重难点04 平抛运动与圆周运动(教师版含解析)
平抛运动、圆周运动的临界问题 Word版含解析

[A组·基础题]1. 如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g取10 m/s2.则ω的最大值是( )A. 5 rad/s B. 3 rad/sC.1.0 rad/s D.5 rad/s2. 一圆盘可以绕其竖直轴在水平面内转动,圆盘半径为R,甲、乙两物体的质量分别为M与m(M>m),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为l(l<R)的轻绳连在一起,如图所示,若将甲物体放在转轴的位置上,甲、乙之间接线刚好沿半径方向拉直,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过( )A.μ(M-m)gml B.μ(M-m)gMlC.μ(M+m)gMl D.μ(M+m)gml3. (2019·河南中原名校考评)如图所示,半径分别为R、2R的两个水平圆盘,小圆盘转动时会带动大圆盘不打滑的一起转动.质量为m的小物块甲放置在大圆盘上距离转轴R处,质量为2m的小物块放置在小圆盘的边缘处.它们与盘面间的动摩擦因数相同,当小圆盘以角速度转动时,两物块均相对圆盘静止,设最大静摩擦力等于滑动摩擦力,下列说法正确的是( )A .二者线速度大小相等B .甲受到的摩擦力大小为14mω2RC .在ω逐渐增大的过程中,甲先滑动D .在ω逐渐增大但未相对滑动的过程中,物块所受摩擦力仍沿半径指向圆心4. (2018·广东七校联考)如图所示,半径为R 的圆轮在竖直面内绕O 轴匀速转动,轮上A 、B 两点各粘有一小物体,当B 点转至最低位置时,此时O 、A 、B 、P 四点在同一竖直线上,已知:OA =AB ,P 是地面上的一点.此时A 、B 两点处的小物体同时脱落,最终落到水平地面上同一点.不计空气阻力,则OP 的距离是( )A.76RB .52RC .5RD .7R5.(多选) 水平面上有倾角为θ、质量为M 的斜面体,质量为m 的小物块放在斜面上,现用一平行于斜面、大小恒定的拉力F 作用于小物块上,绕小物块旋转一周,这个过程中斜面体和小物块始终保持静止状态.下列说法中正确的是( )A .小物块受到斜面的最大摩擦力为F +mg sin θB .小物块受到斜面的最大摩擦力为F -mg sin θC .斜面体受到地面的最大摩擦力为FD .斜面体受到地面的最大摩擦力为F cos θ6.(多选) (2018·山西省吕梁市期中)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是( )A.小球通过最高点时的最小速度v min=g(R+r)B.小球通过最高点时的最小速度v min=0C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力7. 如图所示,水平屋顶高H=5 m,围墙高h=3.2 m,围墙到房子的水平距离L =3 m,围墙外空地宽x=10 m,为使小球从屋顶水平飞出落在围墙外的空地上,g取10 m/s2.求:(1)小球离开屋顶时的速度v0的大小范围;(2)小球落在空地上的最小速度.[B组·能力题]8. (多选)如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到轴的距离为物块A到轴距离的两倍,现让该装置从静止开始转动,使转速逐渐慢慢增大,在从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是( )A.A受到的静摩擦力一直增大B.B受到的静摩擦力先增大后保持不变C.A受到的静摩擦力先增大后减小再增大D.B受到的合外力先增大后保持不变9. (多选)(2016·浙江卷)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R=90 m的大圆弧和r=40 m的小圆弧,直道与弯道相切.大、小圆弧圆心O、O′距离L=100 m.赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍,假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动,要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g=10 m/s2,π=3.14),则赛车( )A.在绕过小圆弧弯道后加速B.在大圆弧弯道上的速率为45 m/sC.在直道上的加速度大小为5.63 m/s2D.通过小圆弧弯道的时间为5.58 s10.如图为“快乐大冲关”节目中某个环节的示意图,参与游戏的选手会遇到一个人造山谷AOB,AO是高h=3 m的竖直峭壁,OB是以A点为圆心的弧形坡,∠OAB=60°,B点右侧是一段水平跑道.选手可以自A点借助绳索降到O点后再爬上跑道,但身体素质好的选手会选择自A点直接跃上跑道.选手可视为质点,忽略空气阻力,重力加速度g=10 m/s2.(1)若选手以速度v0水平跳出后,能跳在水平跑道上,求v0的最小值;(2)若选手以速度v1=4 m/s水平跳出,求该选手在空中的运动时间.11. (2017·河南开封模拟)如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN调节其与水平面所成的倾角.板上一根长为l=0.60 m的轻细绳,它的一端系住一质量为m的小球P,另一端固定在板上的O点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN拉直,然后给小球一沿着平板并与轻绳垂直的初速度v0=3.0 m/s.若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g=10 m/s2)。
2021学年高一下学期物理人教版(2019)必修第二册习题教学课件6.4专题训练3平抛运动与圆周运动

答案 A 解析 根据平抛运动的规律知 h=12gt2,x=v0t,当 t=4nωπ(n =1,2,3…),则 x=r+2R=5r,若 t=2(2nπω-π)(n=1,2, 3…),则 x=r,即4πωn=5vr0或者2(2nπω-π)=vr0(n=1,2,3…), 若 M 盘转动角速度 ω=2πr v0,则 x=r,n=1,时间 t=vr0,h= 12gt2=12g·vr022,故 A 项正确;根据 A 项分析知,只要满足 ω=
一、选择题 1.如图所示,小球沿水平面通过 O 点进入 半径为 R 的半圆弧轨道后恰能通过最高点 P, 然后落回水平面,不计一切阻力,下列说法正 确的是( )
A.小球落地点离 O 点的水平距离为 R B.小球落地点离 O 点的水平距离为 2R C.小球运动到半圆弧最高点 P 时向心力恰好为 0 D.若将半圆弧轨道上部的14圆弧截去,其他条件不变,则小 球能达到的最大高度比 P 点低
答案 B 解析 若小球恰能通过最高点 P,则在最高点 P 时重力恰好 提供向心力,故 C 项错误;由圆周运动的知识可得 mg=mvR2, 小球离开 P 点后做平抛运动,x=vt,2R=12gt2,解得 x=2R,故 A 项错误,B 项正确;若将圆弧轨道上部的14圆弧截去,其他条 件不变,则小球离开轨道后做竖直上抛运动,达到最大高度时速 度为 0,故能达到的最大高度比 P 点高,故 D 项错误.
2(2n-r1)πv0(n=1、2、3…)即可,故 B 项错误;根据 A 项分
析知,角速度满足
ω
=
4πnv0 5r
(n
=
1
、
2
、
3…)
或
者
ω=
2(2nπr-π)·v0(n=1,2,3…),故 C 项错误;根据以上分
学案4平抛运动与圆周运动课件

平抛运动与圆周运动的综合习题解析
总结词
理解平抛运动与圆周运动的联系是解决相关习题的关 键。
详细描述
在某些问题中,平抛运动和圆周运动可能同时出现,需 要综合考虑两种运动的性质和规律。例如,在研究卫星 的运动时,就需要同时考虑平抛运动和圆周运动的影响 。
平抛运动与圆周运动的综合习题解析
总结词
掌握综合习题的解析方法是解决相关习题的重要手段。
详细描述
对于涉及平抛运动和圆周运动的综合问题,需要先对问题进行整体分析,明确 问题的物理过程和所涉及的物理量,然后根据平抛运动和圆周运动的性质选择 合适的计算方法,最后得出结果。
THANKS FOR WATCHING
感谢您的观看
学案4平抛运动与圆周运动课件
目 录
• 平抛运动 • 圆周运动 • 平抛运动与圆周运动的比较 • 平抛运动与圆周运动的联系 • 平抛运动与圆周运动的习题解析
01 平抛运动
平抛运动的定义
总结词
平抛运动是一种理想化的物理模型,描述物体在只受重力作用下的运动轨迹。
详细描述
平抛运动是指一个物体在水平方向上以一定速度被抛出,同时在竖直方向上仅 受重力作用而产生的运动。在平抛过程中,物体的水平方向上做匀速直线运动, 而竖直方向上做自由落体运动。
圆周运动的习题解析
总结词
理解圆周运动的定义和性质是解决相 关习题的基础。
详细描述
圆周运动是指一个物体绕着某一点做 圆周运动。其性质包括线速度、角速 度、周期、向心加速度等物理量。
圆周运动的习题解析
总结词
掌握圆周运动的计算方法是解决相关习题的关键。
详细描述
根据圆周运动的性质,可以通过计算线速度、角速度、 周期、向心加速度等物理量来解决问题。常用的计算方 法有向心加速度公式、线速度公式和角速度公式等。
2025新高考物理抛体运动的9种情景解读+训练(解析版)

抛体运动的9种情景解读+训练(解析版)目录情景1平抛运动+斜面 1情景2平抛运动+圆弧面 15情景3平抛运动+竖直面 23情景4抛体运动+体育 29情景5抛体运动+娱乐 43情景6抛体运动+机械能和极值 55情景7平抛运动+相遇 69情景8抛体运动+竖直面内圆周运动 76情景9喷泉 84情景1平抛运动+斜面【情景解读】情景图示解题方法基本规律运动时间分解速度,构建速度的矢量三角形水平:v x=v0竖直:v y=gt合速度:v=v x2+v y2由tanθ=v0v y=v0gt得t=v0g tanθ分解位移,构建位移的矢量三角形水平:x=v0t竖直:y=12gt2合位移:x合=x2+y2由tanθ=yx=gt2v0得t=2v0tanθg在运动起点同时分解v0、g由0=v1-a1t,0-v21=-2a1d得t=v0tanθg,d=v20sinθtanθ2g分解平行于斜面的速度v由v y=gt得t=v0tanθg【针对性训练】1.(2024湖南岳阳5月三模)如图所示,光垂直照射倾斜木板,把一个质量为0.2kg的小球从倾斜木板顶端水平弹射出来做平抛运动,小球刚好落在倾斜木板底端。
然后使用手机连续拍照功能,拍出多张照片记录小球此运动过程。
通过分析照片可以得到小球的飞行时间为0.6s,小球与其影子距离最大时,影子A距木板顶端和底端的距离之比为7:9,重力加速度g=10m/s2。
下列说法不正确的是()A.飞行过程中,重力对小球做的功为3.6JB.小球与影子距离最大时,刚好是飞行的中间时刻C.木板的斜面倾角θ=37°D.木板的长度为3.6m【参考答案】C【名师解析】小球做平抛运动,竖直方向做自由落体运动,根据匀变速直线运动位移时间公式有h=12gt2=12×10×0.62m=1.8m根据功的公式,可得飞行过程中,重力对小球做的功为W G =mgh =0.2×10×1.8J =3.6J 故A 正确;经过分析可知,当小球与影子距离最大时,此时小球的速度方向与斜面平行,即速度方向与水平方向的夹角为θ,此时竖直方向的速度为v y =v 0tan θ当小球落到斜面底端时,此时小球位移与水平方向的夹角为θ,令此时速度方向与水平方向的夹角为α,则有tan α=gt v 0=12gt 212v 0t =2h x =2tan θ此时竖直方向的速度为v y 1=v 0tan α=2v 0tan θ则有v y v y 1=gt 1gt 2=v 0tan θ2v 0tan θ=12则有t 1t 2=12故小球与影子距离最大时,刚好是飞行的中间时刻,故B 正确;将小球的运动沿斜面与垂直于斜面分解,建立直角坐标系如图所示由题意可知OA :AB =7:9则有OA :OB =7:16可得OA =v 0cos θt 1+12g sin θt 12OB =v 0cos θt 2+12g sin θt 22又由于v y =v 0sin θ-g cos θt 1则y 方向速度减为零需要的时间为t1=v 0sin θg cos θ结合上述有t 2=2t 1联立可得OA=v02sinθg1+12tan2θOB=2v02sinθg1+tan2θ可得tanθ=33则有θ=30°故木板的长度为OB=hsinθ=3.6m故C错误,D正确。
(完整版)平抛运动知识点

5.2 抛体运动的规律一、平抛运动:将物体以必定的初速度沿_水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动,叫做平抛运动。
1、受力特色:只受重力,因此加快度为重力加快度,加速度方向竖直向下。
2、性质:是加快度为重力加快度的匀变速曲线曲线运动。
二、运动规律1、水平方向上受力为零, 因此做匀速直线运动运动。
故水均分速度 v xv 0 ,分位移 x v 0 t 。
2、竖直方向上只受重力,且初速度为零。
因此做自由落体运动运动。
故竖直分速度 v y gt ,分位移 y1 gt 223、合运动:速度大小v t2 2v 02(gt )2v y gt v xv y方向 tanv 0v 02 2212 2 y 1gt24、合位移大小 S2gtxy(v 0t )(gt )方向 tanv 0t 2v 02x三、平抛运动的几个结论1、运动时间h 1 gt 2 → t2h 落地时间由着落的高度h 决定 .2 g2、落地的水平距离 x v 0t v 0 2hv 0和 h 共同决定 .g 水平位移由3、落地时的速度 v t v x 2v y2v 02 2gh 落地速度由 v 0和 h 共同决定 .4、相等时间间隔t 内抛体运动的速度改变量同样 . v gt , 方向竖直向下 .5、速度方向偏转角与位移方向偏转角的关系v y gt1gt 2gttantan2 tan2 tanv xv 0v 0t2v 0PAPAAO 2 AOO ′是 AO 中点。
AO 2AO【切记】:速度方向的反向延伸线与X 轴的交点为水平位移的中点5.4 圆周运动1.描绘圆周运动的物理量( 1)线速度①线速度的大小:做圆周运动的物体经过的弧长与所用时间的比值叫线速度。
②物理意义:描绘质点沿圆周运动的快慢 .③线速度的大小计算公式v s ,则运动的弧长为2 R ,因此此假如时间是一个周期(一个圆周)2 R t时线速度的公式为 v。
T④线速度的方向:圆周上该点的切线方向,时辰与半径垂直。
2021物理统考版二轮复习学案:专题复习篇 专题1 第3讲 抛体运动与圆周运动含解析

2021高考物理统考版二轮复习学案:专题复习篇专题1 第3讲抛体运动与圆周运动含解析抛体运动与圆周运动[建体系·知关联][析考情·明策略]考情分析近几年高考对本讲的考查集中在平抛运动与圆周运动规律的应用,命题素材多与生产、生活、体育运动学结合,题型以选择题为主.素养呈现1.运动合成与分解思想2。
平抛运动规律3.圆周运动规律及两类模型素养落实1.掌握渡河问题、关联速度问题的处理方法2。
应用平抛运动特点及规律解决相关问题3.掌握圆周运动动力学特点,灵活处理相关问题考点1|曲线运动和运动的合成与分解1.曲线运动的分析(1)物体的实际运动是合运动,明确是在哪两个方向上的分运动的合成.(2)根据合外力与合初速度的方向关系判断合运动的性质。
(3)运动的合成与分解就是速度、位移、加速度等的合成与分解,遵守平行四边形定则。
2.渡河问题中分清三种速度(1)合速度:物体的实际运动速度。
(2)船速:船在静水中的速度。
(3)水速:水流动的速度,可能大于船速。
3.端速问题解题方法把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解,常见的模型如图所示。
甲乙丙丁[典例1]如图所示的机械装置可以将圆周运动转化为直线上的往复运动.连杆AB、OB可绕图中A、B、O三处的转轴转动,连杆OB在竖直面内的圆周运动可通过连杆AB使滑块在水平横杆上左右滑动。
已知OB杆长为L,绕O点做逆时针方向匀速转动的角速度为ω,当连杆AB与水平方向夹角为α,AB杆与OB杆的夹角为β时,滑块的水平速度大小为()A.错误!B.错误!C.错误!D.错误![题眼点拨]①“连杆OB在竖直平面的圆周运动"表明B点沿切向的线速度是合速度,可沿杆和垂直杆分解.②“滑块在水平横杆上左右滑动”表明合速度沿水平横杆。
D[设滑块的水平速度大小为v,A点的速度的方向沿水平方向,如图将A点的速度分解:滑块沿杆方向的分速度为v A分=v cos α,B点做圆周运动,实际速度是圆周运动的线速度,可以分解为沿杆方向的分速度和垂直于杆方向的分速度,设B的线速度为v′,则v′=Lω,v B=v′·cos θ=v′cos(β-90°)=Lωsin β,又二者沿分杆方向的分速度是相等的,即v A分=v B分,联立解得v=错误!,故本题正确选项为D。
高考物理一轮复习 专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(练)(含解析)-人教版高

专题22 应用力学两大观点分析平抛运动与圆周运动组合问题1.如下列图,AB是倾角为30θ=︒的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R,一个质量为m的物体〔可以看做质点〕从直轨道上的P点由静止释放,结果它能在两轨道间做往返运动。
P点与圆弧的圆心O等高,物体与轨道AB间的动摩擦因数为μ。
求:〔1〕物体做往返运动的整个过程中在AB轨道上通过的总路程;〔2〕最终当物体通过圆弧轨道最低点E时,对圆弧轨道的压力;〔3〕为使物体能顺利到达圆弧轨道的最高点D,释放点距B点的距离L′至少多大。
【答案】〔1〕Rμ;〔2〕(33)mg-;〔3〕(33)13Rμ+-【解析】【名师点睛】此题综合应用了动能定理求摩擦力做的功、圆周运动与圆周运动中能过最高点的条件,对动能定理、圆周运动局部的内容考查的较全,是圆周运动局部的一个好题.①利用动能定理求摩擦力做的功;②对圆周运动条件的分析和应用;③圆周运动中能过最高点的条件.2.如下列图,足够长的光滑斜面与水平面的夹角为037θ=,斜面下端与半径0.50R m =的半圆形轨道平滑相连,连接点为C ,半圆形轨道最低点为B ,半圆形轨道最高点为A ,sin 0.637=,0cos 0.837=,当地的重力加速度为210/g m s =。
〔1〕假设将质量为0.10m kg =的小球从斜面上距离C 点为 2.0L m =的斜面上D 点由静止释放,如此小球到达半圆形轨道最低点B 时,对轨道的压力多大?〔2〕要使小球经过最高点A 时不能脱离轨道,如此小球经过A 点时速度大小应满足什么条件? 〔3〕当小球经过A 点处的速度大小为多大时,小球与斜面发生一次弹性碰撞后还能沿原来的运动轨迹返回A 点?【答案】〔1〕 6.2N N = 〔2〕 2/C v m s ≥ 〔3〕12/C v m s =如此x 轴方向的分加速度为37x a gsin =-°,y 轴方向的分加速度为37y a gcos =︒且有0x A v a t +=,2122y R a t =联立解得 12/C v m s =【名师点睛】解决此题的关键理清物块的运动过程,把握隐含的临界条件,明确小球到达A 点的临界条件是轨道对小球没有作用力,由重力的径向分力提供向心力.小球只有垂直撞上斜面,才能沿原路返回.对斜抛要灵活选择坐标系,使得以简化。
【专题3】平抛运动与圆周运动(含答案)

高考定位平抛运动和圆周运动是典型的曲线运动,而处理平抛运动的方法主要是运动的合成与分解,因此运动的合成与分解、平抛运动、圆周运动是每年必考的知识点.复习中要注意理解合运动与分运动的关系,掌握平抛运动和圆周运动问题的分析方法,能运用平抛运动知识和圆周运动知识分析带电粒子在电场、磁场中的运动.考题1对运动的合成和分解的考查例1(单选)(2014·四川·4)有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为()A.k vk2-1B.v1-k2C.k v1-k2D.vk2-1审题突破根据去程时船头指向始终与河岸垂直,结合运动学公式,可列出河宽与船速的关系式,当回程时路线与河岸垂直,可求出船过河的合速度,从而列出河宽与船速度的关系,进而即可求解.解析设大河宽度为d,小船在静水中的速度为v0,则去程渡河所用时间t1=dv0,回程渡河所用时间t 2=dv20-v2.由题知t1t2=k,联立以上各式得v0=v1-k2,选项B正确,选项A、C、D错误.答案 B1.(单选)如图1所示,细绳一端固定在天花板上的O点,另一端穿过一张CD光盘的中央小孔后拴着一个橡胶球,橡胶球静止时,竖直悬线刚好挨着水平桌面的边沿.现将CD光盘按在桌面上,并沿桌面边缘以速度v匀速移动,移动过程中,CD光盘中央小孔始终紧挨桌面边线,当悬线与竖直方向的夹角为θ时,小球上升的速度大小为()图1A.v sin θB.v cos θC.v tan θD.v cot θ答案 A解析由题意可知,线与光盘的交点参与两个运动,一是逆着线的方向运动,二是垂直线的方向运动,则合运动的速度大小为v,由数学三角函数关系,则有:v线=v sin θ;而沿线方向的速度大小,即为小球上升的速度大小,故A正确,B、C、D错误.2.(单选)质量为2 kg的质点在竖直平面内斜向下做曲线运动,它在竖直方向的速度图象和水平方向的位移图象如图2甲、乙所示.下列说法正确的是()图2A.前2 s内质点处于超重状态B.2 s末质点速度大小为4 m/sC.质点的加速度方向与初速度方向垂直D.质点向下运动的过程中机械能减小答案 D解析由题图甲知,质点在竖直方向向下加速运动,即加速度的方向向下,故处于失重状态,所以A错误;2 s末v y=4 m/s,水平方向匀速运动v x=43m/s,故此时质点的速度v=v2x+v2y=4103m/s,可得B错误;质点的加速度竖直向下,初速度斜向下,故不垂直,所以C错误;由题图甲可求加速度a =1 m/s 2,根据牛顿第二定律可得mg -F f =ma ,即质点在下落的过程中受竖直向上的力,该力做负功,所以质点的机械能减小,所以D 正确.1.分运动与合运动具有等时性和独立性.2.运动的合成与分解属矢量的合成分解,满足平行四边形、三角形和正交分解.3.分析运动的合成与分解问题,要注意运动的分解方向,一般情况按实际运动效果进行分解,切记不可按分解力的思路来分解运动.考题2 对平抛运动的考查例2 (2014·浙江·23)如图3所示,装甲车在水平地面上以速度v 0=20 m/s 沿直线前进,车上机枪的枪管水平,距地面高为h =1.8 m .在车正前方竖直立一块高为两米的长方形靶,其底边与地面接触.枪口与靶距离为L 时,机枪手正对靶射出第一发子弹,子弹相对于枪口的初速度为v =800 m/s.在子弹射出的同时,装甲车开始匀减速运动,行进s =90 m 后停下.装甲车停下后,机枪手以相同方式射出第二发子弹.(不计空气阻力,子弹看成质点,重力加速度g =10 m/s 2)图3(1)求装甲车匀减速运动时的加速度大小;(2)当L =410 m 时,求第一发子弹的弹孔离地的高度,并计算靶上两个弹孔之间的距离; (3)若靶上只有一个弹孔,求L 的范围.审题突破 (1)由匀变速直线运动规律求解.(2)子弹做平抛运动,选地面为参考系,求解第一发子弹的弹孔离地的高度;数学关系结合平抛规律求解靶上两个弹孔之间的距离;(3)若靶上只有一个弹孔,说明第一颗子弹没有击中靶,第二颗子弹能够击中靶,平抛运动规律求解L 的范围.解析 (1)装甲车的加速度a =v 202s =209 m/s 2(2)第一发子弹飞行时间t 1=Lv +v 0=0.5 s第一个弹孔离地高度h 1=h -12gt 21=0.55 m第二个弹孔离地的高度h 2=h -12g (L -sv )2=1.0 m两弹孔之间的距离Δh =h 2-h 1=0.45 m(3)若使第一发子弹恰好打到靶的下沿,装甲车离靶的距离为L 1L 1=(v 0+v ) 2hg =492 m若使第二发子弹恰好打到靶的下沿,装甲车离靶的距离为L 2L 2=v 2hg+s =570 m为使靶上只有一个弹孔,则此弹孔一定是第二发子弹在靶上留下的弹孔 故L 的范围为492 m<L ≤570 m答案 (1)209 m/s 2 (2)0.55 m 0.45 m(3)492 m<L ≤570 m3.(单选)如图4所示,可视为质点的小球位于半圆柱体左端点A 的正上方某处,以初速度v 0水平抛出,其运动轨迹恰好与半圆柱体相切于B 点,过B 点的半圆柱体半径与水平面夹角为30°,则半圆柱体的半径为(不计空气阻力,重力加速度为g )( )图4A.23v 203gB.23v 209gC.(43-6)v 20gD.(4-23)v 20g答案 C解析 在B 点,据题可知小球的速度方向与水平方向成60°角,由速度的分解可知,竖直分速度大小v y =v 0tan 60°=3v 0,v 0t =R +R cos 30°,v y =gt ,得R =(43-6)v 20g ,故选C.4.(单选)(2014·新课标Ⅱ·15)取水平地面为重力势能零点.一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等.不计空气阻力.该物块落地时的速度方向与水平方向的夹角为( ) A.π6 B.π4 C.π3 D.5π12答案 B解析 设物块水平抛出的初速度为v 0,高度为h ,由题意知12m v 20=mgh ,得:v 0=2gh .物块在竖直方向上的运动是自由落体运动,落地时的竖直分速度v y =2gh =v x =v 0,则该物块落地时的速度方向与水平方向的夹角θ=π4,故选项B 正确,选项A 、C 、D 错误.5.(单选)如图5所示,某人向对面的山坡上水平抛出两个质量不等的石块,分别落到A 、B 两处.不计空气阻力,则落到B 处的石块( )图5A .初速度大,运动时间短B .初速度大,运动时间长C .初速度小,运动时间短D .初速度小,运动时间长 答案 A解析 由于B 点在A 点的右侧,说明水平方向上B 点的距离更远,而B 点距抛出点的高度较小,故运动时间较短,二者综合说明落在B 点的石块的初速度较大,故A 正确,B 、C 、D 错误.1.平抛运动、类平抛运动处理的方法都是采用运动分解的方法,即分解为沿初速度方向的匀速直线运动和垂直于初速度方向的初速度为零的匀加速直线运动. 2.在平抛(类平抛)运动中要注意两个推论,在解答选择题时常用到:(1)做平抛(类平抛)运动的物体任意时刻速度的反向延长线一定通过此时水平位移的中点,如图甲所示.(2)如图乙,设做平抛(类平抛)运动的物体在任意时刻、任意位置处瞬时速度与水平方向的夹角为θ,位移与水平方向的夹角为φ,则有tan θ=2tan φ.考题3 对圆周运动的考查例3 如图6所示,在竖直平面内有xOy 坐标系,长为l 的不可伸长细绳,一端固定在A 点,A 点的坐标为(0,l2),另一端系一质量为m 的小球.现在x 坐标轴上(x >0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.图6(1)当钉子在x =54l 的P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2)为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.审题突破 (1)由数学知识求出小球做圆周运动的轨道半径,由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围.解析 (1)当钉子在x =54l 的P 点时,小球绕钉子转动的半径为:R 1=l - (l2)2+x 2小球由静止到最低点的过程中机械能守恒:mg (l 2+R 1)=12m v 21在最低点细绳承受的拉力最大,有:F -mg =m v 21R 1联立求得最大拉力F =7mg .(2)小球绕钉子做圆周运动恰好到达最高点时,有:mg =m v 22R 2运动中机械能守恒:mg (l 2-R 2)=12m v 22钉子所在位置为x ′= (l -R 2)2-(l2)2联立解得x ′=76l 因此钉子所在位置的范围为76l ≤x ≤54l . 答案 (1)7mg (2)76l ≤x ≤54l6.(2014·新课标Ⅰ·20)如图7所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )图7A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω= kg2l 是b 开始滑动的临界角速度D .当ω= 2kg3l 时,a 所受摩擦力的大小为kmg答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω2a l ,当f a =kmg 时,kmg =mω2a l ,ωa = kg l ;对木块b :f b =mω2b ·2l ,当f b =kmg 时,kmg =mω2b ·2l ,ωb= kg 2l ,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b=mω2·2l ,f a <f b ,选项B 错误;当ω= kg 2l 时b 刚开始滑动,选项C 正确;当ω= 2kg3l时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误.7.(单选)(2014·新课标Ⅱ·17)如图8所示,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )图8A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg 答案 C解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误.1.圆周运动的基本规律(1)向心力:F =mω2r =m v 2r =m (2πT )2r =m (2πf )2r =m (2πn )2r .(2)向心加速度①大小:a =ω2r =v 2r =(2πT)2r =(2πf )2r =(2πn )2r .②注意:当ω为常数时,a 与r 成正比;当v 为常数时,a 与r 成反比;若无特定条件,不能说a 与r 成正比还是成反比.考题4 平抛与圆周运动组合问题的综合分析例4 (17分)如图9所示,一小物块自平台上以速度v 0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h =0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离B 点所在平面的高度H =1.2 m .有一半径为R 的光滑圆轨道与斜面AB 在B 点相切连接,已知cos 53°=0.6,sin 53°=0.8,g 取10 m/s 2.求:图9(1)小物块水平抛出的初速度v 0是多少;(2)若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.解析 (1)小物块自平台做平抛运动,由平抛运动知识得:v y =2gh =2×10×0.032 m/s =0.8 m/s(2分)由于物块恰好沿斜面下滑,则tan 53°=v y v 0(3分)得v 0=0.6 m/s.(2分)(2)设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为F N .则由向心力公式得:F N +mg =m v 2R(2分)由动能定理得:mg (H +h )-μmgH cos 53°sin 53°-mg (R +R cos 53°)=12m v 2-12m v 20(5分)小物块能过圆轨道最高点,必有F N ≥0(1分) 联立以上各式并代入数据得:R ≤821 m ,即R 最大值为821m .(2分)答案 (1)0.6 m/s (2)821m(2014·福建·21)(19分)如图10所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.图10(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R)答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得v B =2gR ③ 从A 到B ,根据动能定理,有mg (H -R )+W f =12m v 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12m v 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR ⑦N =0⑧cos θ=hR⑨由⑥⑦⑧⑨式解得h =23R ⑩知识专题练 训练3题组1 运动的合成和分解1.(单选)如图1所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M 点出发经P 点到达N 点,已知弧长MP 大于弧长PN ,质点由M 点运动到P 点与从P 点运动到N 点所用的时间相等.则下列说法中正确的是( )图1A .质点从M 到N 过程中速度大小保持不变B .质点在这两段时间内的速度变化量大小相等,方向相同C .质点在这两段时间内的速度变化量大小不相等,但方向相同D .质点在M 、N 间的运动不是匀变速运动 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律F =ma ,所以加速度不变,根据Δv =a Δt 可得在相同时间内速度的变化量相同,故B 正确,C 错误;因加速度不变,故质点做匀变速运动,所以D 错误.2.(单选) 公交车是人们出行的重要交通工具,如图2所示是公交车内部座位示意图,其中座位 A 和 B 的边线和车前进的方向垂直,当车在某一站台由静止开始匀加速启动的同时,一个乘客从A 座位沿 AB 连线相对车以2 m/s 的速度匀速运动到 B ,则站在站台上的人看到该乘客( )图2A .运动轨迹为直线B .运动轨迹为抛物线C .因该乘客在车上匀速运动,所以乘客处于平衡状态D .当车速度为5 m/s 时,该乘客对地速度为7 m/s 答案 B解析 人相对地面参与了两个方向的运动,一个是垂直于车身方向的匀速运动,一个是沿车身方向的匀加速直线运动,类似于一个物体做平抛运动,所以运动轨迹是抛物线,故A 错误,B 正确;乘客受到沿车身方向的合外力,处于非平衡状态,C 错误;速度的合成遵循平行四边形定则,当车速为5 m/s 时,乘客对地速度为29 m/s ,D 错误. 题组2 平抛运动3.(单选)如图3所示,x 轴在水平地面上,y 轴竖直向上,在y 轴上的P 点分别沿x 轴正方向和y 轴正方向以相同大小的初速度抛出两个小球a 和b ,不计空气阻力,若b 上升的最大高度等于P 点离地的高度,则从抛出到落地,有( )图3A .a 的运动时间是b 的运动时间的2倍B .a 的位移大小是b 的位移大小的2倍C .a 、b 落地时的速度相同,因此动能一定相同D .a 、b 落地时的速度不同,但动能可能相同 答案 D解析 设P 点离地面高度为h ,两小球的初速度大小为v 0,则a 落地的时间t a =2hg,a 的位移x a =h 2+(v 0t a )2;对b 分段求时间t b =v 0g +4h g ,又有h =v 202g,解得t a =(2-1)t b ,b 的位移x b =h ,a 的位移x a =5h ,故x ax b=5,所以A 、B 错误.由机械能守恒可知,a 、b 落地时速度大小相等,方向不同,若a 、b 质量相等,则动能相等,选项C 错误,D 正确. 4.(单选)如图4所示,一小球从一半圆轨道左端A 点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B 点.O 为半圆轨道圆心,半圆轨道半径为R ,OB 与水平方向夹角为60°,重力加速度为g ,则小球抛出时的初速度为()图4A. 3gR2 B. 33gR2C.3gR2D. 3gR3答案 B解析 飞行过程中恰好与半圆轨道相切于B 点,知速度与水平方向的夹角为30°设位移与水平方向的夹角为θ,则tan θ=tan 30°2=36因为tan θ=y x =y 32R ,则竖直位移y =3R 4,v 2y =2gy =3gR2.所以tan 30°=v yv 0,v 0=3gR 233=33gR2,故B 正确,A 、C 、D 错误. 5.如图5所示,水平地面上有一个坑,其竖直截面为半圆,O 为圆心,AB 为沿水平方向的直径.若在A 点以初速度v 1沿AB 方向平抛一小球,小球将击中坑壁上的最低点D 点;若A 点小球抛出的同时,在C 点以初速度v 2沿BA 方向平抛另一相同质量的小球并也能击中D 点.已知∠COD =60°,且不计空气阻力,则( )图5A .两小球同时落到D 点B .两小球在此过程中动能的增加量相等C .在击中D 点前瞬间,重力对两小球做功的功率不相等 D .两小球初速度之比v 1∶v 2=6∶3 答案 CD解析 由于两球做平抛运动下落的高度不同,则知两球不可能同时到达D 点;重力做功不等,则动能的增加量不等;在击中D 点前瞬间,重力做功的功率为P =mg v y =mg ·gt ,t 不等;设半圆的半径为R .小球从A 点平抛,可得R =v 1t 1,R =12gt 21,小球从C 点平抛,可得R sin 60°=v 2t 2,R (1-cos 60°)=12gt 22,联立解得v 1v 2=63,故D 正确.6.(单选)静止的城市绿化洒水车,由横截面积为S 的水龙头喷嘴水平喷出水流,水流从射出喷嘴到落地经历的时间为t ,水流落地点与喷嘴连线与水平地面间的夹角为θ,忽略空气阻力,以下说法正确的是( )A .水流射出喷嘴的速度为gt tan θB .空中水柱的水量为Sgt 22tan θC .水流落地时位移大小为gt 22cos θD .水流落地时的速度为2gt cot θ 答案 B解析 由题意知,水做平抛运动,θ为总位移与水平方向的夹角,tan θ=y x =gt2v x,可得水流射出喷嘴的速度为v x =gt 2tan θ,故A 错误;下落的高度y =12gt 2,水流落地时位移s =y sin θ=gt 22sin θ,所以C 错误;空中水柱的体积V =S v x t =Sgt 22tan θ,所以B 正确;水流落地时的速度v =(gt )2+v 2x=gt 1+14tan 2θ,所以D 错误.7.(单选)如图6所示,位于同一高度的小球A 、B 分别以v 1和v 2的速度水平抛出,都落在了倾角为30°的斜面上的C 点,小球B 恰好垂直打到斜面上,则v 1、v 2之比为( )图6A .1∶1B .2∶1C .3∶2D .2∶3 答案 C解析 小球A 做平抛运动,根据分位移公式,有: x =v 1t ① y =12gt 2② 又tan 30°=yx③联立①②③得:v 1=32gt ④ 小球B 恰好垂直打到斜面上,则有:tan 30°=v 2v y =v 2gt ⑤则得v 2=33gt ⑥由④⑥得:v 1∶v 2=3∶2.8.如图7所示,ab 为竖直平面内的半圆环acb 的水平直径,c 为环上最低点,环半径为R .将一个小球从a 点以初速度v 0沿ab 方向抛出,设重力加速度为g ,不计空气阻力,则( )图7A .当小球的初速度v 0=2gR2时,掉到环上时的竖直分速度最大 B .当小球的初速度v 0<2gR2时,将撞击到环上的圆弧ac 段C .当v 0取适当值,小球可以垂直撞击圆环D .无论v 0取何值,小球都不可能垂直撞击圆环 答案 ABD解析 当下落的高度为R 时,竖直分速度最大,根据R =12gt 2得,t =2R g ,则v 0=R t =2gR 2,故A 、B 正确;设小球垂直击中环,则其速度反向沿长线必过圆心,设其速度与水平方向的夹角为θ,R sin θ=12gt 2,R (1+cos θ)=v 0t ,且tan θ=gtv 0,可解得θ=0,但这是不可能的,故C错误,D 正确,故选A 、B 、D. 题组3 圆周运动9.(单选)如图8所示,质量相同的钢球①、②分别放在A 、B 盘的边缘,A 、B 两盘的半径之比为2∶1,a 、b 分别是与A 盘、B 盘同轴的轮,a 、b 轮半径之比为1∶2.当a 、b 两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为( )图8A .2∶1B .4∶1C .1∶4D .8∶1 答案 D解析 皮带传送,边缘上的点线速度大小相等,所以v a =v b ,因为a 轮、b 轮半径之比为1∶2,根据线速度公式v =ωr 得:ωa ωb =21,共轴的点,角速度相等,两个钢球的角速度分别与共轴轮子的角速度相等,则ω1ω2=21.根据向心加速度a =rω2,则a 1a 2=81,由F =ma 得F 1F 2=81,故D 正确,A 、B 、C 错误.10.(单选)利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图9所示,用两根长为L 的细线系一质量为m 的小球,两线上端系于水平横杆上的A 、B 两点,A 、B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为( )图9A .23mgB .3mgC .2.5mg D.73mg2答案 A解析 小球恰好过最高点时有:mg =m v 21R解得v 1=32gL ① 根据动能定理得:mg ·3L =12m v 22-12m v 21② 由牛顿第二定律得:3F T -mg =m v 2232L ③联立①②③得,F T =23mg 故A 正确,B 、C 、D 错误.11.(单选)(2014·安徽·19)如图10所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10m/s 2.则ω的最大值是( )图10A. 5 rad/sB. 3 rad/s C .1.0 rad/s D .0.5 rad/s 答案 C解析 当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r 解得ω=1.0 rad/s ,故选项C 正确.12.如图11所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面的倾角.板上一根长为l =0.6 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3 m/s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g =10 m/s 2)图11答案 α≤30°解析 小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mg sin α,小球在最高点时,由绳子的拉力和重力分力的合力提供向心力:F T +mg sin α=m v 21l①研究小球从释放到最高点的过程,据动能定理:-mgl sin α=12m v 21-12m v 20② 若恰好通过最高点绳子拉力F T =0,联立①②解得:sin α=v 203gl =323×10×0.6=12.故α最大值为30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤30°. 题组4 平抛与圆周运动组合问题的综合13.(2014·天津·9(1))半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v的方向相同,如图12所示.若小球与圆盘只碰一次,且落在A 点,重力加速度为g ,则小球抛出时距O 的高度h =________,圆盘转动的角速度大小ω=________.图12答案gR 22v 2 2n πv R(n =1,2,3,…) 解析 小球做平抛运动,在竖直方向:h =12gt 2①在水平方向R =v t ②由①②两式可得h =gR 22v2③小球落在A 点的过程中,OA 转过的角度 θ=2n π=ωt (n =1,2,3,…)④由②④两式得ω=2n πvR(n =1,2,3,…)14.一长l =0.80 m 的轻绳一端固定在O 点,另一端连接一质量m =0.10 kg 的小球,悬点O 距离水平地面的高度H =1.00 m .开始时小球处于A 点,此时轻绳拉直处于水平方向上,如图13所示.让小球从静止释放,当小球运动到B 点时,轻绳碰到悬点O 正下方一个固定的钉子P 时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g =10 m/s 2.求:图13(1)当小球运动到B 点时的速度大小;(2)绳断裂后球从B 点抛出并落在水平地面上的C 点,求C 点与B 点之间的水平距离; (3)若OP =0.6 m ,轻绳碰到钉子P 时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.答案 (1)4 m/s (2)0.80 m (3)9 N解析 (1)设小球运动到B 点时的速度大小为v B ,由机械能守恒定律得 12m v 2B=mgl 解得小球运动到B 点时的速度大小v B =2gl =4 m/s(2)小球从B 点做平抛运动,由运动学规律得 x =v B t y =H -l =12gt 2解得C 点与B 点之间的水平距离x =v B 2(H -l )g=0.80 m(3)若轻绳碰到钉子时,轻绳拉力恰好达到最大值F m ,由牛顿定律得F m -mg =m v 2Brr =l -OP由以上各式解得F m =9 N。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高考物理【热点·重点·难点】专练(新高考专用)重难点04 平抛运动与圆周运动【知识梳理】考点一 平抛运动基本规律的理解 1.飞行时间:由ght 2=知,时间取决于下落高度h ,与初速度v 0无关. 2.水平射程:x =v 0t =v 0 gh 2,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. 3.落地速度:gh v v v v x y x 2222+=+=,以θ表示落地速度与x 轴正方向的夹角,有2tan v ghv v xy ==θ,所以落地速度也只与初速度v 0和下落高度h 有关. 4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt ;相同,方向恒为竖直向下,如图所示.5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ. 【重点归纳】1.在研究平抛运动问题时,根据运动效果的等效性,利用运动分解的方法,将其转化为我们所熟悉的两个方向上的直线运动,即水平方向的匀速直线运动和竖直方向的自由落体运动.再运用运动合成的方法求出平抛运动的规律.这种处理问题的方法可以变曲线运动为直线运动,变复杂运动为简单运动,是处理曲线运动问题的一种重要的思想方法. 2.常见平抛运动模型的运动时间的计算方法 (1)在水平地面上空h 处平抛: 由221gt h =知ght 2=,即t 由高度h 决定. (2)在半圆内的平抛运动(如图),由半径和几何关系制约时间t :221gt h =t v h R R 022=-+联立两方程可求t . (3)斜面上的平抛问题: ①顺着斜面平抛(如图)方法:分解位移 x =v 0t221gt y =x y=θtan可求得gv t θtan 20=②对着斜面平抛(如图)方法:分解速度 v x =v 0 v y =gttan v gt v v xy ==θ 可求得gv t θtan 0=(4)对着竖直墙壁平抛(如图)水平初速度v 0不同时,虽然落点不同,但水平位移相同.vd t =3.求解多体平抛问题的三点注意(1)若两物体同时从同一高度(或同一点)抛出,则两物体始终在同一高度,二者间距只取决于两物体的水平分运动.(2)若两物体同时从不同高度抛出,则两物体高度差始终与抛出点高度差相同,二者间距由两物体的水平分运动和竖直高度差决定.(3)若两物体从同一点先后抛出,两物体竖直高度差随时间均匀增大,二者间距取决于两物体的水平分运动和竖直分运动.考点二 圆周运动中的运动学分析描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:1.传动装置(1)高中阶段所接触的传动主要有:①皮带传动(线速度大小相等);②同轴传动(角速度相等);③齿轮传动(线速度大小相等);④摩擦传动(线速度大小相等).(2)传动装置的特点:(1)同轴传动:固定在一起共轴转动的物体上各点角速度相同;(2)皮带传动、齿轮传动和摩擦传动:皮带(或齿轮)传动和不打滑的摩擦传动的两轮边缘上各点线速度大小相等.2.圆周运动各物理量间的关系(1)对公式v =ωr 的理解 当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比.(2)对a =rv 2=ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比. 考点三 竖直平面内圆周运动的绳模型与杆模型问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管道)约束模型”. 2.绳、杆模型涉及的临界问题均是没有支撑的小球均是有支撑的小球竖直面内圆周运动的求解思路(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同. (2)确定临界点:gr v =临,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N表现为支持力还是拉力的临界点.(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F 合=F 向. (5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程. 【限时检测】(建议用时:30分钟) 一、单项选择题:本题共4小题。
1.如图所示的机械装置可以将圆周运动转化为直线上的往复运动。
连杆AB 、OB 可绕图中A 、B 、O 三处的转轴转动,连杆OB 在竖直面内的圆周运动可通过连杆AB 使滑块在水平横杆上左右滑动。
已知OB 杆长为L =0.4m ,绕O 点做逆时针方向匀速转动的角速度为ω=10rad/s ,当连杆AB 与水平方向夹角为θ=37°,AB 杆与OB 杆刚好垂直,滑块的水平速度大小为( )A .4m/sB .3m/sC .3.2m/sD .5m/s【答案】 D 【详解】此时B 点的速度大小为100.4m/s 4m/s v L ω==⨯=方向沿圆的切线方向,即BA 方向,故AB 杆上各点的速度大小均为v ,此速度为滑块的实际水平速度沿杆方向的分速度,故滑块的水平速度大小为'4m/s 5m/s cos370.8v v ===故选D 。
2.斜面上有a、b、c、d四个点,如图所示,ab=bc=cd,从a点正上方的O点以速度v水平抛出一个小球,它落在斜面上b点。
若小球从O点以速度2v水平抛出,不计空气阻力,则它落在斜面上的()A.c与d之间某一点B.c点C.b与c之间某一点D.d点【答案】C【详解】过b作一条与水平面平行的虚线,如图所示若没有斜面,当小球从O点以速度2v水平抛出时,小球落在水平面上时水平位移变为原来的2倍,则小球将落在所画水平线上c点的正下方,但是现在有斜面的限制,小球将落在斜面上的b、c之间。
故选C。
3.如图所示,一内壁光滑的圆锥面,轴线OO'是竖直的,顶点O在下方,锥角为2α,现有两个小钢珠A、B(均可视为质点)在圆锥的内壁上沿不同的圆轨道运动,则它们做圆周运动的( )A.周期可能相同B.线速度可能相同C.向心加速度大小一定相等D.向心力大小一定相等【答案】C【详解】小球受力如图所示:由图可知,小球圆周运动的向心力由重力和支持力的合力提供,即22n 24tan mg mv F m r r Tπα===AB .因两小球运动的半径不相等,故它们运动的周期和线速度均不相等,故AB 错误; CD .因两小球的质量不一定相等,故它们所受的向心力大小不一定相等,而向心加速度为n tan ga α=与它们的质量无关,故向心加速度大小一定相等,故C 正确D 错误。
故选C 。
4.如图所示,水平传送带的右端Q 与水平地面间的高度差为h ,现将一小滑块(视为质点)无初速度地放在传送带的左端P ,滑块到达Q 点时恰好对传送带无压力,离开传送带落到地面上的M 点(图中未画出),Q 、M 两点间的水平距离为x 。
不计传送带的厚度以及空气阻力。
传送带轮子的半径为( )A .22h xB .22x hC .24x hD .24h x【答案】 B 【分析】本题考查平抛运动与圆周运动,目的是考查学生的推理能力。
【详解】设滑块通过Q 点时的速度大小为v ,滑块离开传送带后在空中运动的时间为t ,根据平抛运动的规律有 x =vt212h gt =设滑块的质量为m ,传送带轮子的半径为R ,因滑块通过Q 点时,滑块到达Q 点时恰好对传送带无压力,其所受重力恰好提供向心力,故有2v mg m R=联立解得 22=x R h选项B 正确。
故选B 。
二、多项选择题:本题共2小题。
5.如图所示,水平地面为θ的光滑直角斜劈。
坡面ABCD 为正方形,边长为L ,E 为BC 的中点。
两个可视为质点的小球P 和Q ,小球P 从A 点以某速度沿AB 方向水平抛出,同时小球Q 由B 点无初速度释放,经过时间t ,P 、Q 两小球恰好在C 点相遇,若两小球质量均为m ,重力加速度为g ,则下列说法正确的是( )A .在两小球被释放后的任意相同时间内(未相遇前),两小球的动量变化量都相等B .两小球在坡面上运动过程中,任意时刻小球P 所受重力的瞬时功率都比小球Q 所受重力的瞬时功率大C .t =D .若小球P 的速度变为原来的2倍,两小球可能在E 处相遇 【答案】 AC【详解】AB .P 、Q 两小球在坡面上运动过程中所受的合力均为sin mg θ,由动量定理可知,相同时间内动量变化量相等,重力的功率为sin y P mg v θ=⨯且sin y v g t θ=⨯P 、Q 两小球所受重力的瞬时功率相等,故A 正确,B 错误; C .由21sin 2L g t θ=⨯ 可知t =故C 正确; D .由x vt =,21sin 2y g t θ=⨯ 可得221sin 2x y g vθ=⨯可知当P 倍时,两小球在E 处相遇,故D 错误。
故选AC 。
6.如图所示,叠放在水平转台上的物体 A 、B 及物体 C 能随转台一起以角速度 ω 匀速转动,A 、B 、C 的质量分别为3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数都为μ ,A 和B 、C 离转台中心的距离分别为r 、1.5r 。
设最大静摩擦力等于滑动摩擦力,下列说法正确的是(重力加速度为g )( )A .B 对A 的摩擦力一定为3μmgB .B 对A 的摩擦力一定为3m ω2rC .转台的角速度需要满足ω≤D .转台的角速度需要满足ω≤【答案】 BD【详解】 AB .对A 受力分析,受重力、支持力以及B 对A 的静摩擦力,由静摩擦力提供向心力,有 2(3)(3)3f m r m g mg ωμμ==≤故A 错误,B 正确;CD .根据牛顿第二定律得对A 有233m r mg ωμ⋅≤对AB 整体,有2(32) (32)m m r m m g ωμ++≤对物体C ,有2(1.5)m r mg ωμ≤为使A 、B 、C 相对转台不发生滑动得ω≤故C 错误,D 正确。
故选BD 。
三、解答题:本题共2小题。
解答应写出必要的文字说明、方程式和重要的演算步骤。
只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位。