次数为4,
且含两个字母:__-__12_a_2_b_2__答_案 __不__唯__一___.
知2-讲
知1-讲
例1 下列式子中,单项式有哪些?
(1)-3; (2) 1 x2y; (3) 2 ;(4) 2m ;
3
(5)- 1 ab2;
a
(6) -7x+2 ;
3
2
(7)n2;(8)π+2.
9
导引:用单项式的定义进行判断.(3)分母中含字母a, (6)含“+”号.
解:单项式有(1)(2)(4)(5)(7)(8).
数的系数是它本身; (3)单项式的次数只与字母有关,与系数无关;所有字母
北师大版七年级数学上册《整式的加减》第3课时示范课教学设计

第三章整式及其加减4 整式的加减第3课时一、教学目标1.在具体情境中体会去括号的必要性.2.利用乘法分配律理解去括号法则的符号变化规律,并能熟练地去括号.3.能利用去括号法则进行运算.4.培养学生观察、语言组织与表达的能力.二、教学重难点重点:利用乘法分配律理解去括号法则的符号变化规律,并能熟练地去括号.难点:能利用去括号法则进行运算.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【操作】教师活动:教师出示要求,学生动手计算并集体交流反馈.数字游戏1两个数相加后的结果有什么规律?预设答案:能被11整除.追问:换一些数试试,对于任意一个两位数都成立吗?学生活动:学生换一些数进行计算,并验证,然后集体交流.预设答案:都成立.【证明】如果用a,b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为:.预设答案:10a+b交换这个两位数的十位数字和个位数字,得到的数是:.预设答案:10b+ a将这两个数相加:(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b)小结:这些和都是11的倍数【操作】数字游戏2两个数相减后的结果有什么规律?预设答案:它们的差是99的倍数追问:换一些数试试,对于任意一个三位数都成立吗?学生活动:学生换一些数进行计算,并验证,然后集体交流.预设答案:都成立.【证明】任意一个三位数可以表示为:100a+10b+c交换它的百位数字和个位数字,得到的数为:100c+10b+a将这两个数相减:(100a+10b+c)-(100c+10b+a)=100a+10b+c-100c-10b-a=99a-99c=99(a-c)小结:它们的差都是99的倍数.【议一议】在上面的两个问题中,分别涉及了整式的什么运算?说说你是如何运算的?思维导图的形式呈现本节课的主要内容:。
华东师大版数学七年级上册整式.3升幂排列与降幂排列课件

当堂练习
1.多项式-x+x3+1-x2按x的升幂排列正确的是( )
A. x2-x+x3+1 B. 1-x2+x+x3
C. 1-x-x2+x3
D. x3-x2+1-x
2.多项式-3x2+6x3-1-x按字母x的降幂排列的是( )
A. 1-x-3x2+6x3
B. 6x3-x-3x2+1
• 6x3-3x2-x+1
问题 类比降幂排列定义,你知道什么是升幂排列吗? 升幂排列就是一个多项式按照某个字母的指数从小到大的顺序进行排列.
升幂排列——
1 3 x 5 x2 2 x3
典例精析
例1 把多项式
2r14r按3 rr的2 升幂排列.
3
解:按r的升幂排列为:
12rr2 4r3. 3
例2 把多项式a3+b2-3a2b-3ab3重新排列: (1)按a的升幂排列; (2)按a的降幂排列.
解:(1)按a的升幂排列为: b2-3ab3-3a2b+a3;
(2)按a的降幂排列为: a3-3a2b-3ab3+b2.
此时不考虑b的 指数
思考 你能将这个多项式按b的升(或降)幂排列吗?
总结归纳
1.重新排列多项式时,每一项一定要连同它的正负号一起移动 ; 2.含有两个或两个以上字母的多项式,常常按照其中某一个字母的升幂排列或降幂排列.
第3章 整式的加减 3.3 整 式
3.升幂排列与降幂排列
学习目标
1.能说出什么是升幂排列和降幂排列;(重点) 2.会把一个多项式按某一字母作升幂或降幂排列. (重点)
导入新课
视察与思考 问题 运用加法交换律,任意交换多项式x2+x+1中各项的位置,可以得到哪些不 同的排列方式?在众多排列方式中,你认为哪几种比较有规律?
第三章整式的加减培优讲义华东师大版七年级数学上册

整式的加减培优讲义考点1.利用整体思想化简求值典例精析(2022秋•旌阳区校级期中)阅读材料:我们知道,4x ﹣2x +x =(4﹣2+1)x =3x ,类似地,我们把(a +b )看成一个整体,则4(a +b )﹣2(a +b )+(a +b )=(4﹣2+1)(a +b )=3(a +b ).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a ﹣b )2看成一个整体,合并3(a ﹣b )2﹣6(a ﹣b )2+5(a ﹣b )2的结果是 .(2)当x =1时,代数式a 2x 3+bx ﹣5的值为2,则当x =﹣1时,求代数式2a 2x 3+2bx ﹣10的值.拓广探索:(3)求2(3m 2+n )﹣3(2m 2﹣mn )﹣(4mn ﹣2m )的值,其中m +n =3,mn =﹣9. 方法归纳整式化简求值时,若无法直接求出字母的值,且整式的 某部分与已知条件中的某部分相似,可利用整体思想解题,应用此方法, 一般先将求 值式变形为与已知条件相似或者相同,或者成倍数关系的 形式,再利用整体代入的方法求解.针对训练1.如果代数式8y 2﹣4y +6的值是﹣10,那么代数式2y 2﹣y ﹣4的值等于( )A .0B .﹣5C .﹣8D .8 2.对于任意的有理数a ,b ,如果满足a 2+b 3=a+b 2+3,那么我们称这一对数a ,b 为“相随数对”,记为(a ,b ).若(m ,n )是“相随数对”,则2[4m +(2n +1)]+m =( )A .﹣2B .﹣1C .2D .33.(2022秋•黄陂区期中)当x =2时,代数式ax 3﹣bx ﹣1的值为﹣15,则当x =﹣1时,代数式16ax 2+4bx +3的值为 .4.(2022秋•济南期末)已知m ﹣n =2,mn =﹣5,则3(mn ﹣n )﹣(mn ﹣3m )的值为 .5.先化简,再求值.若m 2+3mn =﹣5,则代数式5m 2﹣[5m 2﹣(2m 2﹣mn )﹣7mn +7]的值.6.(2023秋•大连期中)阅读材料:“整体思想”是中学数学解题中的一种重要的思想方法,如把某个多项式看成一个整体进行合理变形,它在多项式的化简与求值中应用极为广泛.例:化简4(a +b )﹣2(a +b )+(a +b ).解:原式=(4﹣2+1)(a +b )=3(a +b ).参照本题阅读材料的做法解答:(1)把(a ﹣b )6看成一个整体,合并3(a ﹣b )6﹣5(a ﹣b )6+7(a ﹣b )6的结果是 .(2)已知x 2﹣2y =1,求3x 2﹣6y ﹣2023的值.(3)已知a ﹣2b =3,2b ﹣c =﹣4,c ﹣d =10,求(a ﹣c )+(2b ﹣d )﹣(2b ﹣c )的值.7.(2022秋•公主岭市期中)[阅读理解]若代数式x 2+x +3的值为7,求代数式2x 2+2x ﹣3的值. 小明采用的方法如下:由题意得x 2+x +3=7,则有x 2+x =4,2x 2+2x ﹣3=2(x 2+x )﹣3=2×4﹣3=5. 所以代数式2x 2+2x ﹣3的值为5.[方法运用](1)若代数式x 2+x +1的值为10,求代数式﹣2x 2﹣2x +3的值.(2)当x =2时,代数式ax 3+bx +4的值为9,当x =﹣2时,求代数式ax 3+bx +3的值.[拓展应用]若a 2﹣ab =26,ab ﹣b 2=﹣16,则代数式a 2﹣2ab +b 2的值为 .8.(2023秋•深圳期中)在代数式求值问题中,整体思想运用十分广泛,如:已知代数式5a +3b =﹣4,求代数式2(a +b )+4(2a +b )+3的值.解法如下:原式=2a +2b +8a +4b +3=10a +6b +3=2(5a +3b )+3=2×(﹣4)+3=﹣5.利用整体思想,完成下面的问题:(1)已知﹣m 2=m ,则m 2+m +1= ;(2)已知m ﹣n =2,求2(n ﹣m )﹣4m +4n ﹣3的值.(3)已知m 2+2mn =﹣2,mn ﹣n 2=﹣4,求3m 2+92mn +32n 2的值. 例.(2022秋•北京期末)我们规定:使得a ﹣b =2ab 成立的一对数a ,b 为“有趣数对”,记为(a ,b ).例如,因为2﹣0.4=2×2×0.4,(﹣1)﹣1=2×(﹣1)×1,所以数对(2,0.4),(﹣1,1)都是“有趣数对”.(1)数对(1,13),(1.5,3),(−12,﹣1)中,是“有趣数对”的是 ;(2)若(k ,﹣3)是“有趣数对”,求k 的值;(3)若(m ,n )是“有趣数对”,求代数式8[3mn −12m ﹣2(mn ﹣1)]﹣4(3m 2﹣n )+12m 2的值.方法归纳三步解决“新定义”问题 (1)审题——提取信息提取关键词,明确“新定义”的概念、原理、方法、步骤和结论;(2)理解——以旧引新利用“例子”及“旧知识”理解 和正确运用“新定义”;(3)转化——迁移应用类比“新定义”中的概念、原 理、方法、步骤和结论,解决题目中需要解决的问题.针对训练1.(2022秋•桥西区校级期末)定义一种新运算:a ⊗b =a ﹣2b .例如2⊗3=2﹣2×3=﹣4,则x ⊗(﹣y )化简后的结果是( )A .x +2yB .2x ﹣yC .x ﹣2yD .2x +y 2.(2022秋•荆门期末)定义一个新运算f (a ,b )={a +b(a <b)a −b(a >b),已知a 2=4,b =1,则f (a ,b )= .3.(2023•北碚区校级开学)对任意一个四位正整数m ,如果m 的百位数字等于个位数字与十位数字之和,m 的千位数字等于十位数字的2倍与个位数字之和,那么称这个数m 为“逊敏数”.例如:m =7523,满足2+3=5,2×2+3=7,所以7523是“逊敏数”;m =9624,满足2+4=6,但2×2+4=8≠9,所以9624不是“逊敏数”.(1)判断7431和6541是不是“逊敏数”,并说明理由;(2)若m 是“逊敏数”,且m 与12的和能被13整除,求满足条件的所有“逊敏数”m .4.(2022秋•港北区期中)定义:若m +n =2,则称m 与n 是关于2的平衡数.(1)3与 是关于2的平衡数;5﹣x 与 (用含x 的整式表示)是关于2的平衡数.(2)若A =2x 2﹣3(x 2+x )+4,B =2x ﹣[3x ﹣(4x +x 2)﹣2],判断A 与B 是否是关于2的平衡数,并说明理由.5.(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N ,若N 能被它的各数位上的数字之和m 整除,则称N 是m 的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A 是12的“和倍数”,a ,b ,c 分别是数A 其中一个数位上的数字,且a >b >c .在a ,b ,c 中任选两个组成两位数,其中最大的两位数记为F (A ),最小的两位数记为G (A ),若F(A)+G(A)16为整数,求出满足条件的所有数A .例.(2022秋•霞浦县期中)用火柴棒按如图的方式搭图形.(1)按图示规律完成下表:图形1 2 3 4 5 … 火柴棒根数 5 9 13 …(2)按照这种方式搭下去,搭第n 个图形需要 根火柴棒.(用含n 的代数式表示)(3)小静同学说她按这种方式搭出来的一个图形用了200根火柴棒,你认为可能吗?如果可能,那么是第几个图形?如果不可能,请说明理由.方法归纳图形变化规律问题解决图形变化规律问题可以从“形”和“数”两个角度 入手,通过逐一观察图,分析和归纳出图形或数字的变化规律,从而得出答案.这体现 了从特殊到一般的数学思想. 针对训练1.(2022秋•新城区校级期中)按一定规律排列的单项式:x 3,2x 5,3x 7,4x 9,5x 11,6x 13……第n (n ≥1,n 为正整数)个单项式是( )A .nx n +1B .nx 2n +1C .nx 2n ﹣1D .x 2n +12.(2022秋•泗水县期末)学校举办图画展览,需要依次把图画作品横着钉成一排(如图所示),图中圆点表示图钉,照这样的规律,当需要的图钉颗数为2022颗时,则所钉图画作品的数量为( )A .1011张B .1010张C .1009张D .1012张3.(2022•大同模拟)如图是一组有规律的图案,它们是由相同的正方形和相同的圆组成的,正方形涂有阴影,依此规律,则第n 个图案中有 个圆.(用含有n 的代数式表示)4.如图,第1个图形需要3个棋子,第2个图形需要8个棋子,第3个图形需要15个棋子,…,按照这样规律第n 个图形需要 个棋子(用含n 的代数式表示).5.(2023•沙县一模)用棋子摆出下列一组图形(如图),按图上所显示的规律继续摆下去,摆到第个图形时,这组图形总共用了 枚棋子.6.观察下面三行数:2,﹣4,8,﹣16,32,…①1,﹣5,7,﹣17,31,…②﹣1,2,﹣4,8,﹣16,…③(1)第①行数按什么规律排列,请直接写出第n 个数为 (n 是正整数).(2)第②行数与第①行数有什么关系,请直接写出第②行第n 个数为 (n 是正整数).第③行数与第①行数有什么关系,请直接写出第③行第n 个数为 (n 是正整数).(3)取每行数的第21个数,分别设为a ,b ,c ,求12a +12b +2c 的值.。
第三章 整式及其加减(教案)北师大版(2024年)数学七年级上册

第三章整式及其加减3.1代数式第1课时用字母表示数1.能用字母表示数量关系.体会字母表示数的意义,形成初步的符号感,提高应用数学的意识;2.理解代数式的概念,能用代数式表示简单实际问题中的数量关系.重点理解代数式的概念,能用代数式表示简单实际问题中的数量关系.难点学会求出代数式的值,并解释它的实际含义.一、导入新课课件出示教材第77页图3-1,提出问题:(1)按图3-1的方式,搭2个正方形需要________根火柴棒,搭3个正方形需要________根火柴棒.(2)搭10个这样的正方形需要多少根火柴棒?(3)搭100个这样的正方形需要多少根火柴棒?你是怎样得到的?(4)如果用x表示所搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?与同伴进行交流.学生小组交流后回答,教师讲评,并进一步讲解第(4)题的两种思考方法:第一个正方形用4根,每增加一个正方形增加3根,那么搭x个正方形就需要火柴棒[4+3(x-1)]根.上面的一排和下面的一排各用了x根火柴棒,竖直方向用了(x+1)根火柴棒,共用了[x +x+(x+1)]根火柴棒.教师:今天这节课,我们就来学习用字母表示数.二、探究新知1.用含字母的式子表示数量关系教师:通过探究,我们发现字母可以表示任何一个数.(1)在上面的活动中,我们借助字母表示正方形的个数与小棒的根数之间的关系,这样做有什么好处?(2)在以前的学习中还有哪些地方用到了字母?这些字母都表示什么?与同伴进行交流.学生汇报答案后,教师讲评:列代数式时,先找出题目中表示运算关系的词,然后理清关系,分清运算顺序,最后按代数式的书写格式规范地列出代数式.2.代数式的概念(1)今年李华m 岁,去年李华________岁,5年后李华________岁. (2)a 个人n 天完成一项工作,那么平均每人每天的工作量为________.(3)某商店上月的收人为a 元,本月收人比上月收入的2倍还多10元,本月收人是________元.(4)如果正方体的棱长是a -1,那么正方体的体积是________,表面积是________. 学生独立完成后汇报答案.教师点评、分析:像这样用运算符号把数和字母连接而成的式子叫作代数式. 课件出示练习:指出下列各式中哪些是代数式,哪些不是代数式. (1)x -1;(2)-2x =1;(3)π;(4)5<7;(5)m . 学生思考后举手回答.教师:通过以上练习,同学们进一步了解了代数式的概念,那么它与等式、不等式的区别是什么?学生讨论交流,教师指导、评价. 3.代数式的书写要求(1)数字与字母、字母与字母相乘,“×”通常用“·”表示或省略不写,并把数字写在字母的前面.带分数与字母相乘时,应把带分数化为假分数;注:数字与数字相乘,“×”不能用“·”表示,也不可省略.(2)除法运算应写成分数的形式;(3)代数式中相同字母或因式的积用乘方形式表示;(4)代数式为和或差的形式,且后面有单位时,要把代数式用括号括起来.不规范书写 规范书写ab 5,213 ×x5ab ,73 x3×a ×a ×a ×π 3πa 3 s ÷t ,1÷an s t ,1an a +3 ℃,a -4米(a +3)℃,(a -4)米三、课堂练习1.教材第78页“随堂练习”. 2.填空.(1)一个三角形的三条边的长分别是a ,b ,c ,则这个三角形的周长为a +b +c ; (2)张强比王华大3岁,当张强a 岁时,王华的年龄是(a -3)岁; (3)圆的半径是R 厘米,它的面积是πR 2. 四、课堂小结通过本节课的学习,你有什么收获? 先让学生举手分享自己的收获,教师再简单归纳:用字母表示数可以简明地表达问题中的数量关系,也可以简明地表达数和公式,这样给我们研究问题带来了很大的方便.五、课后作业教材第82页习题3.1第1,2,3题.本节课的内容是今后进一步学习代数知识的基础.用字母表示数对学生来说比较抽象,在教学过程中,用实物或生活事例讲解,让学生体会、认识到用字母表示数在实际生活和学习中的广泛应用,感受到数学就在身边,体现了数学与生活的联系.同时,重视引导学生经历用字母表示数的过程,初步感受代数的思想,在解决问题的过程中深化了对数学知识的认识.本节课讲练相结合,鼓励学生参与其中,调动他们的学习积极性.第2课时 列代数式1.理解代数式的概念,能用代数式表示简单实际问题中的数量关系; 2.在具体情境中,能求出代数式的值,并解释它的实际意义.重点理解代数式的概念,能用代数式表示简单实际问题中的数量关系. 难点学会求出代数式的值,并解释它的实际含义.一、导入新课课件出示问题:如图为一阶梯的纵截面,一只老鼠沿阶梯的两边A -B -C 的路线逃跑,一只猫同时沿阶梯(折线)A -C -B 的路线去追,结果在距离C 点0.6 m 的D 处猫捉住老鼠,已知老鼠的速度是猫的89,你能求出阶梯A -C 的长度吗?教师:要想解决这个问题,让我们先来学习本节课的内容. 二、探究新知 1.列代数式 课件出示问题: 列代数式,并求值.某景点的门票价格:成人票每张10元,学生票每张5元.(1)一个旅游团有成人x 人、学生y 人,那么该旅游团应付多少门票费? (2)如果该旅游团有37名成人、15名学生,那么他们应付多少门票费? 解:(1)该旅游团应付门票费(10x +5y )元.(2)把x =37,y =15代入代数式10x +5y ,得10×37+5×15=445. 因此,他们应付门票费445元.学生思考后汇报答案,教师追问:代数式10x +5y 还可以表示什么?. 教师:通过上面的练习,同学们思考一下,实际问题中该怎样列代数式呢?关键是什么? 学生分小组讨论后汇报答案,教师点评并进一步指出:(1)列代数式,要以不改变原题叙述的数量关系为原则(代数式的形式不唯一);(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;(3)把用日常生活语言叙述的数量关系列成代数式,是为今后学习列方程解应用题做准备,一定要牢固掌握.课件出示问题:营养学家通常用身体质量指数(简称BMI)衡量人体胖瘦程度,这个指数等于人体体重(单位:kg)与人体身高(单位:m)平方的商.对于成年人来说,BMI在18.5与24之间,体重适中;BMI低于18.5,体重过轻;BMI高于24,体重超重.(1)设一个人的体重为w kg,身高为h m,请用含w,h的代数式表示这个人的BMI.(2)张老师的身高为1.75 m,体重为65 kg,他的体重是否适中?(3)BMI对未成年人的胖瘦程度也有一定参考意义,请计算你的BMI.2.求代数式的值填写下表,并观察5n+6和n2这两个代数式的值的变化情况.n 123456785n+6n2(1)随着n的值逐渐变大,5n+6和n2这两个代数式的值如何变化?(2)估计一下,哪个代数式的值先超过100?学生举手回答,教师进一步讲解:我们知道,表示数的字母具有任意性和确定性,如5n+6中n可取任何有理数,当给出未知数(字母)的值时,如n=5,则5n+6就是一个确定的值.一般地,用具体数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫作代数式的值.课件出示练习:当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.学生解答并写出解答过程,教师点评并提出问题:求代数式的值应分哪几步?学生:求代数式的值的步骤:(1)代入;(2)计算.教师点评,并指出求代数式的值时需注意:(1)格式规范;(2)适当添加括号;(3)灵活运用整体代入.三、课堂练习1.教材第79页“随堂练习”第1~3题.四、课堂小结1.怎样列代数式?2.怎样求代数式的值?3.列代数式时应该注意哪些事项?五、课后作业1.教材第82页习题3.1第2,3,4题.代数式是以后数学学习的基础.本节课通过生动的实例,导入新课.在教学过程中,讲练相结合,使学生深刻了解列代数及求代数式的值的意义.在课堂上,让学生充分观察、思考、分析和讨论,帮助学生在不断地纠错、归纳、创新中学习新知识.利用实际例子,引出代数式在实际背景下所表示的意义,激发了学生的学习兴趣,让学生感受到现实生活离不开数学,从而进一步调动了学生学习数学的积极性.在解题的过程中,注意规范学生的书写格式,对于发现的问题及时处理.第3课时整式1.理解单项式及单项式的系数、次数的概念,会确定一个单项式的系数和次数;2.掌握多项式及其项、次数的概念,会确定一个多项式的项和次数;3.理解整式的概念,会判断一个代数式是否为整式.重点掌握单项式、多项式及其相关概念和整式的概念.难点单项式的系数和次数,多项式的次数与项数.一、导入新课课件出示问题:请用含字母的式子表示:一个组合柜如图3-2所示,内部用隔板纵向分隔成5个独立的小柜子(如图3-3),柜门由5个完全相同的长方形组成.(1)若要在5个柜门的周边都贴上装饰条,则所需装饰条的总长度是多少?(2)若要给柜门外表面喷漆,则需要喷漆的面积是多少(边框缝隙忽略不计)?(3)设柜子的进深为c(如图3-2),则整个柜子的容积是多少(柜门、隔板及背板的厚度忽略不计)?二、探究新知1.单项式教师:观察上面所列代数式,它们包含哪些运算?有何共同运算特征?学生小组讨论后,派代表回答,教师适当点拨.并讲解单项式的概念:即由数与字母的乘积组成的代数式称为单项式,单独一个数或一个字母也是单项式,如5ab,5abc,3v,6p.课件出示问题:下列代数式中哪些是单项式?(1)abc;(2)b2;(3)-5ab2;(4)y;(5)-xy2;(6)-5.学生完成后举手回答.教师直接引导学生进一步观察单项式的结构,总结出单项式是由数字因数和字母因数两部分组成的.以四个单项式a 2h ,2πr ,abc ,-m 为例,让学生说出它们的数字因数是什么,从而引入单项式的系数的概念并板书:单项式中的数字因数叫作这个单项式的系数.接着让学生说出以上几个单项式的字母因数是什么,各字母的指数分别是多少,从而引入单项式的次数的概念并板书:单项式中所有字母的指数和叫作单项式的次数.课件出示练习:判断下列说法是否正确. (1)-7xy 2的系数是7;(2)-x 2y 3和x 3都没有系数; (3)-ab 3c 2的次数是0+3+2; (4)-a 3的系数是-1; (5)-32x 2y 3的次数是7; (6)πr 2h 的系数是π.学生完成后汇报答案,教师点评并强调: (1)圆周率π是常数;(2)当一个单项式的系数是1或-1时,“1”通常省略不写,如x 2,-a 2b 等;(3)单项式的次数只与字母的指数有关.指数是1,省略不写,但求和时不能省略. 2.多项式课件出示问题:(1)一个数比x 的2倍小3,则这个数是________;(2)x 的13 与y 的12的差是________.教师:观察以上两小题所得出的代数式,它们与单项式有何区别与联系? 学生思考后举手回答,教师补充完善.教师引导学生自己归纳出多项式的概念,并补充完善: 像这样,几个单项式的和叫作多项式.在多项式中,每个单项式叫作多项式的项.其中,不含字母的项,叫作常数项.例如,多项式x 2-2x +5有三项,它们是x 2,-2x ,5,其中5是常数项.一个多项式含有几项,就叫作几项式.多项式中次数最高的项的次数,叫作这个多项式的次数.例如,多项式2x 2+3x -1是一个二次三项式.单项式和多项式统称为整式. 课件出示练习:判断下列说法是否正确.(1)多项式a 3-a 2b +ab 2-b 3的项为a 3,a 2b ,ab 2,b 3,次数为12; (2)多项式3n 4-2n 2+1的次数为4,常数项为1.学生完成后汇报答案,教师点评并强调:多项式的次数不是所有项的次数之和,而是最高次项的次数.三、课堂练习1.请列出下列问题中的代数式,并指出其中:①哪些是单项式?单项式的系数和次数分别是多少?②哪些是多项式?多项式的次数是多少?(1)如图3-4,一个十字形花坛铺满了草皮,这个花坛草地面积是多少?(2)当水结冰时,其体积大约会比原来增加1/9,x m 3的水结成冰后体积是多少?(3)如图3-5,一个长方体的箱子紧靠墙角,它的长、宽、高分别是a ,b ,c .这个箱子露在外面的表面积是多少?(4)某件商品的成本价为a 元,按成本价提高15%标价,后又以八折(即按标价的80%)销售,这件商品的售价为多少元?2.教材第82页“随堂练习”. 3.填空.(1)若正方形的边长为a ,则正方形的面积是a 2;(2)若三角形的一边长为a ,且这边上的高为h ,则这个三角形的面积为12 ah ;(3)若正方体的棱长为x ,则正方体的表面积是6x 2; (4)若m 为有理数,则它的相反数是-m ;(5)小明每个月从零花钱中储存x 元钱用来捐款,一年下来小明捐款12x 元.【答案】1.(1)ab -4c 2,多项式,次数是2 (2)109 x ,单项式,次数是1 (3)ab +ac +bc ,多项式,次数是2 (4)0.92a ,单项式,次数是1四、课堂小结1.单项式及单项式的系数、次数分别是什么? 2.多项式及其次数、项数、常数项分别是什么? 3.什么是整式? 五、课后作业教材第82页习题3.1第5,6,8,9题.“整式”属于“代数式”的领域,是在学习了用字母表示数,用代数式表示实际问题中的数量关系的基础上,进一步研究用含字母的式子表示实际问题的数量关系.整式是代数式中最基本的式子,是实际的需要,也是今后学习分式、一元二次方程等知识的基础,起到承前启后的作用.整式中有些概念,学生刚学时不易理解,比如单项式的系数和次数、多项式的项与次数等,教学时可通过简单生动的事例,帮助学生区分、理解和掌握这些概念.对概念和纯文字的叙述,不要仅追求精确的形式,而是更加去注重其实质的理解与领悟.3.2 整式的加减 第1课时 合并同类项1.在具体情境中感受合并同类项的必要性,理解合并同类项法则所依据的运算律;2.了解合并同类项的法则,能进行同类项的合并.重点了解同类项的定义以及合并同类项的法则.难点准确理解合并同类项法则并进行计算.一、导入新课课件出示生活中各种水果的图片,让学生根据其本身具有的不同特征对其进行分类.教师:我们常常把具有相同特征的事物归为一类.今天我们要将生活中的分类思想应用到数学中.二、探究新知1.同类项的概念课件出示问题:图3-6中的长方形由两个小长方形组成.(1)利用图3-6化简8n+5n,并用运算律解释你的化简结果.(2)你能用类似的方法化简2xy+3xy及-7a2b+2a2b吗?根据乘法对加法的分配律可得8n+5n=(8+5)n=13n,2xy+3xy=(2+3)xy=5xy,-7a2b+2a2b=(-7+2)a2b=-5a2b.把你认为类型相同的式子归为同一类,并说出分类依据.8n与5n,2xy与3xy,-7a2b与2a2b先让学生自己独立思考,再在小组内讨论说出分类的依据.教师点评并进一步讲解:所含字母相同,并且相同字母的指数也相同的项,叫做同类项.强调判断同类项的方法:①两相同:字母相同,相同字母的指数也相同;②两无关:与系数无关,与字母顺序无关;③所有的常数项都是同类项.2.合并同类项教师:同类项之间能否进行运算呢?课件出示教材第90页图3-8,提出问题:图3-8的长方形由两个小长方形组成,求这个长方形的面积.学生独立完成后汇报答案,教师进一步讲解:长方形的面积可用代数式表示为8n+5n,或(8+5)n,从而8n+5n=(8+5)n=13n.引导学生说明:同类项之间能进行运算,把同类项合并成一项,叫做合并同类项. 让学生进一步观察:在合并同类项的过程中,它们的系数、字母和字母的指数有什么变化?学生归纳出合并同类项的方法,教师进一步说明:合并同类项的法则:同类项的系数相加,字母和字母的指数不变. 课件出示例1: (1)-xy 2+3xy 2;(2)7a +3a 2+2a -a 2+3.学生独立完成后,小组讨论合并同类项的步骤:(1)发现同类项(找);(2)确定各同类项系数(移);(3)合并同类项(并). 课件出示例2: 例2 合并同类项: (1)3a +2b -5a -b ;(2)-4ab +13 b 2-9ab -12 b 2课件出示练习:求代数式-3x 2y +5x -0.5x 2y +3.5x 2y -2的值,其中x =15 ,y =7.说说你是怎么做的,并与同伴进行交流.三、举例分析例1 (课件出示教材第90页例1) 例2 (课件出示教材第91页例2)学生独立完成后汇报答案,教师点评. 四、课堂练习1.合并同类项:6xy -10x 2-5yx +7x 2.2.求x 2+2x -2y 2-y -x 2+2y 2的值,其中x =1,y =2. 3.教材第89页“随堂练习”第1~3题.【答案】1.-3x 2+xy 2.原式=2x -y ,当x =1,y =2时,原式=2×1-2=0 五、课堂小结1.什么是同类项?其判定方法是什么? 2.合并同类项的定义及法则分别是什么? 3.怎样合并同类项? 六、课后作业教材第93页第1,2题.本节课的内容是合并同类项,是本章的一个重点知识,是以后学习解方程、解不等式的基础.课堂中,用生活中的事例导入新课,充分调动了学生学习的积极性,激发了学生的求知欲.随后,通过教师的引导,让学生一步步总结出了同类项的定义、合并同类项的定义及法则.本节课充分尊重学生的主体地位,积极鼓励学生独立思考,自主探索,合作交流,让同学们体验和经历知识的发生、发展、形成和应用的过程,学会获取新知识的方法.第2课时 去括号1.掌握去括号的法则,并能根据去括号的法则进行运算; 2.培养学生观察、类比、归纳的能力.重点运用去括号的法则进行化简. 难点正确进行括号前面是“-”号的运算.一、导入新课问题1:什么叫同类项?问题2:若149 x m y 4和34 x 5y 2n 是同类项,则m =________,n =________,它们的和为________.指名学生回答,教师点评. 二、探究新知 1.去括号法则 课件出示:(1)13+2×(7-5);(2)13-2×(7-5). 教师:谁能用两种方法分别解这两题?学生回答,教师进一步提出:运用分配律可以去括号. 教师:若将数换成代数式,又会怎么样呢? 课件出示:在上一节用小棒拼摆正方形时,我们得到了几个不同的代数式: x +x +(x +1),4+3(x -1),4x -(x -1),3x +1,它们都表示拼摆x 个正方形所需小棒的根数,因此应该相等.对此,你能用运算律加以解释吗?与同伴进行交流.利用乘法分配律去括号,可得x +x +(x +1)=x +x +x +1=3x +1; 4+3(x -1)=4+3x -3=3x +1; 4x -(x -1)=4x +(-1)(x -1) =4x +(-1)x +(-1)(-1) =4x -x +1=3x +1.三个代数式都可化为3x +1的形式,因此,这四个代数式是相等的. 教师:仿照刚才的两种方法,分别化简这两道题. 利用乘法分配律将下列各式去括号.去括号前后,括号里各项的符号有什么变化?与同伴进行交流.(1)a +(b +c ); (2)a -(b +c ); (3)a +(b -c );(4)a-(b-c).学生完成后汇报答案,教师点评,引导学生思考:(1)我们是怎么得到多项式去括号的方法的?(2)这两道题中的第(1)小题与第(2)小题的去括号有何不同?(3)你能总结去括号的法则吗?学生讨论后回答,教师讲评并课件出示:括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.为了便于记忆,教师引导学生共同完成下面的顺口溜:去括号,看符号:是“+”号,不变号;是“-”号,要变号.课件出示例3:化简下列各式:(1)4a-(a-3b);(2)a+(5a-3b)-(a-2b)(3)3(2xy-y)-2xy;(4)5x-y-2(x-y)你认为去括号时要注意什么?与同伴进行交流.三、课堂练习1.教材第91页“随堂练习”第1,2题.2.(1)9a+2(6a-a);(2)9a-2(6a-a).【答案】(1)原式=9a+10a=19a(2)原式=9a-10a=-a四、课堂小结1.去括号的法则是什么?五、课后作业教材第93页第5,6,7题.本节课的内容是去括号,是本章的一个重点知识,是以后学习解方程、解不等式的基础.去括号看似容易,实际上是最容易出错的地方.课堂中,用自然数去括号的计算导入代数式去括号的问题.随后,让学生通过比较归纳得出去括号时符号的变化规律,将新知识转化为已经学过的知识,从而构建新的知识体系,在此基础上要求学生用自己的语言叙述这个规律,有利于提高学生数学语言的表达能力.第3课时整式的加减1.让同学们从实际背景中去体会进行整式加减的必要性,会进行整式的加减运算;2.经历探索整式加减运算法则的过程,进一步培养学生观察、归纳、运算的能力.重、难点掌握去括号法则.一、导入新课 课件出示问题:(1)任意写一个两位数;(2)交换这个两位数的十位数字和个位数字,又得到一个数; (3)求这两个数的和. 二、探究新知 1.整式的加减教师:再写几个两位数重复上面的过程.这些和有没有规律?如果有规律,这个规律对任意一个两位数都成立吗?如果用字母表示两位数,结果会怎样?学生小组讨论完毕后,派代表回答,教师点评. 课件出示问题:(1)任意写一个三位数;(2)交换它的百位数字与个位数字,又得到一个三位数; (3)两个数相减. 教师:两个数相减后的结果有什么规律?这个规律对任意一个三位数都成立吗?如果用字母表示三位数,结果会怎样?在上面的两个问题中,分别涉及整式的什么运算?说一说你是如何运算的,并与同伴进行交流.学生小组讨论完毕后,派代表回答,教师点评,进一步引导学生总结归纳:整式的加减实质上就是去括号后合并同类项,运算的结果是一个单项式或一个多项式.课件出示例4计算:(1)2x 2-3x +1与-3x 2+5x -7的和;(2)-x 2+3x -12 y 2与-12 x 2+4xy -32y 2的差.学生独立完成后汇报答案,教师点评,进一步引导学生得出:进行整式加减运算时,如果遇到括号要先去括号,再合并同类项.三、课堂练习 计算:(1)(4k 2+7k )+(-k 2+3k -1);(2)(5y +3x -15z 2)-(12y +7x +z 2); (3)7(p 3+p 2-p -1)-2(p 3+p );(4)-(13 +m 2n +m 3)-(23-m 2n -m 3).【答案】(1)原式=3k 2+10k -1 (2)原式=-16z 2-4x -7y (3)原式=5p 3+7p 2-9p -7(4)原式=-1四、课堂小结1.整式加减运算的实质及步骤是什么? 五、课后作业教材P93~P94第6、7、9题.其实整式的加减本质上就是合并同类项的问题,重点是让学生较好的记住法则,依据法则去解决问题.只是学生的基本计算能力有待加强,计算出现的错误比较多,说明学生计算的基本功有待加强.有理数的学习不够优秀是本章学习的一大难题.3.3探索与表达规律1.探索数量关系,运用数学符号表示规律;2.通过运算验证规律;3.培养学生自主探究与合作交流的能力.重点探究数量关系,运用代数式表示规律的能力.难点用代数式表示实际问题中的规律.一、导入新课课件出示杨辉三角图,提出问题:你能猜想中间的数字是几吗?两边的呢?你能尝试写出下一层的数字吗?你是如何得到的?学生独立完成,教师点评.教师:这节课我们将一起探究数学中的规律.二、探究新知1.探索图形中的规律课件出示教材第96页第1个日历图.教师引导学生观察日历图,通过观察找到日历中每一行、每一列、每一条对角线上相邻两个数之间的关系,并提出问题:(1)日历图的套色方框中的9个数之和与该方框正中间的数有什么关系?学生独立思考后举手回答,教师点评.(2)这个关系对其他这样的方框成立吗?你能用代数式表示这个关系吗?学生小组讨论完毕后,派代表回答,教师引导学生验证结论的正确性并点评.(3)这个关系对任何一个月的日历都成立吗?为什么?学生小组讨论,并进行验证,找出一般性规律,派代表汇报讨论结果,教师点评.(4)你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示.学生独立思考,总结关系,然后小组内分享交流结果并汇报,最后由教师进行总评.课件出示教材第97页第2个日历图,提出问题:(1)如果将方框改为十字框,你能发现哪些规律?如果改为H形框呢?(2)你还能设计其他形状的包含数字规律的数框吗?学生小组讨论交流,教师点评.2.探究数字中的规律小亮和小丽在玩个小游戏.你在心里想好一个两位数,将这个两位数的十位数字乘2,然后加3,再将所得的和乘5,最后将得到的数加你想的那个两位数的个位数字.把你的结果告诉我,我就知道你心里想的两位数.学生讨论交流,共同探究其中的规律,从而激发起学生的学习兴趣.让学生以小组为单位,设计类似的数字游戏,并解释其中的道理.(1)一个三位数能否被3整除,只要看这个数的各数位上的数字之和能否被3整除.你能说明其中的道理吗?(2)一个四位数能否被3整除是否也有这样的规律?请说明理由.三、课堂练习1.教材第98页“随堂练习”.四、课堂小结通过本节课的学习,你有什么收获?找规律的一般步骤和方法:面对具体问题,首先对它的特例进行分析,然后猜想其规律,再用适当的代数式进行表示,最后检验得出结论.五、课后作业教材第98~99页第1,2题.课堂上,通过对日历的观察与分析,从不同角度进行思考,去探索日历中数与数之间的变化规律,用本章学习过的代数式表示规律;再以玩游戏的方式,让学生进一步巩固发现规律、用代数式表示规律的方法,并运用发现的规律来解决一些简单的问题,使学生体会数学就是一个发现规律、运用规律的过程,以此来激发学生的学习兴趣.本节课让学生通过动手实践与合作交流来完成对规律的探索、表达和验证过程,让学生充分展示自我、表现自我,在学习的过程中学会竞争与合作,增强团队互助合作的精神,提高学生的整体数学水平.☆问题解决策略:归纳1.能够利用从特殊到一般的归纳方法,从而发现数学结论、解决数学问题;2.体验从特殊到一般,再到特殊的数学思想.重点学会从特殊到一般的归纳方法.难点利用从特殊到一般的归纳方法解决问题.一、导入新课走近游乐园(1)一首永远唱不完的儿歌,你能用字母表示这首儿歌吗?1只青蛙1张嘴,2只眼睛4。
华师版七年级数学上册作业课件(HS)第三章 整式的加减 列代数式 用字母表示数

A.(m-2)元 B.(m+2)元
C.(m2 )元
D.2m 元
4.(3分)两个数的和是30,其中一个数用字母x表示,那么另外一个数是( D )
A.30x
B.30+x
C.x-30 D.30-x
5.(3分)教室内有m排座位,每排有n个座位,则这个教室共有多少个座位( A )
A.mn个
B.(m+n)个
C.(m-n)个 D.(2m+2n)个
数学 七年级上册 华师版
第三章 整式的加减
3.1 列代数式
3.1.1 用字母表示数
1.(2分)-a(a是有理数)表示的数是( D )
A.正数
B.负数
C.正数或负数 D.任意有理数
2.(3分)长方形的周长为10,它的长是a,那么它的宽是( C a
D.5-2a
3.(3 分)(常州中考)已知苹果每千克 m 元,则 2 千克苹果共多少元?( D )
7.(3分)一列火车从甲站出发,5小时后到达距离甲站m千米的乙站,则这列火 车的平均速度是m_5___千米/时.
8.(3 分)下列各式:①141 y;②2·3;③a-b÷c;④20%x;⑤4x ;⑥x-5. 其中不符合代数式书写要求的有( C )
A.5 个 B.4 个 C.3 个 D.2 个
9.(3 分)(大庆中考)某商品打七折后价格为 a 元,则原价为( B )
解:(1)阴影部分的面积为12 ×2×(2+x)+12 x2=2+x+12 x2 (2)当 x=5 时,2+x+12 x2=2+5+12.5=19.5,即阴影部分的面积为 19.5
A.a 元
B.170 a 元
C.30%a 元
D.170 a 元
10.(12分)用字母表示图中阴影部分的面积.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数式课标
要求
能正确书写代数式
学情分析学生们在小学的学习中已经学习了小学文字题,本节课让学生们从小学文字题的基础上出发,来进一步学习代数式,为今后继续学习做知识储备
教学目标1.了解代数式的定义,能根据简单的数量关系列代数式;
2.能正确书写代数式;
3.能解释一些简单代数式的实际背景或几何意义.
重点
正确书写代数式.
难点
解释一些简单代数式的实际背景或几何意义.
教学过程情
境
导
入
一、知识准备与回顾
【导入设计】
1.若a表示一个有理数,则a的相反数是,a的绝对值是.
2.商店运来一批梨,共9箱,每箱n个,则共有个梨.
3.若甲数是乙数的2倍,设甲数为x,则乙数为.
学生活动
学生回答:情境
导入的3个问
题,教师并将结
论板书在黑板
上。
教学(1)某种西瓜的单价为4元/千克,则购置n千克需要元.
支铅笔共需元
,b
2
1
,(
2
1
,
t
1500
等,它
们都是和
用连结所成的式子,称为代数式
单独一个或一个也是代数式
)代数式中出现的乘号,通常写作或省略不写,如常写作
或;
(2)数字与字母相乘时,数字写在字母,如6b一般不写作b6;
)除法运算写成形式,如通常写作;
)带分数与字母相乘要写成;
)加法和减法形式即(和差形式)必须.
______ ;
,还剩元;
(3)某机关原有工作人员m人,抽调20%的工作人员下基层工作,则有___ ___
教师强调代数
新知呈现结合你的生活经验对下列代数式作出具体的解释:
(1)a-b(2)a b
(3)代数式:10x+5y表示的实际意义是什么?
同步练习:
1.填空:
(1)a千克含盐为10%的盐水中含盐_________千克;
(2)某同学军训期间打靶成绩为10环、8环、8环、7环、a环,则他的平均成绩为
____________ 环;
(3)甲每小时走a千米,乙每小时走b千米,两人同时同地出发同向行走,t小时后,
他们之间的距离为;
2.对下列代数式做出具体解释:
(1)5x;(2)
60
s
三、知识归纳
在前面出现了b,b
2
1
,b
a+,ab,9.6,4.8n,h
b
a)
(
2
1
+,5m-2m,
t
1500
等,它
们都是和
用连结所成的式子,称为代数式.
单独一个或一个也是代数式.
学生独立完成
同步练习题,师
生共同纠错,并
确定正确结论。
课堂
小结
本节课我们学习了那些知识,同学们都有哪些收获。
当堂检测四、当堂自测
1. 在
5
s
,a,x+y=5,(a+b)2≥0,5中,代数式有()(A)1个. (B)2个. (C)3个. (D)4个.
2.在式子1
5.0+
xy,2÷x,)
(
2
1
y
x+,3a,
2
1
2
-a b中,符合代数式书写要求的有()(A)1个. (B)2个. (C)3个. (D)4个.
3.“a的2倍与b的和”用代数式表示是()
(A)a2+b . (B)2a+b.
(C)2(a+b). (D)a+2b.
4.代数式“2(x+y)”表示的意义是()(A)x的2倍与y的和. (B)x与y的2倍的和.
(C)x与y的和的2倍. (D)x与y的和的平方.
5.某商店钢笔每枝a元,铅笔每枝b元,小明买了3枝钢笔和2枝铅笔,应付元. 6.点A,B在数轴上对应的实数分别m、n,则A,B间的距离是.(用含m,n的式子表示)
7.在m+16n,a
2
1
-, 0,x=5, 3(a-1), a-b≤2中,不是代数式的有个.
8.将下列代数式写成规则形式:
a×b= ;4÷a= ;
y
x2⨯= ;5⨯a= .
9.试根据生活经验,对下列代数式做出解释.
找规律:下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n幅图中共有菱形个.
教学准备教师
准备
多媒体、导学案
学生
准备
教材练习本笔
板书设计板书设计
3.1.2 代数式
在前面出现了b,b
2
1
,b
a+,ab,9.6,4.8n,h
b
a)
(
2
1
+,5m-2m,
t
1500
等,它们都是和用连结所成的式子,称为代数式.
单独一个或一个也是代数式.
副板书
例2:用代数式表示下列问题的量
(1)长方形的长与宽分别为a cm、b cm,则该长方形的周长为______ ;
(2)开学时爸爸给小强a元,小强买文具用去b元(a>b),还剩元;
(3)某机关原有工作人员m人,抽调20%的工作人员下基层工作,则有___ ___人留在该机关工作;(4)甲每小时走a千米,乙每小时走b千米,两人同时同地出发反向行走,t小时后,他们之间的距离为.
1 2
…
3 n
……。