八年级数学下册第十九章一次函数19.2一次函数19.2.2一次函数第1课时一次函数的概念练习 新人教
八年级数学下册第十九章一次函数19-2一次函数19-2-2一次函数第1课时一次函数新人教版

解:(1)2; (2)因为每放入一个小球后,水面升高 2 cm,所以 y=30+2x; (3)由 2x+30>49,得 x>9.5,即至少放入 10 个小球时有水溢 出.
3.若一次函数 y=kx+b,当 x=-2 时,y=7;当 x=1 时,y
=-11.则 k,b 的值为( C )
A.k=6,b=5
B.k=-1,b=-5
C.k=-6,b=-5
D.k=1,b=5
4.据调查,某地铁自行车存放处某星期天的存车量为 4000 辆 次,其中变速车存车费是每辆一次 0.30 元,普通自行车存车费 是每辆一次 0.20 元,若普通自行车存车数为 x 辆,存车费总收 入为 y 元,则 y 关于 x 的函数关系式为( D ) A.y=0.10x+800(0≤x≤4000) B.y=0.10x+1200(0≤x≤4000) C.y=-0.10x+800(0≤x≤4000) D.y=-0.10x+1200(0≤x≤4000)
(3)某车站规定旅客可以免费携带不超过 20 千克的行李,超过 部分每千克收取 1.5 元的行李费,则旅客需交的行李费 y(元) 与携带行李质量 x(千克)(x>20)的关系.
解:(1)y=0.53x,是; (2)y=10+5x,是; (3)y=1.5x-30,是.
10.某油箱容量为 60 L 的汽车,加满汽油后行驶了 100 km 时,油箱中的汽油大约消耗了15 ,如果加满汽油后汽车行驶 的路程为 x(km),油箱中剩油量为 y(L),则 y 与 x 之间的函数 解析式和自变量取值范围分别是( D ) A.y=0.12x,x>0 B.y=60-0.12x,x>0 C.y=0.12x,0≤x≤500 D.y=60-0.12x,0≤x≤500
19.2.2一次函数的图像和性质(1)

-3 -5 -7 …
比一比:正比例函数y=-2x与一次函数y=- 2x+3 、y=-2x-3图象有什么异同点.
y 6 5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1 -2 -3 o 1
y=-2x+3
2 3 4
5
6
x
y=-2x-3
-4
-5 -6
y=-2x
观察:比较上面三个函数的相同点与不同点,根 据你的观察结果回答下列问题: 直线 (1)这三个函数的图象形状都是___,并且倾斜程 相同 度___;
19.2.2一次函数(2) 一次函数的图像和性质
0
提问复习
1、什么叫正比例函数、一次函 数?它们之间有什么关系?
一般地,形如 y=kx(k是常数,k≠0) 的函数, 叫做正比例函数; 一般地,形如 y=kx+b(k,b是常数,k≠0) 的函数,叫 做一就变成了 y=kx ,所以说正 比例函数是一种特殊的一次函数。 2、正比例函数的图象是什么形状? 正比例函数的图象是(
经过原点的一条直线
)
3、正比例函数 y=kx(k是常数,k≠0)中, k的正负对函数图象有什么影响?
y=kx 图 象
y
性 质
经过一、三象限 y随x增大而增大
K>0
y
x
K<0
x
经过二、四象限 y随x增大而减小
既然正比例函数是特殊的一次 函数,正比例函数的图象是直线, 那么一次函数的图象也会是一条直 线吗? 它们图象之间有什么关系? 一次函数又有什么性质呢?
3、已知函数y=(m-2)x+n的图象经过一、二、 三象限. 求 : m、n的取值范围.
课内练习: 1.下列各点中,那些点在函数y=4x+1的图象上? 那些不在函数的图象上? (2, 9) (5,1) (-1,-3) (-0.5,-1) 2.若函数y=2x-3 的图象经过点(1,a) ,(b, 2) 两点, 则a= ,b= . 3.点已知M(-3, 4)在一次函数y=ax+1的 图象上,则a的值是 .
初中数学 八年级下册 19-2-2-2一次函数的图像与性质(课件)

y=-
1
连线.
0.5x+1 - O
我们用同样的方法也可以画出 1 -
函数y=-0.5x+1的图象:
1
点(0,1)
y=2x-1 12 x
点(1,0.5)
x
0
1
y=2x-1
-1
1
y=-0.5x+1
1
0.5
两点确定了一条直线, 那函数上的其它点是不 是都在这条直线上呢?
y=-
y
0.5x+1 1
点(0,1)
对函数图象有什么影响?
知识点 2 一次函数的性质
分别画出下面四个函数的图象.
y=x+1
y=-x+1
y=2x+1
y=-2x+l
观 察 观察图象,填写表格.
y=kx+b
b>0 k>0 b=0
b<0 b>0 k<0 b=0 b<0
图象经过的象限
一、二、三
一、三 一、三、四 一、二、四
二、四 二、三、四
y=2x-1
-O 1 2 x
11 点(1,0.5)
x
0
1
y=2x-1
-1
1
y=-0.5x+1
1
0.5
①y=2x-1
y=-
y 点(0.5,
0)
令x=-0.5,此时y= -2 点的坐标为 (-0.5,-2)
0,;.5x+1
1
y=2x-1
令x=0.5,此时y= 0 , 点的坐标为 (0.5,0) .
-O 1 2 x
y和x的变化
y随x的增大 而增大
y随x的增大 而减小
八年级下册数学第十九章练习册参考答案

八年级下册数学第十九章练习册参考答案八年级下册数学第十九章练习册参考答案19.1.1变量与函数第1课时答案【基础知识】1、2π、r;c2、1,8,0.3;n,l3、21000,200;x,y4、0.4;0.8;1.2;1.6;y=0.4x5、y=30/x;30;x,y6、(1)s=x(10-x),敞亮是10,变量是x,s(2)α+β=90°,常量是90°,变量是α,β(3)y=30-0.5t,常量是30,0.5,变量是y,t(4)w=(n-2)×180°,常量是2,180°,变量是w,n(5)s=y-10t,常量是y,10,变量是s,t【能力提升】8、(1)65、101(2)w=n²+1(3)常量是1,变量是n,w19.1.1变量与函数第2课时答案【基础知识】1、d2、b3、c4、x≥15、y=5n;n;y;n6、y=360-9x;x;40,且x为正整数7、y=x(30-x/2)8、q/πa²【能力提升】9、(1)x≠2(2)x≥0,且x≠1(3)x≤2(4)x取任意实数10、(1)q=1000-60;(2)0≤t≤50/3(3)当t=10时,q=400(m²)(4)当q=520时,1000-60t=520 ∴t=8(h)19.1.1变量与函数第3课时答案【基础知识】1、c2、d3、a4、d5、q=30-1/2t;0≤t≤60;406、-3/27、y=2x8、s=4(n-1)9、(1)y=12+0.5x(2)17cm【能力提升】10、y=4(5-x)=-4x+20(0【探索研究】11、y=1/2x²-10x+5019.1.2函数的图象第1课时答案【基础知识】1、b2、a3、b4、6;-125、-46、207、略8、(1)-4≤x≤4(2)x=-4,-2,4时,y的值分别为2,-2,0(3)当y=0时,x的值为-3,-1,4(4)当x=3/2时,y的值最大;当x=-2时,y的值最小(5)当-2≤x≤3/2时,y随x的增大而增大当-4≤x≤-2或3/2≤x≤4时,y随x的增大而减小9、(1)距离和时间(2)10千米;30千米(3)10时30分~11时;13时【能力提升】10、略19.1.2函数的图象第2课时答案【基础知识】1、b2、d3、c4、提示:注意画图象的三个步骤:①列表;②描点;③连线,图表略5、(1)6(2)39.5;36.8(3)第一天6~12时下降最快,第三天12~18时比较稳定6、(1)c(2)a(3)b【能力提升】7、(1)任意实数(2)y≤2(3)28、(1)共4段时间加速,即12~13时,15~16时,19~20时,2~2.5时(2)共有5段时间匀速,即13~15时,16~17时,30~22时,23~24时,2.5~3.5时;其速度分别为:50km/h,60km/h,80km/h,60km/h,45km/h(3)共有4段时间减速,即17~18时,22~23时,24~1时,3.5~4时(4)略【探索研究】9、略19.2.1正比例函数第1课时答案【基础知识】1、a2、c3、c4、-15、(1)y=2.5x,时正比例函数(2)y=18-x/2,不是正比例函数6、解:设y=kx(k≠0),∴3=1/2k,∴k=6,∴y=6x.7、解:∵k²-9=0,∴k=±3,又∵k≠3,∴k=-3,∴y=-6x,当x=-4时,y=24.【能力提升】8、解:由题意得y=1.6x,当x=50时,y=1.6×50=80.9、(1)y=-x-3(2)-6(3)-3 2/3【探索研究】10、解:设y=k1x(k1≠0),z=k2y(k2≠0),∴z=k1k2x,∵k1k2≠0.∴z与x成正比例19.2.1正比例函数第2课时答案【基础知识】1、b2、c3、c4、d5、d6、(1,2)7、>18、一条直线;09、0.2;增大9、x;减小;二、四10、(1)k=2或k=-2(2)k=2(3)k=-2(4)略(5)点a在y=5/2x上,点b在y=-3/2x上【能力提升】11、解:设y+1=kx(k≠0),∴k=2x-1.当点(a,-2)在函数图像上时,有2a-1=-2,∴a=-1/212、(1)30km/h(2)当t=1时,s=30.(3)当s=100时,t=10/3【探索研究】13、y=360x,时正比例函数学子斋 > 课后答案 > 八年级下册课后答案 > 人教版八年级下册数学配套练习册答案 >19.2.1正比例函数第3课时答案【基础知识】1、c2、a3、a4、b5、>-2;一、三;6【能力提升】9、y=2x+210、(1)100(2)甲(3)8【探索研究】11、(1)15、4/15(2)s=4/45t(0≤t≤45) 19.2.2一次函数第1课时答案【基础知识】1、d2、d3、c4、a5、(1)(2)(4)(6)6、y=600-10t;一次7、3/4;-38、减小9、y=5x-210、y=-x11、-312、k=213、-2;514、(1)(-4,5)(2)(2,2),(10,-2)【能力提升】15、y=2x-516、a=-1【探索研究】17、(1)s=-2x+12(2)019.2.2一次函数第2课时答案【基础知识】1、1、d2、a3、b4、d5、a6、b7、38、y=2x+59、三条直线互相平行10、v=3.5t;7.5m/s11、y=t-0.6;2.4;6.412、1【能力提升】13、(1)k=1;b=2(2)a=-2【探索研究】14、(1)2;6毫克(2)3毫克(3)y=3x(0≤x≤2);y=-x+2(0(4)4h19.2.2一次函数第3课时答案【基础知识】1、(1)2(2)y=2x+30(0(3)由2x+30>49,得x>9.5,即至少放入10个小球时水溢出2、(1)h=9d-20(2)24cm3、(1)y=9/5x(0≤x≤15),y=2.5x-10.5(x>15)(2)当x=21时,y=42(元)4、y=1/10x-2(x≥20)【能力提升】5、(1)y甲=300x,y乙=350(x-3)(2)当人数为20人时,选乙旅行社比较合算,当人数为21人时,两旅行社费用一样多6、(1)y=7/5x+14/5(x≥3)(2)当x=2.5时,y=7(元)(3)当x=13时,y=7/5×13+14/5=21(元)(4)x=20(km)【探索研究】7、(1)8;10;12(2)图象略(3)提示:根据一次函数列方程求解19.2.3一次函数与方程、不等式第1课时答案【基础知识】1、d2、c3、a4、c5、66、(-3/2,0);x=-3/27、8、x24x,即02时,一半植树棵数多2、解:设团队中由游客x人,购买方式a、b得消费全额为ya元,yb元,由题意有:ya=20×0.8x=16x,yb=5×20+0.7×20(x-5)=14x+30.当16x=14x+30,即x=15时,两种方式一样,当16x>14x+30,即x>15时,选择方式b合算;当16x600+0.04x,即020000时,b公司工资待遇高.4、解:(1)y甲=1500+x,y乙=2.5x(2)图像略(3)当x=800时,y甲=2300,y乙=2000.∴选择乙印刷厂比较合算;当y=3000时,x甲=1500,x乙=1200.∴甲印刷厂印制的宣传材料多【探索研究】5、(1)200元(2)800页(3)有图象知,当每月复印页数在1200页左右时,y甲>y乙,∴选乙复印社合算第十九章综合练习答案一、选择#formattableid_0# 二、8、(3,0)(0,1)9、x≥-1且x≠010、-1;;211、略(答案不唯一)12、y=-2x+1;y=-2x-113、a>014、9三、15、y=x-516、y=x+317、图像略(1)(1,0)(2)当x>1时,y118、y=-3x+919、(1)m=3(2)-1/2≤m≤320、(1)4/3km/min(2)7min(3)s=2t-2021、提示:(1)设a型x套,b型(80-x)套,则2090≤25x+28×(80-x)≤2096,即48≤x≤50,∴有三种方案,即a型48套,b型32套;a型49套,b型31套;a型50套,b型30套(2)设利润为w万元,则w=(30-25)x+(34-28)(80-x),即w=-x+480,∴当x越小时,w越大.∴当x=48时,w=-48+480=432,∴a型48套,b型32套(3)w=(34-28)(80-x)+(30-25+a)x=(a-1)x+480,∴当a>1时,w=50(a-1)+480;当0∴当a>1时,a型50套,b型30套;当0。
八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数(第1课时)一课一练基础闯关(含解析)(新版)

一次函数一课一练·基础闯关题组一次函数的概念1.(2017·浦东新区月考)下列函数的解析式中是一次函数的是( )A.y=-B.y=-x+6C.y=2x2+1D.y=2+1【解析】选B.A.y=-自变量x在分母上,不是一次函数,故本选项错误;B.y=-x+6是一次函数,故本选项正确;C.y=2x2+1自变量x的次数是2,不是一次函数,故本选项错误;D.y=2+1自变量x是被开方数,不是一次函数,故本选项错误.2.下列函数关系式:①y=-x;②y=2x+11;③y=x2;④y=.其中一次函数的个数是( )A.1B.2C.3D.4【解析】选B.①y=-x是正比例函数,是特殊的一次函数;②y=2x+11符合一次函数的定义;③y=x2中自变量的指数是2,不是一次函数;④y=分母中有自变量,不是一次函数.综上,一次函数的个数是2.3.下列函数中,是一次函数但不是正比例函数的是( )A.y=2xB.y=+2C.y=-xD.y=2x2-1【解析】选C.B的自变量的次数不是1,D的自变量次数是2,故它们都不是一次函数,A是正比例函数,C是一次函数.4.若函数y=(m+3)x|m|-2+1是一次函数,则m的值是( )A.±3B.±1C.3D.-3【解析】选C.由一次函数的定义可得解得m=3.【变式训练】若函数y=(m-1)x|m|+2是一次函数,则( )A.m=±1B.m=-1C.m=1D.m≠-1【解析】选B.根据题意得:m-1≠0,|m|=1,解得m=-1.5.已知+(b-2)2=0,则函数y=(b+3)x-a+1-2ab+b2是什么函数?当x=-时,函数值y是多少?【解题指南】先根据非负数的性质求出a,b的值,再把a,b的值代入函数解析式即可判断出函数的种类,再把x的值代入求解即可.【解析】因为+(b-2)2=0,所以a=-1,b=2.所以y=(2+3)x-(-1)+1-2×(-1)×2+22,即y=5x+9,所以函数y=(b+3)x-a+1-2ab+b2是一次函数,当x=-时,y=5×+9=.当m,n为何值时,y=(m-1)+n.(1)是一次函数?(2)是正比例函数?【解析】(1)当m2=1且m-1≠0时,y=(m-1)+n是一次函数,即m=-1.∴当m=-1时,y=(m-1)+n是一次函数.(2)当m2=1且m-1≠0,且n=0时,y=(m-1)+n是正比例函数,即m=-1且n=0时,y=(m-1)+n是正比例函数.题组一次函数的实际应用1.下列函数关系不是一次函数的是( )A.汽车以120km/h的速度匀速行驶,行驶路程y(km)与时间t(h)之间的关系B.等腰三角形顶角y与底角x间的关系C.高为4cm的圆锥体积y(cm3)与底面半径x(cm)的关系D.一棵树现在高50cm,每月长高3cm,x个月后这棵树的高度y(cm)与生长月数x(月)之间的关系【解析】选C.高为4cm的圆锥体积y(cm3)与底面半径x(cm)的关系是y=πx2,不是一次函数,故C错误.2.写出下列各题中y与x之间的解析式,并判断y是否是x的一次函数.(1)在时速为70千米的匀速运动中,路程y(千米)与时间x(小时)的关系.(2)居民用电标准是每千瓦时0.53元,则电费y(元)与用电量x(千瓦时)之间的关系.(3)汽车离开A站4千米,再以40千米/时的平均速度行驶了x小时,那么汽车离开A站的距离y(千米)与时间x(小时)之间的关系.(4)某车站规定旅客可以免费携带不超过20千克的行李,超过部分每千克收取1.5元的行李费用,则旅客需交的行李费y(元)与携带行李质量x(x>20)(千克)之间的关系.【解析】(1)根据题意可得:y=70x,是一次函数.(2)根据题意可得:y=0.53x,是一次函数.(3)根据题意可得:y=4+40x,是一次函数.(4)根据题意可得:y=1.5(x-20),是一次函数.为了增强居民的节约用水意识,某市制定了新的水费收费标准:每户用水量不超过5吨的部分,自来水公司按每吨2元收费;超过5吨的部分,按每吨2.6元收费.设某户用水量为x吨,自来水公司应收水费为y元.(1)试写出y(元)与x(吨)之间的函数解析式.(2)该户今年5月份的用水量为8吨,自来水公司应收水费多少元?【解题指南】解答本题的两个关键点(1)两个收费标准:当0≤x≤5时,y=2x;当x>5时,y=2×5+2.6(x-5)=2.6x-3.(2)当用户的用水量为8吨时,超过了5吨,所以要代入后一个函数解析式求解.【解析】(1)y=(2)当x=8时,y=2.6×8-3=17.8,即自来水公司应收水费17.8元.已知函数y=(m2-2m+3)x2|m|-1-5是一次函数,求其解析式.【解析】∵函数y=(m2-2m+3)x2|m|-1-5是一次函数,∴2|m|-1=1且m2-2m+3≠0,解得m=±1,则m2-2m+3=2或m2-2m+3=6.该函数解析式为y=2x-5或y=6x-5.【母题变式】[变式一]已知函数y=(k+1)x2+(k-3)x+k,当k取何值时,y是x的一次函数? 【解析】∵函数y=(k+1)x2+(k-3)x+k是一次函数,∴k+1=0,解得k=-1,∴k取-1时,y是x的一次函数.[变式二]你能找到一个数m,使函数y=(m+1)x|m|+m-1是一次函数(不是正比例函数)吗? 【解析】∵函数y=(m+1)x|m|+m-1是一次函数(不是正比例函数),∴|m|=1,m+1≠0,m-1≠0, ∴不能找到一个数m,使函数y=(m+1)x|m|+m-1是一次函数(不是正比例函数).。
人教版数学八年级下册《19.2.2 一次函数 第1课时 一次函数的概念》精品课件(最新)

第十九章 一次函数
19.2.2 一次函数
第1课时 一次函数的概念
问题引入 某登山队大本营所在地的气温为 5 ℃, 海拔每升高 1 km 气温下降 6 ℃. 登山队员由大本营 向上登高 x km 时,他们所在位置的气温是 y ℃.
(1)试用函数解析式表示 y 与 x 的关系; y = 5 - 6x
(1)次是函正数比的例概函念数进.行判断.
典例当精堂析练习
例1 已知函数 y = (m - 1)x + 1 - m2.
(1)当 m 为何值时,这个函数是一次函数? 解:由题意可得
m - 1 ≠ 0,解得 m ≠ 1. 即 m ≠ 1 时,这个函数是一次函数.
注意:利用定义求一次函数 y kx b 解析式时,
(1) 当月收入大于 3500 元而又小于 5000 元时,写出 应缴所得税 y (元)与收入 x (元)之间的函数解析式.
解:y = 0.03×( x - 3500) (3500 < x < 5000).
当堂练习
(2) 某人月收入为 4160 元,他应缴所得税多少元? 解:当 x = 4160 时,y = 0.03×(4160 - 3500) = 19.8(元). (3) 如果某人本月应缴所得税 19.2 元,那么此人本 月工资是多少元?
(2)正比例函数是一种特殊的一次函数.
练一当练堂练习
下列函数中哪些是一次函数,哪些是正比例函数?
(1)y=-8x ; (4)y=-0.5x-1
(2)y=
-8 x
; (5)y=
; x
(3)y=5x2 -1 ;
+6
;
(6)y=
2
-13
八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.1一次函数的概念课件

5.(2017湖南邵阳一模)一次函数y=kx+2(k为常数,且k≠0)的图象如图19-
2-2-1-2所示,则k的可能值为
.(写出一个即可)
答案 -2(答案不唯一)
图19-2-2-1-2
解析 观察图象可知,OB<OA,k<0.
当x=0时,y=kx+2=2,∴OA=2,
令OB=1,则点B(1,0),将(1,0)代入y=kx+2,得0=k+2,解得k=-2.
4
4
故当k=-1时,直线与x轴交于点
3 4
,
0
.
(4)当
1 2k
3k 1
0, 即
0,
1 3
<k<
1 2
时,直线经过第二、三、四象限.
(5)当1-3k=-3,2k-1≠-5,
即k= 4 时,已知直线与直线y=-3x-5平行.
3
方法归纳 对于一次函数y=kx+b,(1)判断k值符号的方法:①增减性法, 当y随x增大而增大时,k>0;反之,k<0.②直线升降法,当直线从左到右上升 时,k>0;反之,k<0.③经过象限法,直线过第一、三象限时,k>0;直线过第 二、四象限时,k<0.(2)判断b值符号的方法:与y轴交点法,即直线y=kx+b 若与y轴交于正半轴,则b>0;若与y轴交于负半轴,则b<0;若与y轴交于原 点,则b=0.
例3 下列函数图象中,不可能是关于x的一次函数y=mx-(m-3)的图象的 是( )
解析 一次函数y=mx-(m-3)中,x的系数m决定着直线从左至右呈上升或 下降的趋势,-(m-3)即3-m决定着直线与y轴的交点是在正半轴、负半轴 还是原点,这两个方面不得有矛盾之处,应该结合一次函数的图象进行 分析.
霸州市四中八年级数学下册第十九章一次函数19.2一次函数19.2.2一次函数第1课时一次函数教案新版

第1课时 一次函数(1)了解一次函数的一般形式.重点一次函数的一般形式. 难点探索实际问题中的一次函数关系.一、创设情境,引入新课问题:某登山队大本营所在地的气温是5℃,海拔每升高1 km 气温下降6℃,登山队员由大本营向上登高x km 时,他们所在位置的气温是y ℃,试用解析式表示y 与x 的关系.师:每升高1 km 气温下降6℃,那么升高x km ,气温下降6x ℃,因此所在位置的气温为5-6x ,即y =-6x +5.自变量是x ,右边是自变量的一次式,像这样的函数就是我们今天所要学的一次函数.二、讲授新课思考:下列问题中变量间的关系可用怎样的函数表示?这些函数有哪些共同点?师:在20℃~25℃时蟋蟀每分钟鸣叫的次数C 与t(℃)有关,即C 的值约是t 的7倍与35的差.这个函数的关系式怎么写?生:C = 7t -35.师:一种计算成年人标准体重G(kg )的方法是:以厘米为单位量出身高h ,再减去常数105,所得差是G 的值,即:G =h -105.某市的市内电话的月收费额y(元)包括月租费22元和拨打电话按0.1元/分收取,写出y 与每月电话x(分钟)的函数关系式.生:y =0.1x +22.师:把一个长10 cm 、宽5 cm 的长方形的长减少x cm ,宽不变,长方形的面积y(cm 2)随x 的变化的关系式是什么?生:y = 5(10-x)=-5x +50.师:上述这些函数有什么共同特点?比如说右边. 生:右边都是自变量的倍数与一个常数的和.师:对,上述这些函数的右边都是关于自变量的一次式,像这样的函数是一次函数. 一般地,形如y =kx +b(k ,b 是常数,k ≠0)的函数叫做一次函数,当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.师:下面的函数是一次函数吗?如果是一次函数,说说其中k 和b 的值分别是多少.①y =x -6;②y=2x ;③y=x8;④y=7-x.生1:y =x -6是一次函数,其中k =1,b =-6.生2:y =2x 不是一次函数.生3:y =x 8是一次函数,其中k =18,b =0.生4:y =7-x 是一次函数,其中k =-1,b =7.师:值得注意的是y =x8也是一次函数,它是当b =0时的特殊情况.例题:(1)已知函数y =(k -2)x +2k +1,当k 为何值时它是正比例函数?当k 为何值时它是一次函数?解决:当2k +1=0,即k =-12时,它为正比例函数.当k -2≠0,即k≠2时,它为一次函数.(2)已知y 与x -3成正比例,当x =4时,y =3,写出y 与x 的函数关系式并指出是什么函数.解:因为y 与x -3成正比例,所以设y =k(x -3).由题意知当x =4时,y =3,代入得k =3.所以y =3(x -3),即y =3x -9,y 是x 的一次函数. 三、巩固练习写出下列函数关系式,并指出哪些是一次函数,其中哪些又属于正比例函数.1.面积为10 cm 2的三角形的底a(cm )与这边上的高h(cm ).【答案】h =20a,不是一次函数.2.一边长为8 cm 的平行四边形的周长L(cm )与另一边长b(cm ). 【答案】L =16+2b ,是一次函数.3.食堂原有煤120吨,每天要用去5吨,x 天后还剩下煤y 吨. 【答案】y =120-5x ,是一次函数.4.汽车每小时行40千米,行驶的路程s(千米)和时间t(小时). 【答案】s =40t ,是一次函数,且是正比例函数.5.圆的面积y(平方厘米)与它的半径x(厘米)之间的关系.【答案】y =πx 2,不是一次函数.6.一棵树现在高50厘米,每个月长高2厘米,x 个月后这棵树的高度为y(厘米). 【答案】y =50+2x ,是一次函数. 四、课堂小结本节课从实际出发得出一次函数的概念,并在实际问题中根据简单信息写出一次函数的表达式,进而解决问题.本节课主要学习了一次函数的概念和一次函数的一般形式.教学过程中充分调动了学生的学习积极性,让学生参与到学习活动中,在活动的过程中,理解并掌握知识,同时也培养了学生的学习能力及参与意识,取得了良好的教学效果.13.1 命题、定理与证明(第一课时)一、说教材1、教材的地位和作用命题是数学教学的基本依据,经过推理证实的命题如定理可以作为继续推理的依据,所以认识命题的定义、结构、真假是数学学习的主要任务之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.2.2 第1课时 一次函数的概念
知识点1 一次函数的定义
1.有下列函数:①y =πx ,②y =2x -1,③y =1x ,④y =1x
-3x ,⑤y =x 2-1,⑥y =3(2x 2-2x )-6x 2,其中是一次函数的有( )
A .4个
B .3个
C .2个
D .1个
2.下列函数中,是一次函数但不是正比例函数的是( )
A .y =-x 2
B .y =-2x
C .y =-x -1
2 D .y =x 2-1
2
3.函数y =5x -3和y =5-3x 都是形如y =kx +b 的一次函数.在第一个式子中,k =________,b =________;在第二个式子中,k =________,b =________.
知识点2 列一次函数的解析式
4.鲁老师乘车从学校到省城去参加会议,学校距省城200千米,车行驶的平均速度为80千米/时.x 小时后鲁老师距省城y 千米,则y 与x 之间的函数解析式为( )
A .y =80x -200
B .y =-80x -200
C .y =80x +200
D .y =-80x +200
5.写出下列各题中y 与x 之间的解析式,并判断y 是不是x 的一次函数.
(1)居民用电标准是每度电0.53元,则电费y (元)与用电量x (度)之间的关系;
(2)某车站规定旅客可以免费携带不超过20千克的行李,超过部分每千克收取1.5元的行李费用,则旅客需交的行李费y (元)与携带行李质量x (千克)之间的关系(其中x >20).
6.如果y =(m 2-4)x +9是一次函数,那么m 的值不等于( )
A .2
B .-2
C .±2
D .±2
7.等腰三角形的周长是40 cm ,腰长y (cm)是底边长x (cm)的函数,则y 与x 之间的函数
解析式和自变量的取值范围分别是( ) A.y=-2x+40(0<x<20)
B.y=-0.5x+20(10<x<20)
C.y=-2x+40(10<x<20)
D.y=-0.5x+20(0<x<20)
8.已知关于x的函数y=(m-3)x||m-2+n-2.
(1)当m,n为何值时,它是一次函数?
(2)当m,n为何值时,它是正比例函数?
拓广探究创新练冲刺满分
9.[xx·宿迁]某种型号汽车油箱容量为40 L,每行驶100 km耗油10 L.设一辆加满油的该型号汽车行驶路程为x(km),行驶过程中油箱内剩余油量为y(L).
(1)求y与x之间的函数解析式(不要求写自变量的取值范围);
(2)为了有效延长汽车使用寿命,厂家建议每次加油时,油箱内剩余油量不低于油箱容量
的1
4
,按此建议,求该辆汽车最多行驶的路程.
教师详解详析
1.B [解析] ①y =πx ,②y =2x -1,⑥y =3(2x 2-2x )-6x 2是一次函数,共3个.
2.C 3.5 -3 -3 5 4.D
5.解:(1)根据题意可得y =0.53x ,y 是x 的一次函数.
(2)根据题意可得y =1.5(x -20)=1.5x -30,y 是x 的一次函数.
6.C [解析] 因为y =(m 2-4)x +9是一次函数,所以m 2-4≠0,解得m ≠±2.故选C.
7.D
8.解:(1)当m =-3,n 为任意实数时,它是一次函数.
(2)当m =-3,n =2时,它是正比例函数.
9.解:(1)y =40-x 100×10=40-110
x . (2)∵油箱内剩余油量不低于油箱容量的14
, ∴y ≥40×14=10,则-110
x +40≥10, ∴x ≤300,
故该辆汽车最多行驶的路程是300 km.。