中考数学图表信息题专题训练
新课标九年级数学中考复习强效提升分数精华版图表信息题

(2)按题意知:y=(200-a)x+170(70-x)+160(40-x)+150(x-10), 即y=(20-a)x+16 800.
请回答下列问题: (1)求师生何时回到学校?
(2)如果运送树苗的三轮车比师生迟半小时出发,与师生同路
匀速前进,早半小时到达植树地点,请在图中,画出该三轮车运
送树苗时,离校路程s与时间t之间的图象,并结合图象直接写
出三轮车追上师生时,离学校的路程;
(3)如果师生骑自行车上午8时出发,到植树地点后,植树需
2小时,要求14时前返回到学校,往返平均速度分别为每时
10 km、8 km.现有A、B、C、D四个植树点与学校的路程分 别是13 km、15 km、17 km、19 km,试通过计算说明哪几个 植树点符合要求. 【思路点拨】观察图象,理解图象上点的坐标所代表的实际 意义,结合图象解决实际问题.
解答图表信息问题的一般步骤是:
(1)观察图表,获取有效信息; (2)对已获信息进行加工、整理,理清各变量之间的关系;
表格类信息题 【例1】(2010 ·德化中考)某商店需要购进甲、乙两种商品 共160件,其进价和售价如下表:(注:获利=售价-进价) (1)若商店计划销售完这批商品后能获利1 100元,问甲、乙 两种商品应分别购进多少件? (2)若商店计划投入资金少于4 300元,且销售完这批商品后 获利多于1 260元,请问有哪几种购货方案? 并直接写出其中 获利最大的购货方案.
【解析】(1)设舟山与嘉兴两地间的高速公路路程为s千米, 由题意得 s s 10, 解得s 360.
中考数学复习常考图表信息类题型解析(题目类型解析+真题反馈)(共19张PPT)

2019/3/9
请根据图中提供的信息,解答下列问题: (1) 在这次抽样调查中,共调查了___________名学生; (2) 补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的 度数; (3) 根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与” 的人数。
2019/3/9
各类情况条形统计图 人数 240 200 160 120 80 40 240
2019/3/9
a元,蓝色地砖每块b元, 解: (1)设红色地砖每块 4000a 6000b 0.9 86000,
答:红色地砖每块8元,蓝色地砖每块10元. (2)设购置蓝色地砖x块,则购置红色地砖(12000-x)块,所需的总费用为 y元. 由题意知x≥(12000-x),得x≥4000,又x≤6000, ∴ 4000≤x≤6000. 当4000≤x<5000时,y=10x+8×0.8(12000-x),即y=76800+3.6x, ∴ x=4000时,y有最小值91200; 当5000≤x≤6000时,y=0.9×10x+8×0.8(12000-x)=2.6x+76800. ∴ x=5000时,y有最小值89800. ∵89800<91200,∴购买蓝色地砖5000块,红色地砖7000块,费用最少,
2019/3/9
典例选讲
例1 实数a,b,c在数轴上的对应点的位置如图所示,则正确 的结论是 (B )
A. a>4
B.c-b>0
C.ac>0
D.a+c>0
2019/3/9
典例选讲
例2 利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系 统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表 示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生 所在班级序号,其序号为a×23+b×22+c×21+d×20.如图2第一行数字从 左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示 该生为5班学生.表示6班学生的识别图案是 ( B )
中考数学常见的统计图表试题练习

中考数学常见的统计图表试题练习中考数学常见的统计图表试题练习一、选择题1.甲校女生占全校总人数的50%,乙校男生占全校总人数的50%,则女生人数( )(A)甲校多于乙校. (B)甲校与乙校一样多.(C)甲校少于乙校. (D)不能确定.2.某制鞋厂每日生产童鞋总量是生产成人鞋总量的,则每日生产童鞋的量占每日生产总量的( )(A) 66.6%. (B)60%. (C) 40%. (D) 33.3%.3.我国五座名山的海拔高度如下表:山名泰山华山黄山庐山峨眉山海拔(米) 1524 2019 1873 1500 3099根据表中的数据作成统计图,以便更清楚地对几座名山的高度进行比较应选用( )(A)扇形图. (B)条形图. (C)折线图. (D)直方图.4.甲、乙二人参加某体育项目训练,为了便于研究,把最近五次训练成绩分别用实线和虚线连接,如图,下面的结论错误的是( )(A)乙的第二次成绩与第五次成绩相同.(B)第三次测试甲的成绩与乙的成绩相同.(C)第四次测试甲的成绩比乙的成绩多2分.(D)五次测试甲的成绩都比乙的成绩高.二、填空题 (第4题)5.在整数112221112222111122222中,数字1和2出现的频率分别为____________.6.在一次三好学生的评选活动中,得票结果如下表所示(总票数为50)后选人小林小明小华小红唱票正字记录正正正得票数 21 14上表数据显示,小明的得票频数是 ;小林的得票频率是,得票频率最低的是 .7.甲校共有学生1200名,其中女生占40%,则女生有人;乙校共有学生1100名,其中男生占50%,则女生有人;甲校女生比乙校 .(填多或少)8.学校统计全校各年级人数及总人数,应选用统计图.9.××局统计一昼夜气温情况,应选用统计图.10.学生统计某一天中睡觉、学习、活动、吃饭及其他活动在一天中所占的百分比,应选用统计图.11.为了调查居民生活环境情况,××局对所辖的20户居民进行噪音水平调查,应选用___________统计图.12.根据频数分布直方图填空.(1)总共统计了名学生的心跳情况;(2) 次数段的学生数最多,约占 %;(3)如果每半分钟心跳30~39次属于正常范围,那么心跳次数属于正常范围的学生约占 %.三、解答题 (第12题)13.某班有50名学生,他们有的步行、有的骑自行车、有的乘车上学,根据以下信息完成统计表:上学方式步行骑自行车乘车正字法记录正正频数 15频率 50%14.观察地球陆地面积分布统计图,并回答问题:(1)全世界共有几大洲,哪个洲的面积最大?(2)哪两个洲的面积之和最接近地球陆地面积的一半?(3)图中每一个扇形分别代表了什么?所有的百分比之和是多少?(4)你能从图中知道地球陆地总面积是多少吗?(5)从图中你还能得到什么信息?15.如图是小明画出的雨季中某地某星期降雨量的条形图.(1)哪一天降雨量最多?(2)哪一天可能是晴天?(3)这个星期的总降雨量大概有多少?(4)如果日降雨量在25毫米以上为大雨,那么这个星期哪几天在下大雨?16.某晚报百姓热线一周内共接到热线电话80个,其中奇闻轶事占6.25%,交通道路占16.25%,日常消费投诉占21.25%,环境保护占31.25%,房屋建筑占8.75%,好人好事占16.25%.(1)列出百姓热线在这一星期中所接电话的统计表;(2)请绘制在这一星期中百姓热线所接各类电话的条形图.17.解放以来,我国的国内生产总值(GDP)一直呈递增趋势,1952年只有679亿元,1962年上升到1149.3亿元,1970年上升到2252.7亿元,1980年上升到4517.8亿元,1990年上升到18547.9亿元,2019年上升到89404亿元.(1)设计一张统计表,简明地表达这一段文字信息;(2)设计一张折线图,直观地表明这种递增趋势;(3)从上述两张图表中,你能得出哪些结论?18.如图,这是一幅中国城市数量统计图,请根据上面的数据制成折线图,并比较一下哪种图更能体现中国城市建设的发展情况.19.下图表示的是某班同学衣服上口袋的数目:(1)从图中是否能够得出以下信息?①只有4个人的衣服上有4个口袋;②只有1个人的衣服上有8个口袋;③只有3个人的衣服上有5个口袋;(2)根据上图填写下面的频数分布表,并绘制频数分布直方图.单元学习评价七(几种常见的统计图表)一、选择题1.D2.C3.B4.Dw二、填空题5.43%、57%(分数也可以)6.10,0.42,小华7.480,550,少8.条形9.折线 10.扇形 11.直方 12.(1)27 (2)30~33,25.9 (3)55.6三、解答题13.14.(1)7,亚洲.(2)亚洲和非洲.(3)代表各大洲陆地面积约占地球陆地面积的百分比,1.(4)不能.(5)大洋洲的面积最小等.15.(1)星期二.(2)星期六.(3)150mm.(4)星期一、星期二.16.统计表和条形图如下:17.(1)如下表.(2)如下图.解放后我国GDP统计表(3)从表和图中,我们能得出一些明显结论:我国国内生产总值总体上呈现增长的趋势,从1952年到1980年增长速度比较缓慢,从1980年以后,增长的速度明显加快,尤其在1990年到2019年,发展速度迅猛.18.图略,折线图更能体现中国城市建设的发展情况.19.(1)能得出①、③,不能得出②.(2)略.。
中考数学复习图表信息题

考点一 图形信息型 例1 ( ·永州)一张桌子上摆放有若干个大小、形
状完全相同的碟子,现从三个方向看,其三种视图如 图所示,则这张桌子上碟子的总个数为( B )
A. 11 B. 12 C. 13 D. 14
第36课时 图表信息题
考点演练
考点一 图形信息型
思路点拨
由主视图可知右上角的盘子有5个,由左视图可知左下角的盘 子有3个,结合主视图和左视图可以知道左上角的盘子有4个, 则可求出总个数.
第36课时 图表信息题
专题解读
5. 统计图信息型 统计图本身就是用来整理数据信息的,所以统计图中一定包
含着大量的数据,能正确根据数据绘制成统计图和从统计图中正 确提取需要的信息是我们必须掌握的.同学们只有理解统计图的 特点及每种统计图分别涉及的一般性计算,才能更好地解决问题.
第36课时 图表信息题
第36课时 图表信息题
(能1)正填确空读:图m与=识__图有_是__的解__决_特,问n题征=的__及关__键_其.__要_性;注质意条来形统表计现图能)显或示数某项量的具关体系数量.解,而答扇形时统通计图常能显借示助各项图所占形的本百分身比的大小,扇
形 第统36计课图时中所图有表扇信的形息性表题示质的百,分结比之合和为推1,理某项、的计具体算数量,除甚以其至所占图的形百分变比即换可的得到方样本法容来量.解决问题.
第36课时 图表信息题
专题解读
4. 函数图象信息型 函数图象信息型问题是通过图象呈现出问题中的两个变量之
间的函数关系,主要考查同学们对函数思想和数形结合思想的理 解与应用,要求同学们具有较强的抽象思维能力和综合分析能力. 解答这类问题,需要在理解题意的基础上,弄清两条坐标轴所代 表的含义,并对图象的形状、位置、发展变化趋势等方面提炼有 效信息,进而找到解决问题的突破口.
2020年九年级数学中考复习——图表信息题专题训练(一)(有答案)

2020中考复习——图表信息题专题训练(一)班级:___________姓名:___________ 得分:___________一、选择题1.某校八(1)班全体同学喜欢的球类运动如图所示,下列说法正确的是()A. 从图中可以直接看出喜欢各种球类的具体人数B. 从图中可以直接看出全班的总人数C. 从图中可以直接看出全班同学一学期来喜欢各种球类的变化情况D. 从图中可以直接看出全班同学现在喜欢各种球类人数的百分比2.某校机器人社团共有30名学生,他们的年龄分布如下表:年龄/岁13141516人数613由于表格污损,部分数据无法识别.在30名学生年龄这组数据中,可以确定的是()A. 平均数、中位数B. 平均数、方差C. 中位数、方差D. 众数、中位数3.某中学就周一早上学生到校的方式问题,对七年级的所有学生进行了一次调查,并将调查结果制作成了如下表格,则步行到校的学生频率为()七年级学生人数步行人数骑车人数乘公交人数其他方式人数30060913299A. 0.2B. 0.3C. 0.4D. 0.54.如图,利用相同的两块长方体木块测量一张桌子的高度,首先按图①方式放置,再交换两块木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A. 73cmB. 74cmC. 75cmD. 76cm5.小明根据演讲比赛中8位评审所给的分数制作了如下表格:平均分中位数众数方差8.58.38.10.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是()A. 平均数B. 中位数C. 众数D. 方差6.某省受台风袭击,大部分地区发生强降雨,某河受暴雨袭击,一天的水位记录如下表所示:时间(时04812162024 )水位(m)2 2.534568观察表中数据,水位上升最快的时段是().A. 8~12时B. 12~16时C. 16~20时D. 20~24时7.某天小明骑自行车上学,途中因自行车发生故障,修车耽误一段时间后继续骑行,按时赶到了学校.下图描述了他上学时的情景,下列说法错误的是()A. 用了5分钟来修车B. 自行车发生故障时离家的距离为1000米C. 学校离家的距离为2000米D. 到达学校时的骑行时间为20分钟8.某烤鸡店在确定烤鸡的烤制时间时,主要依据的是下面表格的数据:设鸡的质量为x千克,烤制时间为t分,则当x=3.2千克时,t=()A. 140B. 138C. 148D. 1609.已知A、B两地相距4千米,上午8:00,甲从A地出发步行到B地,上午8:20乙从B地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为()A. 上午8:30B. 上午8:35C. 上午8:40D. 上午8:4510.小明打算购买气球装扮“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图,则第三束气球的价格为()A. 16B. 16C. 14D. 13二、填空题11.新吴区举行迎五一歌咏比赛,组委会规定:任何一名参赛选手的成绩ⅹ需满足60≤ⅹ<100,赛后整理所有参赛选手的成绩如下表.根据表中提供的信息得到n=_________.12.记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整)如下:根据图中信息,该足球队全年比赛胜了______场.13.为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5mg/L,则第3次检测得到的氨氮含量是______ mg/L.14.一次函数y=kx+b的图象如图所示,其中b=____,k=____.15.从1984年起,我国参加了多届夏季奥运会,取得了骄人的成绩.如图是根据第23届至30届夏季奥运会我国获得的金牌数绘制的折线统计图,观察统计图可得:与上一届相比增长量最大的是第________届夏季奥运会.16.小张和小李练习射击,两人10次射击训练成绩(环数)的统计结果如下表所示,平均数中位数众数方差小张7.27.57 1.2小李7.17.58 5.4通常新手的成绩不稳定,根据表格中的信息,估计小张和小李两人中新手是______.17.数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x…−2−1012…y…−612−4−212−2−212…根据表格上的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=________.18.下表列出了国外几个城市与北京的时差.如果现在北京时间是10:00,现在巴黎时间是________19.在平面镜里看到背后墙上,电子钟示数如图所示,这时的实际时间应该是________.20.如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差________km/ℎ.三、解答题21.为迎接“六一”儿童节,某学校准备举办绘画比赛.为了了解学生对不同颜色的喜欢情况,从不同年级随机抽取部分学生进行了调查,针对红色、黄色、绿色、蓝色和其他五个选项,每人选择一种自己最喜欢的颜色,并把统计数据制成了如下统计图表:喜欢不同颜色的人数调查结果统计表喜欢颜色频数频率红色240.30黄色m0.15绿色160.20蓝色20n其他80.10合计1喜欢不同颜色的人数调查结果条形统计图请根据统计图表中的信息解答下列问题:(1)填空:m=________,n=________,这次活动一共调查了________名学生;(2)补全条形统计图;(3)小明同学根据统计表中的数据进一步制作了扇形统计图,发现自己喜欢的颜色所在扇形的圆心角度数为72°,请你通过计算说明小明喜欢的是哪种颜色;(4)若把喜欢红色和蓝色的同学组成“紫色团队”,已知该学校共有学生1800人,请你估计“紫色团队”的人数.22.某校从初二(1)班和(2)班各选拔10名同学组成甲队和乙队,参加数学竞赛活动,此次竞赛共有10道选择题,答对8题(含8题)以上为优秀,两队选手答对题数统计如下:(1)上述表格中,a =________,b =_______,c =________,m =________; (2)请根据表格中的平均数、中位数、众数、方差,对甲、乙两队选手进行评价.23. 我们将d b c a&这样的式子称为二阶行列式,它的运算法则用公式表示就是:bdac d bc a-=&例如2-32-41423&1=⨯⨯=(1)请你依此法则计算二阶行列式324&3(2)请化简二阶行列式422&32+-x x ,并求当x =4时此二阶行列式的值.24.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中所给的数据信息,解答下列问题.(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式.(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?25.春、秋季节,由于冷空气的入侵,地面气温急剧下降到0℃以下的天气现象称为“霜冻”.由霜冻导致植物生长受到影响或破坏的现象称为霜冻灾害.某种植物在气温是0℃以下持续时间超过3小时,即遭受霜冻灾害,需采取预防措施.如图是气象台某天发布的该地区气象信息,预报了次日0时~8时气温随时间变化情况,其中0时~5时,5时~8时的图象分别满足一次函数关系.请你根据图中信息,针对这种植物判断次日是否需要采取防霜冻措施,并说明理由.答案和解析1.D解:因为总体的具体数量短缺,所以A、C错误,又因为在扇形统计图中,所占的百分比越大它对应的具体数量就越多,但看不出全班的总人数,所以B错误,D正确.2.D解:因为共有30位同学,14岁有13人,所以14为众数,第15个数和第16个数都是14,所以数据的中位数为14.3.A解:60÷300=0.2.4.C解:设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽为ycm,由第一个图形可知桌子的高度为:ℎ−y+x=80,由第二个图形可知桌子的高度为:ℎ−x+y=70,两个方程相加得:(ℎ−y+x)+(ℎ−x+y)=150,解得:ℎ=75cm.5.B解:由题意可知:去掉一个最高和一个最低分,只有中位数一定不发生变化.6.D解:由表可以看出:在相等的时间间隔内,20时至24时水位上升最快.解:A.由图可知,修车时间为15−10=5分钟,正确;B .自行车发生故障时离家距离为1000米,正确;C .学校离家的距离为2000米,正确;D .到达学校时的骑行时间为20−5=15分钟,故D 错误.8. C解:从表中可以看出,烤鸭的质量每增加0.5千克,烤制的时间增加20分钟,由此可知烤制时间是烤鸭质量的一次函数.设烤制时间为t 分钟,烤鸭的质量为x 千克,t 与x 的一次函数关系式为:t =kx +b , 解得所以t =40x +20.当x =3.2千克时,t =40×3.2+20=148.9. C解:因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5−13)小时, 所以乙的速度为:2÷16=12,所以乙走完全程需要时间为:4÷12=13(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40.10. C解:设笑脸形的气球x 元一个,爱心形的气球y 元一个,由题意,得:{3x +y =12x +3y =16, 解得:2x +2y =14.k +b =60 2k +b =100, k =40 b =20,解:n =1−0.45−0.15−0.1=0.3.12. 27解:由统计图可得,比赛场数为:10÷20%=50,胜的场数为:50×(1−26%−20%)=50×54%=27,13. 1解:由题意可得,第3次检测得到的氨氮含量是:1.5×6−(1.6+2+1.5+1.4+1.5)=9−8=1mg/L ,14. 3,−32解:由函数的图象可知,图象与两坐标轴的交点坐标为(0,3),(2,0),设函数的解析式为y =kx +b(k ≠0),把(0,3),(2,0)代入得,{b =32k +b =0,解得b =3,k =−32;15. 29解:观察统计图可得:与上一届相比增长量最大的是第29届夏季奥运会.16. 小李解:∵小李的平均数为7.1,小张的平均数为7.2,7.1<7.2,小张的方差为1.2,小李的方差为5.4,5.4>1.2,∴小李的成绩不稳定,∴小李是新手.17. −4解:观察表格可知,当x =0或2时,y =−212,根据二次函数图象的对称性,(0,−212),(2,−212)是抛物线上两对称点, 对称轴为x =0+221,顶点(1,−2),根据对称性,x =3与x =−1时,函数值相等,都是−4.18. 3:00解:∵巴黎与北京的时差−7, 北京时间为10:00,∴巴黎时间为10−7=3(时),19. 21:05解:由图分析可得题中所给的“20:15”与“21:05”成轴对称,这时的时间应是21:05.20. 4解:根据图象可得:∵甲行驶距离为100千米,行驶时间为5小时;乙行驶距离为80千米,行驶时间为5小时,∴甲的速度是:100÷5=20(千米/时);乙的速度是:80÷5=16(千米/时); 故这两人骑自行车的速度相差:20−16=4(千米/时).21. 解:(1)12,0.25,80;(2)条形统计图如图所示:(3)∵小明发现自己喜欢的颜色所在扇形的圆心角度数为72°,=0.2,频率0.2是在绿色的范围中,则小明喜欢的是绿色;∴72360(4))样本中“紫色团队”的人数为24+20=44(人),×1800=990(人).则4480故该学校“紫色团队”的人数约为990人.解:(1)因为红色的频数为24,所占的频率为0.30,=80,所以抽取的学生人数为:240.30=0.25,则m=80×0.15=12人,n=2080故答案为12,0.25,80;22.解:(1)8;8;7;60%(2)甲乙两队的平均数都为8,说明两队的平均水平相同,甲队的众数为8,乙队的众数为7,说明出现人数最多的答对题数中,甲队大于乙队,若仅从平均数和众数分析,甲队优于乙队等.解:(1)由表格可得,=8,a=7×4+8×3+9×2+10×110b=8,c=7,×100%=60%,m=3+2+110故答案为8;8;7;60%.(2)甲乙两队的平均数都为8,说明两队的平均水平相同,甲队的众数为8,乙队的众数为7,说明出现人数最多的答对题数中,甲队大于乙队,若仅从平均数和众数分析,甲队优于乙队.23. 解:(1)根据题意得:∣∣∣3243∣∣∣=3×3−2×4=9−8=1.∴ 二阶行列式∣∣∣3243∣∣∣的值为1 .(2)∣∣∣2x −3x +224∣∣∣=4(2x −3)−2(x +2) =8x −12−2x −4=6x −16将x =4代入上式,原式=8.24. 解:(1)设y =kx +b ,则解得∴y =1.5x +4.5;(2)当x =11时,y =1.5×11+4.5=21(cm).25. 解:根据图象可知:0时~5时的一次函数关系式为y 1=−65x +3,5时~8时的一次函数关系式y 2=83x −493,当y 1、y 2分别为0时, x 1=52,x 2=498.而|x 2−x 1|=298>3,∴应采取防霜冻措施.。
部分地区中考数学图表信息试题(附答案)

部分地区中考数学图表信息试题(附答案)2021部分地区中考数学图表信息试题(附答案) 以下是查字典数学网为您推荐的2021部分地区中考数学图表信息试题(附答案),希望本篇文章对您学习有所帮助。
2021部分地区中考数学图表信息试题(附答案)22.(2021年广西玉林市,22,8分)某奶品生产企业,2021年对铁锌牛奶、酸牛奶、纯牛奶三个品种的生产情况进行了统计,绘制了图1、2的统计图,请根据图中信息解答下列问题:(1)酸牛奶生产了多少万吨?把图1补充完整;酸牛奶在图2所对应的圆心角是多少度?(2)由于市场不断需求,据统计,2021年的生产量比2021年增长20%,按照这样的增长速度,请你估算2021年酸牛奶的生产量是多少万吨?分析:(1)根据纯牛奶所占百分率和纯牛奶的产量,求出牛奶的总产量,用总产量减铁锌牛奶和纯牛奶的产量即为酸牛奶的产量;酸牛奶产量除以总产量乘以360即为酸牛奶在图2所对应的圆心角的度数;(2)根据平均增长率公式直接解答即可.解:(1)牛奶总产量=12050%=240吨,酸牛奶产量=240-40-120=80吨,酸牛奶在图2所对应的圆心角度数为360=120. (2)2021年酸牛奶的生产量为80(1+20%)2=115.2吨.答:2021年酸牛奶的生产量是115.2万吨.16.(2021湖北黄冈,16,3)某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60 千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4 个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为( ,75);④快递车从乙地返回时的速度为90千米/时.以上4 个结论中正确的是____________(填序号)【解析】设快递车出发的速度为x千米/时,则由图像得3(x-60)=120,解得x=100,①正确;而甲、乙两地之间的距离大于120千米,②错误;点B的横坐标是快递车返回的时间:3+ = (h),而纵坐标是此时货车距乙地的距离120- 60=75(km),点B 的坐标为( ,75),③正确;设快递车出发的速度为m千米/时,则( - )(m+60)=75,解得m=90,④正确.【答案】①③④【点评】根据图像信息解决行程问题,关键是要能读懂题意并能看懂图像所反映的时间、速度、行程三者之间的关系.难度较大.24.(2021黑龙江省绥化市,24,7分)学生的学习兴趣如何是每位教师非常关注的问题.为此,某校教师对该校部分学生的学习兴趣进行了一次抽样调查(把学生的学习兴趣分为三个层次,A层次:很感兴趣;B层次:较感兴趣;C层次:不感兴趣),并将调查结果绘制成了图①和图②的统计图(不完整).请你根据图中提供的信息,解答下列问题:⑴ 此次抽样调查中,共调查了名学生;⑵ 将图①、图②补充完整;⑶ 求图②中C层次所在扇形的圆心角的度数;⑷ 根据抽样调查结果,请你估算该校1200名学生中大约有多少名学生对学习感兴趣(包括A层次和B层次).【解析】解:(1)此次抽样调查中,共调查了5025%=200(人);故答案为:200. (2)C层次的人数为:200-120-50=30(人);所占的百分比是:30 200 100%=15%;B层次的人数所占的百分比是1-25%-15%=60%;(3)C层次所在扇形的圆心角的度数是:36015%=54(4)根据题意得:(25%+60%)1200=1020(人)答:估计该校1200名学生中大约有1020名学生对学习感兴趣..【答案】⑴200;⑵如图所示;⑶540;⑷1020.【点评】本题主要考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.难度中等. 专项九图表信息(43)14.(2021四川省资阳市,14,3分)某果园有苹果树100棵,为了估计该果园的苹果总产量,小王先按长势把苹果树分成了A、B、C三个级别,其中A级30棵, B级60棵, C级10棵,然后从A、B、C三个级别的苹果树中分别随机抽取了3棵、6棵、1棵,测出其产量,制成了如下的统计表.小李看了这个统计表后马上正确估计出了该果园的苹果总产量,那么小李的估计值是千克.苹果树长势 A级 B级 C级随机抽取棵数(棵)所抽取果树的平均产量(千克)【解析】由表格中各种等级果树的平均产量可估算果园的总产量为:8030+7560+7010=7600【答案】7600【点评】本题主要考查了由样本估计总体的估算,解决本题的关键是分清样本、总体具体所表示的意义.难度较小. 20. (2021山东省聊城,20,8分)为进一步加强中学生近视眼的防控工作,市××局近期下发了有关文件,将学生视力保护工作纳入学校和教师的考核内容.为此,某县××局主管部门对今年初中毕业生的视力进行了一次抽样调查,并根据调查结果绘制了如下频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:(1)求表中a、b的值,并补充完频数分布直方图;(2)若视力在4.9以上(含4.9)均为正常,估计该县5600名初中毕业生视力正常的有多少人?解析:(1)要求a的值,只需用其中一组已知视力范围的频数与频率关系求出频数总数;再结合根据该栏的频率、数据总次数求出a.(2)找出4.9以上(含4.9)的频率和,进行估计总体.解:(1)由150.05=300(人),所以a=3000.25=75(人). .b=60300=0.20.(2)因为视力在4.9以上(含4.9)的频率为0.25+0.20=0.45. 所以56000.45=2520(人)22. (2021江苏盐城,22,8分)第三十届夏季奥林匹克运动会将于2021年7月27日至8月12日在英国伦敦举行,目前正在进行火炬传递活动.某校学生会为了确定近期宣传专刊的主题,想知道学生对伦敦奥运火炬传递路线的了解程度,决定随机抽取部分学生进行一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图。
中考数学第二轮复习:图表信息问题
1
专 题 解 读
2
考情透析 图表信息题是中考常考的一种新题型,它是通过图象、 图形及表格等形式给出信息,通过认真阅读、观察、 分析、加工、处理等手段解决的一类实际问题.主要 考查同学们的读图、识图、用图能力,以及分析问题、 解决问题的能力.图表信息问题往往和“方程(组)、不 等式(组)、函数、统计与概率”等知识结合考查.
11
二、表格信息题
以表格的形式给出数据信息是这类信息题的特征,分析表中的数据,能从表
格中发现两个量之间存在规律,归纳出相应的关系式是解决此类问题的关键.
12
【例题2】 (2012· 浙江台州)某汽车在刹车后行驶的距离s(单
位:米)与时间t(单位:秒)之间的关系的部分数据如下表:
时间t(秒) 行驶距离s(米)
4
专 题 突 破
5
一、图象信息题
此类题目主要是运用函数图象(一次函数、二次函数、反比例函数的 图象等)表示物体的变化规律(体现在两个变量之间的数量关系),考查
数形结合的思想和函数建模能力.解答时往往根据图象的形状、位置、 变化趋势等信息来判断、分析、解决问题.
6
【例题1】 (2012· 浙江义乌)周末,小明骑自行车从家里出
10
(3)设从家到乙地的路程为m km,
则点 E(x1,m),点 C(x2,m),分别代 入 y=60x-80,y=20x-10, m+80 m+10 得:x1= , x2 = . 60 20 10 1 ∵x2-x1= = , 60 6 m+10 m+80 1 ∴ - = , 20 60 6 解得:m=30. ∴从家到乙地的路程为 30 km.
14
分析 (1)描点作图即可. (2)首先判断函数为二次函数.用待定系数法,由 所给的任意三点即可求出函数解析式. (3)①将函数解析式表示成顶点式(或用公式求), 即可求得答案.
备考2024年中考数学二轮复习-利用统计图表分析实际问题-单选题专训及答案
备考2024年中考数学二轮复习-利用统计图表分析实际问题-单选题专训及答案利用统计图表分析实际问题单选题专训1、(2018房山.中考模拟) 某班体育委员对本班所有学生一周锻炼时间(单位:小时)进行了统计,绘制了统计图,如图所示,根据统计图提供的信息,下列推断正确的是()A . 该班学生一周锻炼时间的中位数是11B . 该班学生共有44人C . 该班学生一周锻炼时间的众数是10D . 该班学生一周锻炼12小时的有9人2、(2020西宁.中考模拟) 为了解九(1)班学生的体温情况,对这个班所有学生测量了一次体温(单位:℃),小明将测量结果绘制成如下统计表和如图所示的扇形统计图.下列说法错误的是()体温(℃)36.136.236.336.436.536.6人数(人)48810x2A . 这些体温的众数是8B . 这些体温的中位数是36.35C . 这个班有40名学生D . x=83、(2018黄浦.中考模拟) 一个民营企业10名员工的月平均工资如下表,则能较好反映这些员工月平均工资水平的是()人次1112113工资3032 1.5 1.220.8(工资单位:万元)A . 平均数;B . 中位数;C . 众数;D . 标准差.4、(2019温州.中考模拟) 某班预开展社团活动,对全班42名学生开展“你最喜欢的社团”问卷调查(每人只选一项),并将结果制成如下统计表,则学生最喜欢的项目是()社团名称篮球足球唱歌器乐人数(人)11x98A . 篮球B . 足球C . 唱歌D . 器乐5、(2019秀洲.中考模拟) 某电动车厂2018年第三、四季度各月产量情况如图所示。
某电动车厂2018年第三、四季则下列说法错误的是( )A . 7月份产量为300辆B . 从10月到11月的月产量增长最快C . 从11月到12月的月产量减少了20%D . 第四季度比第三季度的产量增加了70%6、(2019绍兴.中考模拟) 以下是某手机店1~4月份的两个统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为()A . 4月份三星手机销售额为65万元B . 4月份三星手机销售额比3月份有所上升C . 4月份三星手机销售额比3月份有所下降D . 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额7、(2019温州.中考模拟) 小红同学5月份各项消费情况的扇形统计图如图所示,其中小红在学习用品上共支出100元,则她在午餐上共支出()A . 50元B . 100元C . 150元D . 200元8、(2018西湖.中考模拟) 右图是某市10月1日至7日一周内“日平均气温变化统计图”.在这组数据中,众数和中位数分别是()A . 13,13B . 14,14C . 13,14D . 14,139、(2018福清.中考模拟) 下图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是()A . 该学校教职工总人数是50人B . 年龄在40≤x<42小组的教职工人数占该学校总人数的20%C . 教职工年龄的中位数一定落在40≤x<42这一组D . 教职工年龄的众数一定在38≤x<40这一组10、(2018龙湾.中考模拟) 如图是某手机店去年8﹣12月份某品牌手机销售额统计图,根据图中信息,可以判断相邻两个月该品牌手机销售额变化量最大的是()A . 8月至9月B . 9月至10月C . 10月至11月D . 11月至12月11、(2018龙湾.中考模拟) 下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是()A . 2011﹣2014年最高温度呈上升趋势B . 2014年出现了这6年的最高温度C . 2011﹣2015年的温差成下降趋势D . 2016年的温差最大12、(2019嘉兴.中考真卷) 年月日第届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A . 签约金额逐年增加B . 与上年相比,2019年的签约金额的增长量最多C . 签约金额的年增长速度最快的是2016年D . 2018年的签约金额比2017年降低了22.98%13、(2018合肥.中考模拟) 为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图.由图可知,一周参加体育锻炼时间等于9小时的人数是()A . 5B . 18C . 10D . 414、(2019威海.中考真卷) 甲、乙施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成了修路任务.下表是根据每天工程进度绘制而成的.施工时间/天123456789累计完成施工量/3570105140160215270325380米下列说法错误的是( )A . 甲队每天修路20米B . 乙队第一天修路15米C . 乙队技术改进后每天修路35米D . 前七天甲,乙两队修路长度相等15、(2019五华.中考模拟) (2019·五华模拟) 如图,是根据九年级某班50名同学一周的锻炼情况绘制的条形统计图,下面关于该班50名同学一周锻炼时间的说法错误的是()A . 平均数是6B . 中位数是6.5C . 众数是7D . 平均每周锻炼超过6小时的人数占该班人数的一半16、(2018河池.中考模拟) 数学小组的同学为了解“阅读经典”活动的开展情况,随机调查了50名同学,对他们一周的阅读时间进行了统计,并绘制成下图.这组数据的中位数和众数分别是()A . 中位数和众数都是8小时B . 中位数是25人,众数是20人C . 中位数是13人,众数是20人,D . 中位数是6小时,众数是8小时17、(2019巴中.中考真卷) 如图所示,是巴中某校对学生到校方式的情况统计图.若该校骑自行车到校的学生有200人,则步行到校的学生有()A . 120人B . 160人C . 125人D . 180人18、(2018泸州.中考真卷) 某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231则这些学生年龄的众数和中位数分别是()A . 16,15B . 16,14C . 15,15D . 14,1519、(2019醴陵.中考模拟) 若干名工人某天生产同一种玩具,生产的玩具数整理成条形图(如图所示).则他们生产的玩具数的平均数、中位数、众数分别为()A . 5,5,4B . 5,5,5C . 5,4,5D . 5,4,420、(2019盘龙.中考模拟) 如图分别是某班全体学生上学时乘车、步行、骑车人数分布的条形统计图和扇形统计图(两图都不完整),下列结论错误的是( )A . 该班总人数为50人B . 骑车人数占20%C . 乘车人数是骑车人数的2.5倍D . 步行人数为30人21、(2020嘉兴.中考模拟) 乐乐把报纸上看到甲、乙两公司2013年年的销售收入情况如图所示:关于两家公司年的销售收入的增长速度,下列说法正确的是()A . 甲快B . 乙快C . 一样快D . 无法比较22、(2020呼和浩特.中考模拟) 小明家1至6月份的用水量统计如图所示,则5月份的用水量比4月份增加的百分率为( )A . 25%B . 20%C . 50%D . 33%23、(2020广元.中考真卷) 下列各图是截止2020年6月18日的新冠肺疫情统计数据,则以下结论错误的是()A . 图1显示印度新增确诊人数大约是伊朗的两倍.每百万人口的确诊人数大约是伊朗的B . 图1显示俄罗斯当前的治愈率高于四班牙C . 图2显示海外新增确诊人数随时间的推移总体呈增长趋势D . 图3显示在2-3月之间,我国现有确诊人数达到最多24、(2021福建.中考模拟) 随着智能手机的普及,“支付宝支付”和“微信支付”等手机支付方式倍受广大消费者的青睐,某商场对2019年7−12月中使用这两种手机支付方式的情况进行统计,得到如图所示的折线图,根据统计图中的信息,得出以下四个推断,其中不合理的是()A . 6个月中使用“微信支付”的总次数比使用“支付宝支付”的总次数多;B . 6个月中使用“微信支付”的消费总额比使用“支付宝支付”的消费总额大;C . 6个月中11月份使用手机支付的总次数最多;D . 9月份平均每天使用手机支付的次数比12月份平均每天使用手机支付的次数多;25、(2021辉.中考模拟) 为了解高校学生对5G移动通信网络的消费意愿,从在校大学生中随机抽取了1000人进行调查,下面是大学生用户分类情况统计表和大学生愿意为5G套餐多支付的费用情况统计图(例如,早期体验用户中愿意为5G套餐多支付10元的人数占所有早期体验用户的50%).用户分类人数A:早期体验用户(目前已升级为5G用户)260人B:中期跟随用户(一年内将升级为5G用户)540人C:后期用户(一年后才升级为5G用户)200人下列推断中,不合理的是()A . 早期体验用户中,愿意为5G套餐多支付10元,20元,30元的人数依次递减B . 后期用户中,愿意为5G套餐多支付20元的人数最多C . 愿意为5G套餐多支付10元的用户中,中期跟随用户人数最多D . 愿意为5G套餐多支付20元的用户中,后期用户人数最多26、(2020东城.中考模拟) 党的十八大以来,全国各地认真贯彻精准扶贫方略,扶贫工作力度、深度和精准度都达到了新的水平,为2020年全面建成小康社会的战略目标打下了坚实基础.以下是根据近几年中国农村贫困人口数量(单位:万人)及分布情况绘制的统计图表的一部分.年份人数地区201720182019东部30014747中部1112181西部1634916323(以上数据来源于国家统计局)根据统计图表提供的信息,下面推断错误的是()A . 2018年中部地区农村贫困人口为597万人B . 2017﹣2019年,农村贫困人口数量都是东部最少C . 2016﹣2019年,农村贫困人口减少数量逐年增多D . 2017﹣2019年,虽然西部农村贫困人口减少数量最多,但是相对于东、中部地区,它的降低率最低27、(2020朝阳.中考模拟) 生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段.为了解2019年某市第二季度日均可回收物回收量情况,随机抽取该市2019年第二季度的天数据,整理后绘制成统计表进行分析.日均可回收物回收量(千吨)合计频数123频率0.050.100.151表中组的频率满足.下面有四个推断:①表中的值为20;②表中的值可以为7;③这天的日均可回收物回收量的中位数在组;④这天的日均可回收物回收量的平均数不低于3.所有合理推断的序号是()A . ①②B . ①③C . ②③④D . ①③④28、(2021潍坊.中考真卷) 如图为2021年第一季度中国工程机械出口额TOP10国家的相关数据(同比增速是指相对于2020年第一季度出口额的增长率),下列说法正确的是()A . 对10个国家出口额的中位数是26201万美元B . 对印度尼西亚的出口额比去年同期减少C . 去年同期对日本的出口额小于对俄罗斯联邦的出口额D . 出口额同比增速中,对美国的增速最快29、(2021赤峰.中考真卷) 五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),下列结论错误的是()A . 本次抽样调查的样本容量是5000B . 扇形统计图中的m为10%C . 若五一期间观光的游客有50万人,则选择自驾方式出行的大约有20万人D . 样本中选择公共交通出行的有2400人30、为了减轻学生课外作业负担,数学老师准备按照学生每天课外作业完成量(完成题目个数)实行分档布置作业.作业量分档递增,计划使第一档、第二档和第三档的作业量覆盖全校学生的70%,20%和10%,为合理确定各档之间的界限,随机抽查了该校500名学生过去一个阶段完成作业量的平均数(单位:个);绘制了统计图.如图所示,下面四个推断合理的是( )A . 每天课外作业完成量不超过15个题的该校学生按第二档布置作业B . 每天课外作业完成量超过21个的该校学生按第三档布置作业C . 该校学生每天课外作业完成量的平均数不超过18D . 该校学生每天课外作业完成量的中位数在15﹣18之间利用统计图表分析实际问题单选题答案1.答案:A2.答案:A3.答案:B4.答案:B5.答案:C6.答案:B7.答案:D8.答案:D9.答案:D10.答案:C11.答案:C12.答案:C13.答案:B14.答案:D15.答案:A16.答案:A17.答案:B18.答案:A19.答案:B20.答案:D21.答案:A22.答案:B23.答案:24.答案:25.答案:26.答案:27.答案:28.答案:29.答案:30.答案:。
中考数学冲刺:图表信息型问题--考点例题讲解+练习(基础)(1).doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】中考冲刺:图表信息型问题—知识讲解(基础)【中考展望】图表信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔.用好题中提供的信息,有利于提高学生分析、解决简单实际问题的能力,同时也是培养现代公民素质的一条重要途径.【方法点拨】1.图象信息题题型特点:这类题是中考试卷中出现频率较高的题型之一,它是通过图象呈现问题中两个变量之间的数量关系,主要考查学生对函数思想和数形结合思想的掌握程度.解题策略:解答这类问题,在弄清题意的基础上,弄清两坐标轴所代表的含义,并对图象的形状、位置、发展变化趋势等捕捉提炼有效信息,解决相关问题.2.图表信息题图表信息题是指通过图表的形式提供信息,这些信息一般以数据形式居多,其主要考查学生对图表数据的分析、比较、判断和结论的归纳能力,要求学生有较强的定量分析和定性概括能力.【典型例题】类型一、图象信息题1.容积率t是指在房地产开发中建筑面积与用地面积之比,即MtS建筑面积用地面积,为充用地面积分利用土地资源,更好地解决人们的住房需求,并适当的控制建筑物的高度,一般容积率t不小于1且不大于8.一房地产开发商在开发某小区时,结合往年开发经验知,建筑面积M(m2)与容积率t的关系可近似地用如图(1)中的线段l来表示;1 m2建筑面积上的资金投入Q(万元)与容积率t的关系可近似地用如图(2)中的一段抛物线c来表示.(1)试求图(1)中线段l的函数关系式,并求出开发该小区的用地面积;(2)求出图(2)中抛物线段c的函数关系式.【思路点拨】(1)因为图象过点(2,28000)和(6,80000),所以易求l的表达式,注意t的取值范围,当t=1时,S 用地面积=M 建筑面积;(2)根据图象经过点(1,0.18)和(4,0.09)且(4,0.09)为顶点可求c 的函数关系式. 【答案与解析】解:(1)设M =kt+b ,由图象上两点的坐标(2,28000)、(6,80000),可求得是k =13000,b =2000.所以线段l 的函数关系式为: M =13000t+2000(1≤t ≤8).由M t S =建筑面积用地面积知,当t =1时,S M =用地面积建筑面积.把t =1代入M =13000t+2000中,可得 M =15000.即开发该小区的用地面积是15 000 m 2.(2)根据图象特征可设抛物线段c 的函数关系式为Q =a(t-4)2+0.09,把点(1,0.18)的坐标代入,可求得1100a =. 所以219(4)100100Q t =-+2121(18)100254t t t =-+≤≤.【总结升华】图象信息题一般需要先由图象提供的条件确定出相应的函数关系式,然后再运用函数的性质解决问题,因而可以有效考查对函数思想和数形结合思想方法的掌握和应用情况.举一反三:【变式】甲、乙两人骑自行车前往A 地,他们距A 地的路程s(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个). (3)在什么时间段内乙比甲离A 地更近? 【答案】 解:(1)50202.5v ==甲(km/h), 60302v ==乙(km/h).(2)5020s t =-甲或6030s t =-乙(答对一个即可); (3)1<t <2.5.2.(2016•长春模拟)甲、乙两名自行车运动员在同一条直线公路上进行骑自行车训练,他们同时同地同向出发,乙在行驶过程中改变了一次速度,甲、乙两人各自在公路上训练时行驶路程y(千米)与行驶时间x(时)(0≤x≤4)之间的函数图象如图所示.(1)求甲行驶的速度.(2)求直线AB所对应的函数表达式.(3)直接写出甲、乙相距5千米时x的值.【思路点拨】(1)由速度=路程÷时间,可得出甲行驶的速度;(2)设直线AB所对应的函数表达式为y=kx+b,将A、B点的坐标代入解析式可得出关于k、b的二元一次方程组,解出方程组即可得出结论;(3)找出各段线段所对应的函数表达式,根据图象做差可得出关于x的一元一次方程,解方程即可得出结论.【答案与解析】解:(1)120÷3=40(千米/时).∴甲行驶的速度为40千米/时.(2)设直线AB所对应的函数表达式为y=kx+b,把A(1,50)、B(3,120)代入,得,解得:.故直线AB所对应的函数表达式为y=35x+15(1≤x≤4).(3)设直线OA所对应的函数表达式为y=k1x,把A(1,50)代入,得50=k1,故直线OA所对应的函数表达式为y=50x(0≤x≤1),设直线OB所对应的函数表达式为y=k2x,把B(3,120)代入,得120=3k2,解得:k2=40.故直线OB所对应的函数表达式为y=40x(0≤x≤4).当0≤x≤4时,令50x﹣40x=5,解得x=0.5;当1<x≤3时,令35x+15﹣40x=5,解得x=2;当3<x≤4时,令40x﹣(35x+15)=5,解得x=4.综上可知:甲、乙相距5千米时x的值为0.5,2和4.故还需要0.2小时时间才能再次与小李相遇.【总结升华】本题考查了一次函数的应用、待定系数法求函数解析式以及解一元一次方程.举一反三:【变式】(讷河市校级期末)甲、乙两同学骑自行车从A地沿同一条路到B地,已知如图,甲做匀速运动,乙比甲先出发,他们离出发地距离s(km)和骑车行驶时间t(h)之间的函数关系如图,给出下列说法:(1)他们都骑车行驶了20km;(2)乙在途中停留了0.5h;(3)甲、乙两人同时到达目的地;(4)相遇后,甲的速度小于乙的速度.根据图象信息,以上说法错误的有()A.1个B.2个C.3个D.4个【答案】B;【解析】解:甲乙都是骑自行车从A地沿同一路线到离A地20千米的B地,所以(1)正确;乙出发0.5小时后停留了0.5小时,所以(2)正确;乙出发2.5小时到达目的地,而甲比乙早到0.5小时,所以(3)不正确;图象相交后甲的图象都在乙的上方,说明甲的速度比乙的要大,所以(4)不正确.故以上说法错误的有(3)、(4)2个.故选:B.类型二、图表信息题3.某市为了进一步改善居民的生活环境,园林处决定增加公园A和公园B的绿化面积.已知公园A、B分别有如图(1)(2)所示的阴影部分需铺设草坪,在甲、乙两地分别有同种草皮1608 m2和1200 m2出售,且售价一样.若园林处向甲、乙两地购买草皮,其路程和运费单价见下表:公园A 公园B路程(千米)运费单价(元)路程(千米)运费单价(元)甲地 30 0.25 32 0.25 乙地220.3300.3(注:运费单价指将每平方米草皮运送1千米所需的人民币)(1)分别求出公园A 、B 需铺设草坪的面积;(结果精确到1m 2)(2)请设计出总运费最省的草皮运送方案,并说明理由.【思路点拨】(1)公园A 草坪的面积=大矩形的面积-两条小道的面积+两条小道重叠部分的面积. 公园B 草坪的面积=大矩形的面积-两个扇形的面积-扇形所夹的两个三角形的面积.(2)本题可根据总运费=公园A 向甲,乙两地购买草坪所需的费用+公园B 向甲乙两地购买草坪所需的费用,如果设总运费为y 元,公园A 向甲地购买草皮xm 2,那么根据上面的等量关系可得出y 与x 的关系式,然后根据甲乙两地出售的草坪的面积和公园A ,B 所需的草坪面积得出x 的取值范围,再根据函数的性质得出花钱最少的方案. 【答案与解析】解:(1)公园A 需铺设草坪的面积为S 1=62×32-62×2-32×2+2×2=1800(m 2).设图(4)中圆的半径为R ,易知,圆心到距形长边的距离为252,所以25cos302R =°,3R =.公园B 需铺设草坪的面积为2221201256525221008(m )3602233S π=⨯-⨯⨯-⨯≈. (2)设总运费为y 元,公园A 向甲地购买草皮x m 2,向乙地购买草皮(1800-x)m 2. 由于园林处需要购买的草皮面积总数为1800+1008=2808(m 2),甲、乙两地出售的草皮面积总数为:1608+1200=2808(m 2),所以,公园B 向甲地购买草皮(1608-x)m 2,向乙地购买草皮1200-(1800-x)=(x-600)m 2.则01608,018001200,x x ≤≤⎧⎨≤-≤⎩求得600≤x ≤1608.由题意,得y =30×0.25x+22×0.3×(1800-x)+32×0.25×(1608-x)+30×0.3×(x-600)=1.9x+19344.因为k=1.9>0,所以y随x的增大而增大,所以,当x=600时,y1.9×600+19344=20484(元).最小值即公园A在甲地购买600 m2,在乙地购买1800-600=1200(m2);公园B在甲地购买1608-600=1008(m2),运送草皮的总运费最省.【总结升华】本题是一个图表信息类的实际应用题,将代数知识、几何知识巧妙地融为一体,通过解答,可以有效考查圆的有关计算、一元一次不等组、一次函数等知识的综合运用,难度不大但涉及知识点丰富、技巧性强,是不可多得的一道好题.举一反三:【:图表信息型问题例1】【变式】今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A、B两水库各调出14万吨水支援甲、乙两地抗旱.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米.⑴设从A水库调往甲地的水量为x万吨,完成下表:⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)【答案】⑴(从左至右,从上至下)14-x ;15-x ;x-1 .⑵ y=50x+(14-x)30+60(15-x)+(x-1)45=5x+1275解不等式1≤x≤14所以x=1时y取得最小值y=5+1275=1280∴调运方案为A往甲调1吨,往乙调13吨;B往甲调14吨,不往乙调.4.某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制了如图所示的统计图.根据图中信息解答下列问题:(1)哪一种品牌粽子的销售量最大?(2)补全图中的条形统计图.(3)写出A品牌粽子在图(2)中所对应的圆心角的度数.(4)根据上述统计信息,明年端午节期间该商场对A、B、C三种品牌的粽子如何进货?请你提一条合理化的建议.【思路点拨】(1)从扇形统计图中得出C品牌的销售量最大,为50%;(2)总销售量=1200÷50%=2400个,B品牌的销售量=2400-1200-400=800个,补全图形即可;(3)A品牌粽子在图中所对应的圆心角的度数=360°×(400÷2400)=60°;(4)由于C品牌的销售量最大,所以建议多进C种.【答案与解析】解:(1)从扇形统计图中得出C品牌的销售量最大,为50%;(2)总销售量=1200÷50%=2400个,B品牌的销售量=2400-1200-400=800个,(3)A品牌粽子在图中所对应的圆心角的度数=360°×(400÷2400)=60°;(4)建议:多进一些C品牌的粽子.【总结升华】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.类型三、信息综合题5.如图,A,B,C,D为圆O的四等分点,动点P从圆心O出发,沿O-C-D-O路线作匀速运动,设运动时间为x(s),∠APB=y(°),右图函数图象表示y与x之间函数关系,则点M的横坐标应为()A.2B.2π C. 12π+ D. 无法确定 【思路点拨】通过图象得到函数是随自变量的增大,知道函数值是增大还是减小. 【答案与解析】解:根据题意,可知点P 从圆心O 出发,运动到点C 时,∠APB 的度数由90°减小到45°, C 点的横坐标为1,CD 弧的长度为12π. 点M 是∠APB 由稳定在45°,保持不变到增大的转折点; 另点O 的运动有周期性;结合图象,可得答案为C . 故选C 【总结升华】正确理解函数图象横纵坐标表示的意义,理解问题的过程.。
中考复习数学真题汇编15:统计图表(含答案)
一、选择题1. (2015福建省福州市,5,3分)下列选项中,显示部分在总体中所占百分比的统计图是( ) A.扇形图 B.条形图 C.折线图 D.直方图 【答案】A2. (2015浙江省温州市,3,4分)某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有25人,则参加人数最多的小组有( )A.25人B.35人C.40人D.100人【答案】C3. (2015内蒙古呼和浩特,8,3分)以下是某手机店1~4月份的两个统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为( )A. 4月份三星手机销售额为65万元B. 4月份三星手机销售额比3月份有所上升C. 4月份三星手机销售额比3月份有所下降D. 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额 【答案】B4. (2015年江苏扬州市)如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是 ( )各月手机销售总额统计图三星手机销售额占该手机店 当月手机销售总额的百分比统计图A 、音乐组B 、美术组C 、体育组D 、科技组二、填空题 1.2. (2015四川省凉山州市,15,4分)小明同学根据全班同学的血型绘制了如图所示的扇形统计图,已知A 型血的有20人,则O 型血的有 人 【答案】10. 【解析】总人数为20÷40%=50人,O 型血的有50×(1﹣40%﹣30%﹣10%)=10人,故答案是10.3. (2015广东省广州市,12,3分)根据环保局公布的广州市2013年至2014年PM 2.5的主要来源的数据,制成扇形统计图(如图4),其中所占百分比最大的主要来源是 .(填主要来源的名称)【答案】机动车尾气【解析】用一个圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分在总体中所占百分比的大小,这样的统计图叫做扇形统计图.所以一看数据就知道是机动车尾气.4. (2015四川资阳,13,3分)某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成右图统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有_________人.每周课外阅读时间(小时)0~11~2(不含1) 2~3(不含2)超过3 人 数 7 10 14 19【答案】240.21.7%11.5%20.6%19%8.2%8.6%10.4% 机动车尾气 工业工艺源 燃煤 其他 生物质燃烧 生活面源扬尘图41296301518181312b 3课时数 组)与 不等式(组)A一次方程 B 一次方程组C 不等式与不等式组 D二次方程 E分式方程图数与代数(内容) 课时数数与式 67 方程(组)与 不等式(组) a图实践与综合应用统计与概率空间与图形 数与代数 40%45%5%图5. (2014江苏省苏州市,13,3分)某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名.【答案】60【解析】最喜欢羽毛球的人数所占百分率比最喜欢乒乓球的人数所占百分率少10%,故被调查总人数为6÷105=60(人).6. (2015年湖南衡阳,22,6分)为了进一步了解义务教育阶段学生体质健康状况,教育部对我市某中学九年级的部分学生进行了体质抽测,体质抽测的结果分别为四个等级:优秀、良好、合格、不合格,根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:(1)在扇形统计图中,“合格”的百分比为 ;(2)本次体质抽测中,抽测结果为“不合格”等级的学生有 人;(3)若该校九年级有400名学生,估计该校九年级体质为“不合格”等级的学生约有 人. 【答案】(1)40%;(2)16;(3)128【解析】解:(1)总人数=8÷16%=50人,合格百分比:20100%50=40%; (2)不合格的人数=50×32%=16人; (3)九年级不合格为数=400×32%=128人.三、解答题1. (2015浙江省丽水市,20,8分)某运动品牌店对第一季度A ,B 两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图所示:(第13题)20%30%40%乒乓球篮球羽毛球50606552销售量(双)A ,B 两款运动鞋销售量统计图6总销售额(万元)5A ,B 两款运动鞋总销售额统计图A B(1)一月份B款运动鞋的销售量是A款的45,则一月份B款运动鞋销售了多少双?(2)第一季度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);(3)结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.【答案】解:(1)50×45=40(双).∴一月份B款运动鞋销售了40双.(2)设A,B两款运动鞋的销售单价分别为x元,y元.由题意可得504040000 605250000x yx y+⎧⎨+⎩==.解方程组得400500xy⎧⎨⎩==.∴三月份的总销售额为400×65+500×26=39000=3.9(万元).(3)答案不唯一,只要学生结合数据分析,言之有理即可.例如:从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销售量大,建议多进A款运动鞋,少进或不进B款鞋.从总销售额来看,由于B款运动鞋销售量减少,导致总销售额减少,建议店里采取一些促销手段,增加B 款运动鞋的销售量.2.(2015四川省巴中市,26,10分)“中国梦”关系每个人的幸福生活,为展现巴中人追梦的风采,我市某中学举行“中国梦·我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出2名去参加市中学生演讲比赛.已知A等级中男生有1名,请用“列表”或“画树状图”的方法求出所选2名学生中恰好是一名男生和一名女生的概率.【答案】解:(1)根据统计图,可知A等级的有3人,占15%,∴参加比赛的共有3÷15%=20(人).∴C等级所占百分比为8=40%20,D等级所占百分比为4=20%20.∴m=40,D等级所占百分比为360°×20%=72°.(2)由题意,B等级所占百分比为1-15%-40%-20%=25%,∴B等级人数为20×25%=5(人),补全统计图如下所示.3.(2015山东省青岛市,17,6分)某中学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)求扇形统计图中扇形D的圆心角的度数;(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?【答案】解:(1)∵10÷25%=40,∴B的人数为40-10-14-3-1=12.补全条形统计图如下:(2)∵1-25%-30%-35%-2.5%=7.5%,∴360°×7.5%=27°.∴扇形统计图中扇形D 的圆心角的度数为27°. (3)∵2000×35%=700,∴该中学有2000名学生中有700名学生能在1.5小时内完成家庭作业.4. (2015重庆B 卷,22,10分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类(记为A )、音乐类(记为B )、球类(记为C )、其他类(记为D ).根据调查结果发现该班每个学生都进行了登记且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:(1)七年级(1)班学生总人数为_______人,扇形统计图中D 类所对应扇形的圆心角为_____度,请补全条形统计图;(2)学校将举行书法和绘画比赛,每班需派两名学生参加,A 类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A 类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.类别人数22题图”我最喜欢的课外活动“各类别人数占全班总人数的百分比的扇形统计图DCB25%A“我最喜欢的课外活动”各类别人数条形统计图141242018161412108642【答案】(1)48,105;(2)23【解析】解:(1)总人数=12÷25%=48人;D 类对应的圆心角的度数=360°×1448=105°. 类别人数18“我最喜欢的课外活动”各类别人数条形统计图141242018161412108642,则可列下表: A 1 A 1 A 2 A 2A 1 √ √ A 1 √ √ A 2 √ √ A 2√√∴由上表可得:82(123P =一名擅长书法一名擅长绘画)=5. 小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表和频数分布直方图(如图). 月均用水量(单位:t )频数 百分比23x ≤<2 4% 34x ≤< 12 24% 45x ≤< 56x ≤< 10 20% 67x ≤< 12% 78x ≤<3 6% 89x ≤<24%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t 且小于7t ”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在23x ≤<,89x ≤<这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6课时图表信息题
图表信息题是中考常见的一种题型,它是通过图象、图形及表格等形式给出信息的一种新题型,在解决图表信息题的时候要注意以下几点:
1、细读图表:(1)注重整体阅读。
先对材料或图表资料等有一个整体的了解,把握大体方向。
要通过整体阅读,搜索有效信息;(2)重视数据变化。
数据的变化往往说明了某项问题,而这可能正是这个材料的重要之处;(3)注意图表细节。
图表中一些细节不能忽视,他往往起提示作用。
如图表下的“注”“数字单位”等。
2、审清要求:图表题往往对答题有一定的要求,根据考题要求进行回答,才能有的放矢。
题目要求包往往括字数句数限制、比较对象、变化情况等。
3、准确表达解答图表题需要用简明的语言进行概括。
解答前,要正确分析图表中所列内容的相互联系,从中找出规律性的东西,再归纳概括为一个结论。
在表述时要有具体的数据比较、分析,要客观地反映图表包含的信息,特别要注意题目中的特殊限制。
类型之一图形信息题
找规律是解决数学问题的一种重要手段,找规律既需要敏锐的观察力,又需要一定的逻辑推理能力。
在解决图形问题的时候应从图形的个数、形状以及图形的简单性质入手。
1.(·沈阳市)观察下列图形的构成规律,
根据此规律,第8个图形中有个圆.
2.(·聊城市)如下左图是某广场用地板铺设的部分图案,中央是一块
正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第
1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正
三角形,依此递推,第8层中含有正三角形个数是()
A.54个B.90个C.102个D.114个
3.(·桂林市)如上右图,矩形A1B1C1D1的面积为4,顺次连结
各边中点得到四边形A2B2C2D2,再顺次连结四边形A2B2C2D2四边
中点得到四边形A3B3C3D3,依此类推,求四边形A n B n C n D n,的面
积是。
内部,画1条射线,可得
4(·襄樊市)如图,在锐角AOB
3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,
可得10个锐角;……照此规律,画10条不同
射线,可得锐角个.
类型之二图象信息题
此类题目以图象的形式出现,有时用函数图象
的形式出现,有时以统计图的形式出现,需要要把所给的图象
信息进行分类、提取加工,再合成.
5.(•莆田市)如图表示一艘轮船和一艘快艇沿相同路线从甲
港出发到乙港行驶过程随时间变化的图象,根据图象下列结论
错误的是()
A.轮船的速度为20千米/小时 C.轮船比快艇先出发2小时
B.快艇的速度为40千米/小时 D.快艇不能赶上轮船
6.(•滨州市)如图,在矩形ABCD中,动点P从点B出发,沿
BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的
P D 函数图象如图2所示,则△ABC 的面积是( ) A.10 B.16 C.18 D.20
7.(·龙岩市)下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的条形统计图如下图. 依据上列图、表,回答下列问题:
(1)其中观看男篮比赛的门票有 张;观看乒乓球比赛的门票占全部门票的 %;
(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小亮抽到足球门票的概率是 ;
(3)若购买乒乓球门票的总款数占全部门票总款数的
81,试求每张乒乓球门票的价格 类型之三 从表格、数字中寻求规律
能从表格、数字中发现两个量之间存在规律,归纳出相应的关系式.在探索规律的时候,如对于数字问题,可以把等式横向、纵向进行比较,找到其中的数字与其式子的序号之间的关系,然后找到其中的变化规律.
8.(·内江市) 根据图中数字的规律,在最后一个图形中填空. 9.(·恩施自治州)将杨辉三角中的每一个数都换成分数 ,
得到一个如图4所示的分数三角形,称莱布尼茨三角形.若用
有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)
表示分数12
1.那么(9,2)表示的分数是 . 10.(·茂名)我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
(1)把上表中x 、y 的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最
高不能..
超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?
第6课时 图表信息题 答案
1.【解析】观察图形,第1个图形中“○”的个数为2=1+1;第2个图形中“○”的个数为
5=4+1=122+;第3个图形中“○”的个数为10=9+1=132
+;第4个图形中“○”的个数
为17=16+1=142+;…第n 个图形中“○”的个数为12
+n .
【答案】65.
2.【解析】阅读题意可得规律:第1层:1×6;第2层:3×6;第3层:5×6;第4层:7×6……第8层:15×6=90;还可推广:第n 层:(2n-1)×6,所以第8层中含有正三角形个数是102.
【答案】B
【解析】由中点四边形性质得:四边形A 2B 2C 2D 2,的面积是矩形A 1B 1C 1D 1的一半,四边形A 3B 3C 3D 3
的面积是四边形A 2B 2C 2D 2的面积的一半,依此类推,得到四边形A n B n C n D n 的面积是142
n -。
【答案】142
n - 4.【解析】按如图这样画n 条射线得到的锐角个数为(1)(2)2n n ++ 【答案】66
5.【解析】由图象可以知道快艇用时4个小时路程160千米,速度每小时40千米,同样可以得到轮船速度每小时20千米,快艇比轮船晚出发2小时,早到2小时,中间在4小时的时候追上轮船.
【答案】D
6.【解析】由图可知点P 运动路程在4和9之间时三角形ABP 面积不变,说明这时点P 在CD 边上,因此可知CD=5,BC=4,三角形ABC 面积为10
【答案】A
7.【解析】此题为统计与概率知识的综合题,由条形统计图可以判断出三种比赛项目的具体人数,就可以解决第一、二两问.第三问乒乓球门票的价格需要根据统计表中所示的各门票的价格与购买乒乓球门票的总款数占全部门票总款数的
8
1,构造方程从而求出乒乓球门票的价格.
【答案】(12分)(1)30,20
(3)解法一:依题意,有x x 205080030100020+⨯+⨯= 18 . 解得x =500 .
经检验,x =500是原方程的解.
答:每张乒乓球门票的价格为500元.
解法二:依题意,有x 2050800301000+⨯+⨯= x 208⨯.
解得x =500 .
答:每张乒乓球门票的价格为500元.
8.【解析】寻求图形与图形之间数字蕴含的规律是解题的关键所在.图形的第一行的数是连续正奇数;第二行左边的数是连续正偶数;把每个图形第一行的数乘以第二行左边的数,再加上第一行的数,便得到第二行右边的数. 【答案】
9.【解析】观察分数的排列发现其分布有轴对称性,且(n ,1)表示
1n ,(n ,2)表示1(1)n n - 【答案】72
1 10.【解析】从表格中的数据我们可以看出当x 增加10时,对应y 的值减小100,所以y 与x 之间可能是一次函数的关系,我们可以根据图象发现这些点在一条直线上,所以y 与x 之间是一次函数的关系,然后设出一次函数关系式,求出其关系式.
【答案】(1)画图如图;
由图可猜想y与x是一次函数关系,
设这个一次函数为y= k x+b(k≠0)
∵这个一次函数的图象经过(30,500)、(40,400)这两点,
∴
50030
40040
k b
k b
=+
⎧
⎨
=+
⎩
解得
10
800
k
b
=-
⎧
⎨
=
⎩
∴函数关系式是:y=-10x+800
(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得
W=(x-20)(-10x+800)=-10x2+1000x-16000
=-10(x-50)2+9000
∴当x=50时,W有最大值9000.
所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.
(3)对于函数 W=-10(x-50)2+9000,
当x≤45时,W的值随着x值的增大而增大,销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.。