点到平面的距离计算(人教A版)(含答案)
高中数学人教A版 选择性必修第一册 两点间的距离公式 课件

勾股定理推导两点间距离公式吗?与向量法比较,你有什么体会?
y
P2
x
O
∟
P1
A
探究新知
追问4 :如何求 1 2 ?
y
P2
x
O
∟
P1
A
探究新知
追问5:如果直线 与坐标轴平行,或在坐标轴上,两点间距离是否满足
经典例题
题型一
两条直线的交点问题
跟踪训练1
(1)若两直线 2x+3y-k=0 和 x-ky+12=0 的交点在 y 轴上,则 k=________;
(2)求经过点 P(1,0)和两直线 l1:x+2y-2=0,l2:3x-2y+2=0 交点的直线方程.
k
k
(1)在 2x+3y-k=0 中,令 x=0,得 y=3,将(0,3)代入 x-ky+12=0,解得 k=±6.
课堂小结
已知平面内两点 , , , ,能否说出两点间的距离
公式?
y
P2
能否描述这句话对应的几何图形?
2 −1
证明两点间距离公式的基本方法
x
O
P1
2 − 1
A
课堂小结
回归两道例题的求解过程,总结它们的共同点,谈一谈你的感受?
几何
代数
坐标
几何
随堂检测
1.求下列两点间的距离:
跟踪训练2
(1)已知点 A(-1,2),B(2, 7),在 x 轴上求一点 P,使|PA|=|PB|,并求|PA|的值.
(2)已知在等腰梯形 ABCD 中,AB∥DC,对角线为 AC 和 BD.求证:|AC|=|BD|.
解:
高中数学人教A版(2019)选择性必修第一册知识点归纳含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!高中数学选择性必修第一册必备知识手册2024一轮复习【空间向量与立体几何】1、O 是直线l 上一点,在直线l 上取非零向量a r ,则对于直线l 上任意一点P ,由数乘向量的定义及向量共线的充要条件可知,存在实数l ,使得OP a l =uuu r r 。
我们把与向量a r 平行的非零向量称为直线l 的方向向量。
这样直线l 上任意一点都可以由直线l 上的一点和它的方向向量表示,也就是说,直线可以由其上一点和它的方向向量确定。
2、如果表示向量a r 的有向线段OA uuu r 所在的直线OA 与直线l 平行或重合,那么称向量a r 平行于直线l 。
人教A版高中数学选择性必修第一册第1章 1.4.2 第1课时 距离问题讲义

1.4.2用空间向量研究距离、夹角问题第1课时距离问题学习目标1.理解点到直线、点到平面距离的公式及其推导.2.了解利用空间向量求点到直线、点到平面、直线到直线、直线到平面、平面到平面的距离的基本思想.知识点一点P 到直线l 的距离已知直线l 的单位方向向量为u ,A 是直线l 上的定点,P 是直线l 外一点,设向量AP →在直线l 上的投影向量为AQ →=a ,则点P 到直线l 的距离为a 2-(a ·u )2 (如图).知识点二点P 到平面α的距离设平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点,则点P 到平面α的距离为|AP →·n ||n |(如图).思考怎样利用向量方法求直线到直线的距离、直线到平面的距离、平面到平面的距离? 答案两条直线平行,其中一条直线到另一条直线间的距离是其中一条直线上任一点到另一条直线的距离;一条直线和一个平面平行,直线到平面的距离就是这条直线上任一点到这个平面的距离;两个平面平行,平面到平面的距离就是一个平面上任一点到这个平面的距离.1.空间内有三点A (2,1,3),B (0,2,5),C (3,7,0),则点B 到AC 的中点P 的距离为() A.102B .5C.3102D .3 5 答案C2.已知直线l 过点A (1,-1,2),和l 垂直的一个向量为n =(-3,0,4),则P (3,5,0)到l 的距离为()A .5B .14C.145D.45答案C解析∵P A →=(-2,-6,2),P A →·n =(-2,-6,2)·(-3,0,4)=14,|n |=5, ∴点P 到直线l 的距离为d =|P A →·n ||n |=145.3.已知直线l 与平面α相交于点O ,A ∈l ,B 为线段OA 的中点,若点A 到平面α的距离为10,则点B 到平面α的距离为________. 答案54.已知平面α的一个法向量为n =(-2,-2,1),点A (-1,3,0)在平面α内,则点P (-2,1,4)到平面α的距离为________. 答案103解析点P 到平面α的距离 d =|P A →·n ||n |=|-2-4-4|4+4+1=103.一、点到直线的距离例1如图,在空间直角坐标系中有长方体ABCD -A ′B ′C ′D ′,AB =1,BC =2,AA ′=3,求点B 到直线A ′C 的距离.解因为AB =1,BC =2,AA ′=3,所以A ′(0,0,3),C (1,2,0),B (1,0,0), 所以直线A ′C 的方向向量A ′C ———→=(1,2, -3). 又BC →=(0,2,0),所以BC →在A ′C ———→上的投影长为|BC →·A ′C ———→||A ′C ———→|=414.所以点B 到直线A ′C 的距离d =|BC →|2-⎪⎪⎪⎪⎪⎪⎪⎪BC →·A ′C ———→|A ′C ———→|2=4-1614=2357. 反思感悟用向量法求点到直线的距离的一般步骤 (1)求直线的方向向量.(2)计算所求点与直线上某一点所构成的向量在直线的方向向量上的投影向量的长度. (3)利用勾股定理求解.另外,要注意平行直线间的距离与点到直线的距离之间的转化. 跟踪训练1已知在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是C 1C ,D 1A 1的中点,求点A 到EF 的距离.解以D 点为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系如图所示,设DA =2,则A (2,0,0),E (0,2,1),F (1,0,2),则EF →=(1,-2,1),F A →=(1,0,-2). |EF →|=12+(-2)2+12=6,F A →·EF →=1×1+0×(-2)+(-2)×1=-1,F A →在EF →上的投影长为|F A →·EF →||EF →|=16.所以点A 到EF 的距离d =|F A →|2-⎝⎛⎭⎫162=296=1746. 二、点到平面的距离与直线到平面的距离例2如图,已知正方形ABCD 的边长为1,PD ⊥平面ABCD ,且PD =1,E ,F 分别为AB ,BC 的中点.(1)求点D 到平面PEF 的距离; (2)求直线AC 到平面PEF 的距离. 解(1)建立如图所示的空间直角坐标系,则D (0,0,0),P (0,0,1),A (1,0,0),C (0,1,0),E ⎝⎛⎭⎫1,12,0,F ⎝⎛⎭⎫12,1,0. 设DH ⊥平面PEF ,垂足为H ,则DH →=xDE →+yDF →+zDP →=⎝⎛⎭⎫x +12y ,12x +y ,z , x +y +z =1,PE →=⎝⎛⎭⎫1,12,-1,PF →=⎝⎛⎭⎫12,1,-1, 所以DH →·PE →=x +12y +12⎝⎛⎭⎫12x +y -z =54x +y -z =0. 同理,DH →·PF →=x +54y -z =0,又x +y +z =1,解得x =y =417,z =917. 所以DH →=317(2,2,3),所以|DH →|=31717.因此,点D 到平面PEF 的距离为31717.(2)连接AC ,则AC ∥EF ,直线AC 到平面PEF 的距离即为点A 到平面PEF 的距离, 平面PEF 的一个法向量为n =(2,2,3), 所求距离为|AE →·n ||n |=117=1717.反思感悟用向量法求点面距的步骤 (1)建系:建立恰当的空间直角坐标系.(2)求点坐标:写出(求出)相关点的坐标.(3)求向量:求出相关向量的坐标(AP →,α内两不共线向量,平面α的法向量n ). (4)求距离d =|AP →·n ||n |.跟踪训练2如图所示,已知四棱柱ABCD -A 1B 1C 1D 1是底面边长为1的正四棱柱.若点C 到平面AB 1D 1的距离为43,求正四棱柱ABCD -A 1B 1C 1D 1的高.解设正四棱柱的高为h (h >0),建立如图所示的空间直角坐标系,有A (0,0,h ),B 1(1,0,0),D 1(0,1,0),C (1,1,h ), 则AB 1—→=(1,0,-h ),AD 1—→=(0,1,-h ),AC →=(1,1,0), 设平面AB 1D 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AB 1→=0,n ·AD 1→=0,即⎩⎪⎨⎪⎧x -hz =0,y -hz =0,取z =1,得n =(h ,h ,1),所以点C 到平面AB 1D 1的距离为d =|n ·AC →||n |=h +h +0h 2+h 2+1=43,解得h =2.故正四棱柱ABCD -A 1B 1C 1D 1的高为2.1.已知A (0, 0, 2) ,B (1, 0, 2) ,C (0, 2, 0) ,则点A 到直线BC 的距离为() A.223B .1C.2D.2 2答案A解析∵A (0, 0,2),B (1, 0,2),C (0, 2,0), AB →=(1, 0,0) ,BC →=(-1, 2,-2) , ∴点A 到直线BC 的距离为d =|AB →|2-⎝ ⎛⎭⎪⎫AB →·BC →|BC →|2=1-⎝⎛⎭⎪⎫-132=223. 2.若三棱锥P -ABC 的三条侧棱两两垂直,且满足P A =PB =PC =1,则点P 到平面ABC 的距离是() A.66B.63C.36D.33答案D解析分别以P A ,PB ,PC 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (1,0,0),B (0,1,0),C (0,0,1).可以求得平面ABC 的一个法向量为n =(1,1,1), 则d =|P A →·n ||n |=33.3.已知棱长为1的正方体ABCD -A 1B 1C 1D 1,则平面AB 1C 与平面A 1C 1D 之间的距离为() A.36B.33C.233 D.32答案B解析建立如图所示的空间直角坐标系,则A 1(1,0,0) , C 1(0,1,0) , D (0,0,1) , A (1,0,1) ,所以DA 1—→=(1,0,-1) ,DC 1—→=(0,1,-1) , AD →=(-1,0,0) ,设平面A 1C 1D 的一个法向量为m =(x ,y ,1) , 则⎩⎪⎨⎪⎧m ⊥DA 1→,m ⊥DC 1→,即⎩⎪⎨⎪⎧ x -1=0,y -1=0,解得⎩⎪⎨⎪⎧x =1,y =1,故m =(1,1,1),显然平面AB 1C ∥平面A 1C 1D ,所以平面AB 1C 与平面A 1C 1D 之间的距离d =|AD →·m ||m |=13=33.4.已知直线l 经过点A (2,3,1),且向量n =(1,0,-1)所在直线与l 垂直,则点P (4,3,2)到l 的距离为________. 答案22解析因为P A →=(-2,0,-1),又n 与l 垂直, 所以点P 到l 的距离为|P A →·n ||n |=|-2+1|2=22.5.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,则点A 到平面EFG 的距离为________. 答案33解析建系如图,则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0),所以AG →=(0,1,0), GE →=(-2,1,1),GF →=(-1,-1,2). 设n =(x ,y ,z )是平面EFG 的法向量,点A 到平面EFG 的距离为d ,则⎩⎪⎨⎪⎧n ·GE →=0,n ·GF →=0,所以⎩⎪⎨⎪⎧-2x +y +z =0,-x -y +2z =0,所以⎩⎪⎨⎪⎧x =z ,y =z ,令z =1,此时n =(1,1,1), 所以d =|AG →·n ||n |=13=33.即点A 到平面EFG 的距离为33.1.知识清单: (1)点到直线的距离.(2)点到平面的距离与直线到平面的距离. 2.方法归纳:数形结合、转化法.3.常见误区:对距离公式理解不到位,在使用时生硬套用.对公式推导过程的理解是应用的基础.。
人教A版高一数学必修第二册第八章《立体几何初步》章末练习题卷含答案解析 (43)

高一数学必修第二册第八章《立体几何初步》单元练习题卷3(共22题)一、选择题(共10题)1.如图所示为某一平面图形的直观图,则此平面图形可能是( )A.B.C.D.2.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )A.B.C.D.3.如图所示,正方体ABCD−A1B1C1D1中,点E,F,G,P,Q分别为棱AB,C1D1,D1A1,D1D,C1C的中点.则下列叙述中正确的是( )A.直线BQ∥平面EFG B.直线A1B∥平面EFGC.平面APC∥平面EFG D.平面A1BQ∥平面EFG4.如图,若Ω是长方体ABCD−A1B1C1D1被平面EFGH截去几何体EB1FHC1G后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是( )A.EH∥FG B.四边形EFGH是矩形C.Ω是棱柱D.Ω是棱台5.设α,β为两个平面,则α∥β的充要条件是( )A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面6.练习1.已知一个正三棱锥的高为3,如图是其底面用斜二测画法所画出的水平放置的直观图,其中OʹBʹ=OʹCʹ=1,则此三棱锥的体积为( )A.√3B.3√3C.√34D.3√347.如图,在正方体ABCD−A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F与平面D1AE的垂线垂直,则下列说法不正确的是( )A.A1F与D1E不可能平行B.A1F与BE是异面直线C.点F的轨迹是一条线段D.三棱锥F−ABD1的体积为定值8.如图,在各棱长均为1的正三棱柱ABC−A1B1C1中,M,N分别为线段A1B,B1C上的动点,且MN∥平面ACC1A1,则这样的MN有( )A.1条B.2条C.3条D.无数条9.有以下结论:①平面是处处平直的面;②平面是无限延展的;③平面的形状是平行四边形;④一个平面的厚度可以是0.001cm.其中正确结论的个数为A.1B.2C.3D.4.给10.如图,正方体ABCD−A1B1C1D1的棱长为1,线段AC1上有两个动点E,F,且EF=√33出下列四个结论:① CE⊥BD;② 三棱锥E−BCF的体积为定值;③ △BEF在底面ABCD内的正投影是面积为定值的三角形④ 在平面ABCD内存在无数条与平面DEA1平行的直线其中,正确结论的个数是( )A.1B.2C.3D.4二、填空题(共6题)11.已知l,m,n是互不相同的直线,α,β,γ是三个不同的平面,给出下列命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β= l,β∩γ=m,γ∩α=n,l∥γ,则加m∥n.其中所有真命题的序号为12.直线与平面垂直的性质定理.注意:一条直线与一个平面平行时,这条直线上任意一点到这个平面的距离,叫做这条直线到这个平面的距离,如果两个平面平行,那么其中一个平面内的任意一点到另一个平面的距离都相等,我们把它叫做这两个平行平面间的距离.13.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( )(2)平行于同一条直线的两个平面平行.( )(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( )(4)若α∥β,直线a∥α,则a∥β.( )14.直线与平面平行的判定定理15.对角线互相垂直的空间四边形ABCD各边的中点分别为M,N,P,Q,则四边形MNPQ是.16.如图,正方形BCDE的边长为a,已知AB=√3BC,将△ABE沿边BE折起,折起后A点在平面BCDE上的射影为D点,关于翻折后的几何体有如下描述:a3;④ 平面ABC⊥① AB与DE所成角的正切值是√2;② AB∥CE;③ V B−ACE=16平面ADC.其中正确的有.(填写你认为正确的序号)三、解答题(共6题)17.在正方体ABCD−A1B1C1D1中,如图.(1) 求证:平面AB1D1∥平面C1BD;(2) 试找出体对角线A1C与平面AB1D1和平面C1BD的交点E,F,并证明A1E=EF=FC.18.几何中的“平面”有边界吗?用什么图形表示平面?19.如图所示,正四棱台ABCD−A1B1C1D1的上底面是边长为2的正方形,下底面是边长为4的正方形,侧棱长为2,侧面是全等的等腰梯形,求四棱台的表面积.20.如图所示的几何体中,四边形AA1B1B是边长为3的正方形,CC1=2,CC1∥AA1,这个几何体是棱柱吗?若是,指出是几棱柱;若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个侧棱长为2的三棱柱,并指出截去的几何体的特征,在立体图中画出截面.⏜所在平面垂直,M是CD⏜上异于C,21.如图,边长为2的正方形ABCD所在的平面与半圆弧CDD的点.(1) 证明:平面AMD ⊥平面BMC ;(2) 当三棱锥 M −ABC 体积最大时,求面 MAB 与面 MCD 所成二面角的正弦值.22. 如图,在四棱锥 P −ABCD 中,底面 ABCD 为梯形,PD ⊥ 底面 ABCD ,AB ∥CD ,AD ⊥CD ,AD =AB =1,BC =√2.(1) 求证:平面PBD ⊥平面PBC ;(2) 设 H 为 CD 上一点,满足 CH ⃗⃗⃗⃗⃗ =2HD ⃗⃗⃗⃗⃗⃗ ,若直线 PC 与平面 PBD 所成的角的正切值为 √63,求二面角 H −PB −C 的余弦值.答案一、选择题(共10题)1. 【答案】C【知识点】直观图2. 【答案】A【解析】对于B,易知AB∥MQ,则直线AB∥平面MNQ;对于C,易知AB∥MQ,则直线AB∥平面MNQ;对于D,易知AB∥NQ,则直线AB∥平面MNQ.故排除B,C,D,选A.【知识点】直线与平面平行关系的判定3. 【答案】B【解析】过点E,F,G的截面如图所示(H,I分别为AA1,BC的中点),因为A1B∥HE,A1B⊄平面EFG,HE⊂平面EFG,所以A1B∥平面EFG.【知识点】平面与平面平行关系的判定4. 【答案】D【解析】因为EH∥A1D1,A1D1∥B1C1,所以EH∥B1C1,又EH⊄平面BCC1B1,所以EH∥平面BCC1B1,又EH⊂平面EFGH,平面EFGH∩平面BCC1B1=FG,所以EH∥FG,又EH∥B1C1,所以Ω是棱柱,所以A,C正确;因为A1D1⊥平面ABB1A1,EH∥A1D1,所以EH⊥平面ABB1A1,又EF⊂平面ABB1A1,故EH⊥EF,所以B正确.【知识点】棱柱的截面分析、直线与平面平行关系的性质、直线与平面垂直关系的性质5. 【答案】B【解析】对于A,α内有无数条直线与β平行,α∩β或α∥β;对于B,α内有两条相交直线与β平行,α∥β;对于C,α,β平行于同一条直线,α∩β或α∥β;对于D,α,β垂直于同一平面,α∩β或α∥β.【知识点】平面与平面平行关系的判定、充分条件与必要条件6. 【答案】A【解析】由直观图可知:正三棱锥的底面是边长为2的正三角形,所以底面面积为12×2×2×√3 2=√3,所以三棱锥的体积为:13×√3×3=√3.故选:A.【知识点】直观图、棱锥的表面积与体积7. 【答案】A【解析】设平面D1AE与直线BC交于G,连接AG,EG,则G为BC的中点,分别取B1B,B1C1的中点M,N,连接A1M,MN,A1N,如图,因为A1M∥D1E,A1M⊄平面D1AE,D1E⊂平面D1AE,所以A1M∥平面D1AE,同理可得MN∥平面D1AE,又A1M,MN是平面A1MN内的两条相交直线,所以平面A1MN∥平面D1AE,而A1F∥平面D1AE,所以A1F⊂平面A1MN,得点F的轨迹为一条线段,故C正确;并由此可知,当F与M重合时,A1F与D1E平行,故A错误;因为平面A1MN∥平面D1AE,BE和平面D1AE相交,所以A1F与BE是异面直线,故B正确;因为MN∥EG,则点F到平面D1AE的距离为定值,所以三棱锥F−ABD1的体积为定值,故D正确.【知识点】直线与直线的位置关系8. 【答案】D【解析】如图,过线段A1B上任一点M作MH∥AA1,交AB于点H,过点H作HG∥AC 交BC于点G,过点G作CC1的平行线,与CB1一定有交点N,且MN∥平面ACC1A1,则这样的MN有无数条.故选D.【知识点】直线与平面平行关系的判定9. 【答案】B【解析】平面处处平直,无限延展,但是没有大小、形状、厚薄等,因此①②两种说法是正确的,③④两种说法是错误的.【知识点】平面的概念与基本性质10. 【答案】D【解析】因为BD⊥平面ACC1,所以BD⊥CE,故① 正确;因为点C到直线EF的距离是定值,点B到平面CEF的距离也是定值,所以三棱锥B﹣CEF的体积为定值,故② 正确;线段EF在底面上的正投影是线段GH,所以△BEF在底面ABCD内的投影是△BGH.因为线段EF的长是定值,所以线段GH是定值,从而△BGH的面积是定值,故③ 正确;设平面ABCD与平面DEA1的交线为l,则在平面ABCD内与直线l平行的直线有无数条,故④ 对.【知识点】直线与平面垂直关系的性质二、填空题(共6题)11. 【答案】③【解析】① 中α还可能与β相交;②中直线l与m还可能异面;③中结合线面平行的性质可以证得m∥n.【知识点】空间的平行关系12. 【答案】平行【知识点】直线与平面垂直关系的性质13. 【答案】×;×;×;×【知识点】直线与平面平行关系的判定14. 【答案】此平面内一条直线平行【知识点】直线与平面平行关系的判定15. 【答案】矩形【解析】如图所示,因为点M,N,P,Q分别是四条边的中点,AC,所以MN∥AC,且MN=12AC,PQ∥AC,且PQ=12所以MN∥PQ,且MN=PQ,因为四边形MNPQ是平行四边形,又因为AC⊥BD,NP∥BD,所以PQ⊥NP,所以四边形MNPQ是矩形.【知识点】空间中直线与直线平行16. 【答案】①③④【解析】作出折叠后的几何体直观图如图所示:因为A点在平面BCDE上的射影为D点,所以AD⊥平面BCDE.因为BC⊂平面BCDE,所以AD⊥BC.因为四边形BCDE是正方形,所以BC⊥CD,又AD∩CD=D,所以BC⊥平面ADC.又BC⊂平面ABC,所以平面ABC⊥平面ADC,故④正确;因为DE∥BC,所以∠ABC为AB与DE所成的角或其补角,因为BC⊥平面ADC,AC⊂平面ADC,所以BC⊥AC,所以tan∠ABC=ACBC,因为AB=√3BC,BC=a,所以在Rt△ABC中,AC=√AB2−BC2=√2a,所以tan∠ABC=ACBC=√2,故①正确;连接BD,CE,则CE⊥BD,又AD⊥平面BCDE,CE⊂平面BCDE,所以CE⊥AD.又BD∩AD=D,所以CE⊥平面ABD,又AB⊂平面ABD,所以CE⊥AB.故②错误;在Rt△ABE中,AB=√3a,BE=a.所以AE=√2a,又DE=a,AD⊥DE,所以AD=a,所以三棱锥B−ACE的体积V B−ACE=V A−BCE=13S△BCE⋅AD=13×12×a2×a=a36,故③正确.【知识点】直线与平面的位置关系、直线与直线的位置关系三、解答题(共6题)17. 【答案】(1) 因为在正方体ABCD−A1B1C1D1中,AD∥B1C1,AD=B1C1,所以四边形AB1C1D是平行四边形,所以AB1∥C1D.又因为C1D⊂平面C1BD,AB1⊄平面C1BD,所以AB1∥平面C1BD.同理,B1D1∥平面C1BD.又因为AB1∩B1D1=B1,AB1⊂平面AB1D1,B1D1⊂平面AB1D1,所以平面AB1D1∥平面C1BD.(2) 如图,连接A1C1,交B1D1于点O1,连接AO1,与A1C交于点E.又因为AO1⊂平面AB1D1,所以点E也在平面AB1D1内,所以点E就是A1C与平面AB1D1的交点.连接AC,交BD于点O,连接C1O,与A1C交于点F,则点F就是A1C与平面C1BD的交点.下面证明A1E=EF=FC.因为平面A1C1C∩平面AB1D1=EO1,平面A1C1C∩平面C1BD=C1F,平面AB1D1∥平面C1BD,所以EO1∥C1F,在△A1C1F中,O1是A1C1的中点,所以E是A1F的中点,即A1E=EF.同理可证OF∥AE,所以F是CE的中点,即 FC =EF ,所以 A 1E =EF =FC .【知识点】平面与平面平行关系的判定、平面与平面平行关系的性质18. 【答案】没有,平行四边形.【知识点】平面的概念与基本性质19. 【答案】因为正四棱台的上底面是边长为 2 的正方形,下底面是边长为 4 的正方形,所以上底面、下底面的面积分别是 4,16, 因为侧棱长为 2,侧面是全等的等腰梯形, 所以侧面等腰梯形的高为 √4−(4−22)2=√3,所以一个侧面等腰梯形的面积为 12×(2+4)×√3=3√3, 所以四棱台的表面积为 4+16+3√3×4=20+12√3. 【知识点】棱台的表面积与体积20. 【答案】这个几何体不是棱柱,截去的部分是一个四棱锥 C 1−EA 1B 1F ,如图所示.在四边形 ABB 1A 1 中,在 AA 1 上取点 E ,使 AE =2,在 BB 1 上取点 F 使 BF =2,连接 C 1E ,EF ,C 1F ,则过点 C 1,E ,F 的截面将几何体分成两部分,其中一部分是三棱柱 ABC −EFC 1,其侧棱长为 2.截去的部分是一个四棱锥 C 1−EA 1B 1F ,也可以从点 C 截. 【知识点】棱柱的结构特征21. 【答案】(1) 由题设知,平面CMD ⊥平面ABCD ,面CMD ∩面ABCD =CD . 因为 BC ⊥CD ,BC ⊂平面ABCD ,所以 BC ⊥平面CMD , 故 BC ⊥DM .因为 M 为 CD ⏜ 上异于 C ,D 的点,且 DC 为直径, 所以 DM ⊥CM ,又 BC ∩CM =C ,BC ⊂面BCM ,CM ⊂面BCM , 所以 DM ⊥平面BMC ,而 DM ⊂平面AMD ,故 平面AMD ⊥平面BMC .(2) 以 D 为坐标原点,DA⃗⃗⃗⃗⃗ 的方向为 x 轴正方向,建立如图所示的空间直角坐标系 D −xyz . 当三棱锥 M −ABC 体积最大时,M 为 CD⏜ 的中点. 由题设得 D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM ⃗⃗⃗⃗⃗⃗ =(−2,1,1),AB⃗⃗⃗⃗⃗ =(0,2,0),DA ⃗⃗⃗⃗⃗ =(2,0,0),设 n ⃗ =(x,y,z ) 是平面 MAB 的法向量,则 {n ⃗ ⋅AM⃗⃗⃗⃗⃗⃗ =0,n ⃗ ⋅AB⃗⃗⃗⃗⃗ =0, 即 {−2x +y +z =0,2y =0.可取 n ⃗ =(1,0,2).DA ⃗⃗⃗⃗⃗ 是平面 MCD 的法向量,所以 cos⟨n ⃗ ,DA ⃗⃗⃗⃗⃗ ⟩=n⃗ ⋅DA ⃗⃗⃗⃗⃗⃗ ∣∣n ⃗ ∣∣∣∣DA⃗⃗⃗⃗⃗⃗ ∣∣=√55,sin⟨n ⃗ ,DA ⃗⃗⃗⃗⃗ ⟩=2√55, 所以面 MAB 与面 MCD 所成二面角的正弦值是 2√55.【知识点】平面与平面垂直关系的判定、二面角、利用向量的坐标运算解决立体几何问题22. 【答案】(1) 因为 AD ⊥CD ,AB ∥CD ,AD =AB =1, 所以 BD =√2. 又 BC =√2,所以 CD =2, 所以 BC ⊥BD . 因为 PD ⊥ 底面 ABCD , 所以 PD ⊥BC , 又 PD ∩BD =D , 所以 BC ⊥平面PBD . 又因为 BC ⊂平面PBC ,所以 平面PBD ⊥平面PBC .(2) 由(Ⅰ)可知 ∠BPC 为 PC 与平面 PBD 所成的角, 所以 tan∠BPC =√63, 所以 PB =√3,PD =1.由 CH ⃗⃗⃗⃗⃗ =2HD ⃗⃗⃗⃗⃗⃗ 及 CD =2 得 CH =43,DH =23. 以点 D 为坐标原点,DA ,DC ,DP 所在的直线分别为 x 轴,y 轴,z 轴建立空间直角坐标系 D −xyz ,则 B (1,1,0),P (0,0,1),C (0,2,0),H (0,23,0). 设平面 HPB 的法向量为 n ⃗ =(x 1,y 1,z 1), 则 {HP ⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =0,HB ⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =0,即 {−23y 1+z 1=0,x 1+13y 1=0.取 y 1=−3,则 n ⃗ =(1,−3,−2). 设平面 PBC 的法向量为 m ⃗⃗ =(x 2,y 2,z 2), 则 {PB ⃗⃗⃗⃗⃗ ⋅m ⃗⃗ =0,BC ⃗⃗⃗⃗⃗ ⋅m ⃗⃗ =0,即 {x 2+y 2−z 2=0,−x 2+y 2=0.取 x 2=1,则 m ⃗⃗ =(1,1,2), 又 cos⟨m ⃗⃗ ,n ⃗ ⟩=m⃗⃗⃗ ⋅n ⃗ ∣∣m ⃗⃗⃗ ∣∣∣∣n ⃗ ∣∣=−√217, 所以二面角 H −PB −C 的余弦值为√217. 【知识点】平面与平面垂直关系的判定、二面角、利用向量的坐标运算解决立体几何问题。
点到平面的距离计算(人教A版)

点到平面的距离计算(人教A版)
一、单选题(共9道,每道11分)
1.正四面体的棱长为a,E是AD的中点,则点D到平面BCE的距离为( )
A. B.
C. D.
2.在正方体中,,则点A到平面的距离为( )
A. B.
C. D.
3.如图,在棱长为1的正方体中,为中点,则点到平面
的距离为( )
A. B.
C. D.
4.如图,在三棱锥中,底面,,,为的中点,
,则点到平面的距离为( )
A. B.
C. D.
5.如图,在正三棱柱中,,则点C到平面的距离为( )
A. B.
C. D.
6.如图,三棱锥的侧棱两两垂直,且,,则点O到平面的距离为( )
A. B.
C. D.
7.如图,在四面体中,E为BC中点,,,则点E到平面ACD的距离为( )
A. B.
C. D.
8.如图,在正三棱柱中,若,D是的中点,则点到平面的距离为( )
A. B.
C. D.
9.如图,已知四边形ABCD是正方形,平面.分别是的中点,若点到平面的距离为,则点到平面的距离为( )
A. B.
C. D.。
人教A版高一数学必修第二册第八章《立体几何初步》章末练习题卷含答案解析 (50)

人教A版高一数学必修第二册第八章《立体几何初步》章末练习题卷(共22题)一、选择题(共10题)1.分别在两个平面内的两条直线间的位置关系是( )A.异面B.平行C.相交D.以上都有可能2.下列说法正确的是( )A.相等的角在直观图中仍然相等B.相等的线段在直观图中仍然相等C.正方形的直观图是正方形D.若两条线段平行,则在直观图中对应的两条线段仍然平行3.截一个几何体,所得各截面都是圆面,则这个几何体一定是( )A.圆柱B.圆锥C.球D.圆台4.下列图形中不一定是平面图形的是( )A.三角形B.菱形C.梯形D.四边相等的四边形5.如图的简单组合体是由组合而成.A.棱柱、棱台B.棱柱、棱锥C.棱锥、棱台D.棱柱、棱柱6.如图所示,观察四个几何体,其中判断正确的是( )A.是棱台B.是圆台C.不是棱柱D.是棱锥7.下面是一些命题的叙述语(A,B表示点,a表示直线α,β表示平面),其中命题和叙述方法都正确的是( )A.若A∈α,B∈α,则AB∈αB.若a∈α,a∈β,则α∩β=aC.若A∈α,a⫋α,则A∈αD.若A∉a,a⫋α,则A∉α8.下列四个命题中真命题是( )A.同垂直于一直线的两条直线互相平行B.底面各边相等,侧面都是矩形的四棱柱是正四棱柱C.过空间任一点与两条异面直线都垂直的直线有且只有一条D.过球面上任意两点的大圆有且只有一个9.两个球的表面积之差为48π,它们的大圆周长之和为12π,则这两个球的半径之差为( )A.1B.2C.3D.410.用符号表示“点A在直线l上,l在平面α内”,正确的是( )A.A∈l,l∉αB.A⊂l,l⊄αC.A⊂l,l∈αD.A∈l,l⊂α二、填空题(共6题)11.几何体体积说明棱柱V棱柱=SℎS为棱柱的 ,ℎ为棱柱的 棱锥V棱锥=13SℎS为棱锥的 ,ℎ为棱锥的 棱台V棱台=13(Sʹ+√SʹS+S)ℎSʹ,S分别为棱台的 ,ℎ为棱台的 12.如果两个球的体积之比为8:27,那么两个球的表面积之比为.13.思考辨析 判断正误棱锥的体积等于底面面积与高之积.14.已知正三棱柱ABC−A1B1C1的各条棱长都相等,M是侧棱BB1的中点,N是棱AB的中点,则∠NMC1的大小是.15.思考辨析,判断正误.如果两条直线同时平行于第三条直线,那么这两条直线互相平行.16.思考辨析,判断正误在斜二测画法中,各条线段的长度都发生了改变.( )三、解答题(共6题)17.如图所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.18.如图是长方体的表面展开图,在这个长方体中:(1) 直线DM与平面ABQP的位置关系是怎样的?(2) 平面DCMN与平面ERFG的位置关系是怎样的?(3) 线段BC的长度是点C到平面APQB的距离吗?19.有4条长为2的线段和2条长为a的线段,用这6条线段作为棱,构成一个三棱锥.问a为何值时,可构成一个最大体积的三棱锥,最大值为多少?20.根据图形用符号表示下列点、直线、平面之间的位置关系.(1) 点P与直线AB;(2) 点C与直线AB;(3) 点M与平面AC;(4) 点A1与平面AC;(5) 直线AB与直线BC;(6) 直线AB与平面AC;(7) 平面A1B与平面AC.21.应用面面平行判断定理应具备哪些条件?22.观察(1),(2),(3)三个图形,说明它们的位置关系有什么不同,并用字母表示各个平面.答案一、选择题(共10题)1. 【答案】D【解析】分别在两个平面的两条直线平行、相交、异面都可能,可将两条直线放在长方体里进行研究.【知识点】直线与直线的位置关系2. 【答案】D【解析】等腰三角形的两底角相等,但在直观图中不相等,故A错误;正方形的直观图是平行四边形,正方形的两邻边相等,但在直观图中不相等,故B,C错误.【知识点】直观图3. 【答案】C【解析】由球的结构特征知该几何体是球.【知识点】球的结构特征4. 【答案】C【知识点】平面的概念与基本性质5. 【答案】B【解析】该简单组合体的上面是一个棱锥,下面是一个棱柱.【知识点】组合体6. 【答案】D【解析】对A,侧棱延长线不交于一点,不符合棱台的定义,所以A错误;对B,上下两个面不平行,不符合圆台的定义,所以B错误;对C,将几何体竖直起来看,符合棱柱的定义,所以C错误;对D,符合棱锥的定义,正确.【知识点】棱台的结构特征、棱锥的结构特征、棱柱的结构特征7. 【答案】C【知识点】平面的概念与基本性质8. 【答案】C【知识点】棱柱的结构特征、直线与直线的位置关系、球的结构特征9. 【答案】B【解析】设两球半径分别为R1,R2,且R1>R2,则4π(R12−R22)=48π,2π(R1+R2)=12π,所以R1−R2=2.【知识点】球的表面积与体积10. 【答案】D【解析】点A在直线l上,表示为A∈l,l在平面α内,表示为l⊂α.【知识点】平面的概念与基本性质二、填空题(共6题)11. 【答案】底面积;高;底面积;高;上、下底面面积;高【知识点】棱锥的表面积与体积、棱柱的表面积与体积、棱台的表面积与体积12. 【答案】4:9【解析】因为V1:V2=8:27=R13:R23,所以R1:R2=2:3,所以S1:S2=R12:R22=4:9.【知识点】球的表面积与体积13. 【答案】×【知识点】棱锥的表面积与体积14. 【答案】90°【解析】通过计算可知NC12=NM2+MC12,故∠NMC1=90∘.如图.【知识点】棱柱的结构特征15. 【答案】√【知识点】空间中直线与直线平行16. 【答案】×【知识点】直观图三、解答题(共6题)17. 【答案】如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.【知识点】组合体18. 【答案】(1) 根据展开图还原长方体,其示意图如图所示, 则 直线DM ∥平面ABQP .(2) 平面 DCMN 垂直于平面 ERFG .(3) 线段 BC 的长度是点 C 到平面 APQB 的距离.【知识点】平面与平面的位置关系、点面距离(线面距离、点线距离、面面距离)、直线与平面的位置关系19. 【答案】构成三棱锥,这 6 条线段作为棱有两种摆放方式.(1)2 条长为 a 的线段放在同一个三角形中.如图所示,不妨设底面 BCD 是一个边长为 2 的正三角形.欲使体积达到最大,必有 BA ⊥底面BCD ,且 BA =2,AC =AD =a =2√2, 此时 V =13×√34×22×2=23√3.(2)2 条长为 a 的线段不在同一个三角形中,此时长为 a 的两条线段必处在三棱锥的对棱,不妨设 AD =BC =a ,BD =CD =AB =AC =2. 取 BC 中点 E ,连接 AE ,DE (见下图).则 AE ⊥BC,DE ⊥BC ⇒BC ⊥平面AED ,V =13S △AED ⋅BC , 在 △AED 中,AE =DE =√4−a 24,AD =a ,S △AED =12a √4−a 24−a 24=12a √4−a 22,所以 V =16a 2√4−a 22=16√a 2a 2(16−2a 2)⋅14,由均值不等式 a 2a 2(16−2a 2)≤(163)3, 等号当且仅当 a 2=163时成立,即 a =43√3, 所以此时 V max =16√(163)3⋅14=1627√3.【知识点】棱锥的表面积与体积20. 【答案】(1) 点P∈直线AB.(2) 点C∉直线AB.(3) 点M∈平面AC.(4) 点A1∉平面AC.(5) 直线AB∩直线BC=点B.(6) 直线AB⊂平面AC.(7) 平面A1B∩平面AC=直线AB.【知识点】点、线、面的位置关系、直线与平面的位置关系、平面与平面的位置关系、直线与直线的位置关系21. 【答案】①平面α内两条相交直线a,b,即a⊂α,b⊂α,a∩b=P.②两条相交直线a,b都与β平行,即a∥β,b∥β.【知识点】平面与平面平行关系的判定22. 【答案】图(1)表示两个相交的半平面;图(2)表示开口向里的两个相交的半平面;图(3)表示开口向外的两个相交的半平面.【知识点】平面的概念与基本性质。
第1课时 用空间向量研究距离问题 高中数学人教A版选择性必修第一册课件

所以=
1
,0,1
2
1
2
1
,0,1
2
1
0,-1,
2
,M
,=
,
, =(1,1,0).
设 n=(x,y,z),且 n⊥,n⊥,
1
2
+ = 0,
· = 0,
所以
即
1
· = 0,
- + = 0,
2
= -2,
1
即
取 z=2,则 x=-4,y=1,
情境:在平面内任取一点 O,作=a,=b,过点 A 作直线
OB 的垂线,垂足为 A1,则1 就是 a 在 b 上的投影向量.
【思考】
已知两个非零向量 a,b,a 和 b 的夹角为 θ,那么 a 在 b 上
的投影是什么?a 在 b 上的投影向量是什么?
提示:a 在 b 上的投影为|a|cos θ,a 在 b 上的投影向量
5 5
ABC 的一个法向量.
由题意,知 =(-7,-7,7),
所以点 D 到平面 ABC
84
5
|·|
42 2
的距离为
= =
.
||
2
5
4.同类练如图,已知正方体 ABCDA1B1C1D1 的棱长为 1,则点 A 到平面 BDC1 的
3 .
距离为
3
解析:以 D 为坐标原点,DA,DC,DD1 所在直线分别为 x 轴、
.
【思考】
(1)若“单位方向向量 u”变为“方向向量 s”,投影向量
,PQ 分别如何表示?
||
· ·
·
人教版高二上学期期中考试数学试题与答案解析(共两套)

人教版高二上学期期中考试数学试题(一) (本卷满分150分,考试时间120分钟)测试范围:选择性必修第一册:第一章、第二章、第三章一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知两个非零向量)(111z y x a ,,=,)(222z y x b ,,=,则这两个向量在一条直线上的充要条件是( )。
A 、||||b b a a ::= B 、212121z z y y x x == C 、0212121=++z z y y x x D 、存在非零实数k ,使b k a =2.已知焦点在x 轴上的双曲线的焦距为32,焦点到渐近线的距离为2,则双曲线的方程为( )。
A 、1222=-y xB 、1222=-y xC 、1222=-x y D 、1222=-x y3.若直线m my x +=+2与圆012222=+--+y x y x 相交,则实数m 的取值范围为( )。
A 、)(∞+-∞, B 、)0(,-∞ C 、)0(∞+, D 、)0()0(∞+-∞,, 4.点)24(-,P 与圆422=+y x 上任一点连线的中点的轨迹方程是( )。
A 、1)1()2(22=++-y x B 、4)1()2(22=++-y x C 、1)1()2(22=-++y x D 、4)2()4(22=-++y x5.若P 、Q 分别为直线01243=-+y x 与0586=++y x 上任意一点,则||PQ 的最小值为( )。
A 、59 B 、1029 C 、518 D 、5296.已知椭圆C :12222=+b y a x (0>>b a )的左焦点1F ,过点1F 作倾斜角为 30的直线与圆222b y x =+相交的弦长为b 3,则椭圆的离心率为( )。
A 、21 B 、22 C 、43 D 、237.已知点1F 是抛物线C :py x 22=的焦点,点2F 为抛物线C 的对称轴与其准线的交点,过2F 作抛物线C 的切线,切点为A ,若点A 恰好在以1F 、2F 为焦点的双曲线上,则双曲线的离心率为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点到平面的距离计算(人教A版)
一、单选题(共9道,每道11分)
1.正四面体的棱长为a,E是AD的中点,则点D到平面BCE的距离为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:空间中点到面的距离
2.在正方体中,,则点A到平面的距离为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:空间中点到面的距离
3.如图,在棱长为1的正方体中,为中点,则点到平面的距离为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:空间中点到面的距离
4.如图,在三棱锥中,底面,,,为的中点,
,则点到平面的距离为( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:空间中点到面的距离
5.如图,在正三棱柱中,,则点C到平面的距离为( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:空间中点到面的距离
6.如图,三棱锥的侧棱两两垂直,且,,则
点O到平面的距离为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:空间中点到面的距离
7.如图,在四面体中,E为BC中点,,,则点E到平面ACD的距离为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:空间中点到面的距离
8.如图,在正三棱柱中,若,D是的中点,则点到平面的距离为( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:空间中点到面的距离
9.如图,已知四边形ABCD是正方形,平面.分别是的中点,若点到平面的距离为,则点到平面的距离为( )
A. B. C. D.
答案:A
解题思路:
试题难度:三颗星知识点:空间中点到面的距离。