学习:协整理论以及协整检验
协整检验方法

协整检验协整性的检验方法主要有两个: (一) EG 两步法以两个变量y 和x 为例。
在检验协整性之前,首先要对变量的单整性进行检验,只有当两个变量的单整阶数相同时,才可能存在协整关系。
不妨设y 和x 都是一阶单整序列,即y 、x 均)1(~I ,则EG 两步法的具体检验步骤为:第一步:利用最小二乘法估计模型:t t t x y εββ++=10 (5-1) 并计算相应的残差序列:)ˆˆ(10tt t x y e ββ+-= 第二步:检验残差序列的平稳性,可以使用的检验方程有: t mi i t i t t e e e εγδ+∆+=∆∑=--11(5-2) t m i i t i t t e e e εγδα+∆++=∆∑=--11(5-3)t mi i t i t t e e t e εγδβα+∆+++=∆∑=--11(5-4)如果经过DF 检验(或ADF 检验)拒绝了原假设0:0=δH ,残差序列是平稳序列,则意味着y 和x 存在着协整关系,称模型(5-1)为协整回归方程;如果接受了存在单位根的原假设,则残差序列是非平稳的,y 和x 之间不可能存在协整关系,模型(5-1)是虚假回归方程。
说明: 1.在检验方程中加上差分的滞后项是为了消除误差项的自相关性,检验也相应称为AEG 检验;其中滞后阶数一般用SIC 或AIC 准则确定,EViews 5中增加了根据SC 等准则自动确定滞后阶数的功能。
2.检验残差序列的平稳性时,可以在检验方程中加上常数项和趋势项,即使用方程(5-3)、(5-4)进行检验,也可以加在原始回归方程(5-1)中,但在两个方程中只能加一次,不能重复加入。
3.在检验残差序列的平稳性时,虽然检验统计量与DF (或ADF )检验中的相同,但是检验统计量的分布已不再是DF 或ADF 分布,所以临界值也发生了变化,而且还与回归方程中变量个数、样本容量和协整检验方程的不同有关。
麦金农(Mackinnon )给出了协整检验临界值的计算公式,EViews 软件也可以直接输出Mackinnon 临界值(或伴随概率)。
学习:协整理论以及协整检验

然而,如果Z与W,X与Y间分别存在长期均衡关系:
Zt 0 1Wt v1t
X t 0 1Yt v2t
则非均衡误差项v1t、v2t一定是稳定序列I(0)。于是它 们的任意线性组合也是稳定的。例如
vt v1t v2t Zt 0 0 1Wt X t 1Yt
2、长期均衡
•
经济理论指出,某些经济变量间确实存在着长期均衡关
系,这种均衡关系意味着经济系统不存在破坏均衡的内在 机制,如果变量在某时期受到干扰后偏离其长期均衡点, 则均衡机制将会在下一期进行调整以使其重新回到均衡状 态。 假设X与Y间的长期“均衡关系”由式描述
Yt 0 1 X t t
协整检验
协整与误差修正模型
一、长期均衡与协整分析 二、协整检验—EG检验 三、协整检验—JJ检验 四、误差修正模型
一、长期均衡与协整分析 Equilibrium and Cointegration
1、问题的提出
• 经典回归模型( classical regression model )是建立在 平稳数据变量基础上的,对于非平稳变量,不能使用经典 回归模型,否则会出现虚假回归等诸多问题。 • 由于许多经济变量是非平稳的,这就给经典的回归分析方 法带来了很大限制。 • 但是,如果变量之间有着长期的稳定关系,即它们之间是 协整的(cointegration),则是可以使用经典回归模型方 法建立回归模型的。 • 例如,中国居民人均消费水平与人均 GDP 变量的例子 , 从 经济理论上说,人均 GDP 决定着居民人均消费水平,它们 之间有着长期的稳定关系,即它们之间是协整的。
该均衡关系意味着:给定X的一个值,Y相应的均衡值也随 之确定为0+1X。
eg协整检验步骤

eg协整检验步骤协整检验是用于检测两个或多个变量之间是否存在长期稳定的关系的方法,它在经济学和金融领域中具有重要的应用价值。
下面将介绍协整检验的步骤。
第一步:确定研究的变量首先需要确定研究的变量,这些变量可以是实际存在的经济变量,如国内生产总值(GDP)、消费者物价指数(CPI)等,也可以是构建的指数、指数差等。
确定这些变量是研究的目标。
第二步:选择合适的协整模型根据研究的变量和样本数据的特点,应选择合适的协整模型。
常用的协整模型有Engle-Granger两步法、Johansen方法等。
Engle-Granger两步法适用于变量数较少的情况,而Johansen方法则适用于变量数较多的情况。
第三步:进行单位根检验选定了协整模型之后,下一步是进行单位根检验。
单位根检验的目的是确定变量是否是非平稳的。
常用的单位根检验方法有ADF检验、Phillips-Perron检验等。
如果变量是非平稳的,则需要对它们进行差分处理以消除非平稳性。
第四步:估计协整关系在经过单位根检验之后,如果存在协整关系,则可以进行估计。
估计协整关系的常用方法是最小二乘法(OLS)。
通过OLS估计可以得到协整回归方程的系数估计。
第五步:检验协整关系在估计了协整关系之后,需要进行协整关系的检验,以确定估计结果的显著性。
常用的协整关系检验方法有协整的t检验、F检验等。
这些检验方法可以检验协整关系是否显著,以及协整关系的几何意义。
第六步:解释和应用协整关系最后一步是对协整关系进行解释和应用。
解释协整关系可以从理论角度出发,解释变量之间的长期均衡关系。
应用协整关系可以用于预测和制定经济政策。
总结起来,协整检验的步骤主要包括确定研究的变量、选择合适的协整模型、进行单位根检验、估计协整关系、检验协整关系和解释和应用协整关系。
通过这些步骤可以得到具有经济学意义的协整关系,并为相关研究和实践提供有价值的参考。
协整检验实验报告(3篇)

第1篇一、实验目的1. 了解协整检验的基本原理和方法;2. 学会运用协整检验分析变量之间的长期稳定关系;3. 培养数据处理和分析能力。
二、实验背景协整检验是计量经济学中一种重要的检验方法,主要用于检验两个或多个非平稳时间序列变量之间是否存在长期稳定的均衡关系。
协整检验通常应用于金融、经济、工程等领域,以分析变量之间的相互作用和影响。
三、实验内容1. 数据来源:选取我国2000年至2020年的GDP、消费、投资和进出口数据,分别记为GDP、CONSUME、INVEST和IMPORT。
2. 数据处理:首先,对原始数据进行对数变换,以消除数据中的异方差性。
然后,利用EViews软件对对数变换后的数据进行单位根检验,以判断变量是否为非平稳时间序列。
3. 协整检验:运用EViews软件对GDP、CONSUME、INVEST和IMPORT进行协整检验,以判断变量之间是否存在长期稳定的均衡关系。
4. 脉冲响应函数和方差分解:若协整检验结果显示变量之间存在长期稳定的均衡关系,则进一步运用EViews软件进行脉冲响应函数和方差分解分析,以揭示变量之间的动态影响和贡献程度。
四、实验步骤1. 数据准备:将GDP、CONSUME、INVEST和IMPORT数据导入EViews软件。
2. 单位根检验:对GDP、CONSUME、INVEST和IMPORT进行单位根检验,判断变量是否为非平稳时间序列。
3. 协整检验:运用EViews软件对GDP、CONSUME、INVEST和IMPORT进行协整检验,包括Engle-Granger检验和Pedroni检验。
4. 脉冲响应函数和方差分解:若协整检验结果显示变量之间存在长期稳定的均衡关系,则进行脉冲响应函数和方差分解分析。
五、实验结果与分析1. 单位根检验结果:根据ADF检验结果,GDP、CONSUME、INVEST和IMPORT均存在单位根,说明这些变量都是非平稳时间序列。
2. 协整检验结果:根据Engle-Granger检验和Pedroni检验结果,GDP、CONSUME、INVEST和IMPORT之间存在长期稳定的均衡关系。
协整理论及案例

中大期货公司 研究所 高辉
协整及相关理论简介
ADF 检验中选取标准我们采用:保证残差项不相关的前提下,同时采用 AIC 准则与 SC 准 则,作为最佳时滞的标准,在二者值同时为最小时的滞后长度即为最佳长度。在 ADF 检验 中还存在一个问题,即检验回归中包括常数,常数和线性趋势,或二者都不包括三种情况。 选择标准:通过变量的时序图观察,如果序列好像包含有趋势(确定的或随机的) ,序列回 归中应既有常数又有趋势。如果序列没有表现任何趋势且有非零均值,回归中应仅有常数。 如果序列在零均值波动,检验回归中应既不含有常数又不含有趋势。例如: 《中国上海期铜 价格季度预测建模研究》检验结果:
∆yt = µ + ryt −1 + δ1∆yt −1 + δ 2 ∆yt −2 + L + δ p ∆yt − p + ε t
(1.1)
µ , r , δ 1 , δ 2 ,L , δ p 为参数, ε t 为随机误差项,是服从独立同分布(iid)的白噪声过
程,假设: H 0 : r = 0 , H1 : r < 0 。若 r = 0 ,则变量服从单位根过程,是非平稳的。若
( ESS1 − ESS2 ) m ,式中 ESS 和 ESS 分别 1 2 ESS1 T − ( k + m + 1)
表1
变量 YE PE EE DI LCU3 SHCU △YE △ PE △EE △DI ADF 值
-2.371202 -0.614100 -0.541186 -0.573248 -0.901602 -1.768326 -2.224296 -4.447212 -2.716409 -2.757654
各个变量时间序列的单位根检验结果
15.协整检验

16.协整检验一、方法介绍基本思路:20世纪80年代,Engle 和Granger 等人提出了协整(Co-integration )的概念,指出两个或多个非平稳(non-stationary )的时间序列的线性组合可能是平稳的或是较低阶单整1的。
有些时间序列,虽然它们自身非平稳,但其线性组合却是平稳的。
非平稳时间序列的线性组合如果平稳,则这种组合反映了变量之间长期稳定的比例关系,称为协整关系。
协整关系表达的是两个线性增长量的稳定的动态均衡关系,更是多个线性增长的经济量相互影响及自身演化的动态均衡关系。
协整分析是在时间序列的向量自回归分析的基础上发展起来的空间结构与时间动态相结合的建模方法与理论分析方法。
理论模型:如果时间序列nt t t Y Y Y ,,,⋅⋅⋅21都是d 阶单整,即)(d I ,存在一个向量)(21n αααα,,,⋅⋅⋅=使得)(b d I Y t -'~α,这里)(21nt t t t Y Y Y Y ,,,⋅⋅⋅=,0≥≥b d 。
则称序列nt t t Y Y Y ,,,⋅⋅⋅21是),(b d 阶协整,记为),(b d CI Y t ~,α为协整向量。
一般情况下,协整检验有EG 两步法与JJ 的多变量极大似然法。
步骤一:为检验序列t Y 和t X 的),(b d CI 阶协整关系。
首先对每个变量进行单位根检验,得出每个变量均为)(d I 序列,然后选取变量t Y 对t X 进行OLS 回归,即有协整回归方程:1 如果一个非平稳时间序列经过差分变换变成平稳的,称其为单整过程,经过一次差分变换的称为一阶单整,记为I(1),n 次差分变换的称为n 阶单整,记为I(n)。
t t t X Y εβα++= (1)式中用αˆ和βˆ表示回归系数的估计值,则模型残差估计值为:t t X Y βαεˆˆˆ--= (2)步骤二:对(1)式中的残差项t ε进行单位根检验,一般采用ADF 检验。
协整检验方法范文

协整检验方法范文协整检验方法是一种用于检验时间序列数据之间是否存在长期均衡关系的统计分析方法。
它能够识别出一组非平稳时间序列之间的线性组合,该组合是一个平稳时间序列,表明这些非平稳时间序列在长期均衡状态下保持其中一种关系。
协整检验方法的应用广泛,例如金融领域的股票价格与指数之间的关系、国际贸易中的汇率与物价之间的关系等。
协整检验方法的基本思想是通过构建线性组合来检验时间序列之间的长期关系。
具体而言,对于一个包含n个非平稳时间序列的向量(X1,X2,...,Xn),我们可以通过线性组合来构建一个平稳时间序列Y。
设向量β=(β1,β2,...,βn)为系数向量,那么线性组合的形式可以表示为Y=β'X,其中β'表示β的转置。
如果β存在且不全为0,且线性组合Y是平稳的,那么我们认为时间序列之间存在协整关系。
常见的协整检验方法有以下几种。
1.单位根检验:单位根检验是最常用的协整检验方法之一、它通过检验时间序列是否为单位根过程来判断是否存在协整关系。
常用的单位根检验包括ADF检验(Augmented Dickey-Fuller)和PP检验(Phillips-Perron)。
具体而言,这些检验方法通过对时间序列模型中的滞后项引入不完全、高阶差分等修正项,来修正原假设的计量残差序列是否存在单位根,以此判断是否存在协整关系。
2. Johansen检验:Johansen检验是一种多元协整检验方法,用于检验多个时间序列之间是否存在共同的长期均衡关系。
它可以同时检验多个变量的协整阶数和协整向量。
Johansen检验的核心是使用向量自回归模型(VAR)和广义最小二乘估计法,通过对向量自回归模型中的滞后阶数进行适当的设定,引入滞后阶数的限制条件来进行检验。
3. Engle-Granger检验:Engle-Granger检验是一种基于单位根方法的双变量协整检验方法。
它可以检验两个时间序列之间是否存在协整关系。
时间序列计量经济学协整

货币政策效果评估
总结词
时间序列协整分析在货币政策效果评估中,有助于评估货币政策对经济的影响,以及政 策效果在不同经济变量之间的传递。
详细描述
货币政策是中央银行通过调节货币供应量和利率来影响经济活动的政策。时间序列协整 分析可以用于评估货币政策对经济增长、通货膨胀等经济指标的影响,以及政策效果在 不同经济变量之间的传递。通过协整分析,可以揭示货币政策对经济变量的长期均衡关
时间序列计量经济学 协整
目录
• 协整理论概述 • 时间序列协整模型 • 协整分析方法 • 时间序列协整的应用 • 时间序列协整的局限与未来发展
01
协整理论概述
协整的定义
协整是指两个或多个非平稳时间序列 之间存在长期均衡关系。这种长期均 衡关系可以是线性的,也可以是非线 性的。
协整关系表明这些时间序列之间存在 一种共同的长期趋势,即使它们各自 的短期波动不同。
误差修正模型
误差修正模型是一种用来描述时间序列之间长期均衡关系和 短期调整机制的模型。它通过引入误差修正项,来反映长期 均衡关系对短期调整的影响。
误差修正项的系数表示了短期调整机制的强度和方向,如果 系数为负,则说明当短期波动偏离长期均衡时,系统会自动 调整回到均衡状态。
04
时间序列协整的应用
经济周期分析
05
时间序列协整的局限与未 来发展
模型假设的局限性
线性协整关系的假设
01
线性协整关系假设限制了模型对非线性时间序列关系的解释能
力。
长期均衡关系的假设
02
长期均衡关系的假设可能不适用于所有时间序列数据,特别是
对于短期波动较大的数据。
误差修正机制的假设
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
协整与误差修正模型
一、长期均衡与协整分析 二、协整检验—EG检验 三、协整检验—JJ检验 四、误差修正模型
一、长期均衡与协整分析 Equilibrium and Cointegration
1、问题的提出
• 经典回归模型( classical regression model )是建立在 平稳数据变量基础上的,对于非平稳变量,不能使用经典 回归模型,否则会出现虚假回归等诸多问题。 • 由于许多经济变量是非平稳的,这就给经典的回归分析方 法带来了很大限制。 • 但是,如果变量之间有着长期的稳定关系,即它们之间是 协整的(cointegration),则是可以使用经典回归模型方 法建立回归模型的。 • 例如,中国居民人均消费水平与人均 GDP 变量的例子 , 从 经济理论上说,人均 GDP 决定着居民人均消费水平,它们 之间有着长期的稳定关系,即它们之间是协整的。
与Y在时期t与t-1末期仍满足它们间的长期均衡关 系,即上述第一种情况,则Y的相应变化量为:
Yt 1X t vt
vt=t-t-1
• 如果t-1期末,发生了上述第二种情况,即Y的 值小于其均衡值,则t期末Y的变化往往会比第 一种情形下Y的变化大一些; • 反之,如果t-1期末Y的值大于其均衡值,则t期 末Y的变化往往会小于第一种情形下的Yt 。 • 可见,如果 Yt=0+1Xt+t 正确地提示了 X 与 Y 间的长期稳定的“均衡关系”,则意味着 Y 对 其均衡点的偏离从本质上说是“临时性”的。 • 一个重要的假设就是 : 随机扰动项 t 必须是平 稳序列。如果 t有随机性趋势(上升或下降), 则会导致 Y 对其均衡点的任何偏离都会被长期 累积下来而不能被消除。
3ቤተ መጻሕፍቲ ባይዱ协整
• 如果序列{X1t,X2t,…,Xkt}都是d阶单整,存在向量 =(1,2,…,k),使得Zt=XT ~ I(d-b), 其中,b>0,X=(X1t,X2t,…,Xkt)T,则认为序列 {X1t,X2t,…,Xkt}是(d,b)阶协整,记为Xt~CI(d,b), 为协整向量(cointegrated vector)。 • 如果两个变量都是单整变量,只有当它们的单整 阶数相同时,才可能协整;如果它们的单整阶数 不相同,就不可能协整。
2、长期均衡
•
经济理论指出,某些经济变量间确实存在着长期均衡关
系,这种均衡关系意味着经济系统不存在破坏均衡的内在 机制,如果变量在某时期受到干扰后偏离其长期均衡点, 则均衡机制将会在下一期进行调整以使其重新回到均衡状 态。 假设X与Y间的长期“均衡关系”由式描述
Yt 0 1 X t t
三、协整检验—JJ检验
⒈ JJ检验的原理
• Johansen于1988年,以及与Juselius一起于 1990年提出了一种用向量自回归模型进行检验 的方法,通常称为Johansen检验,或JJ检验, 是一种进行多重I(1)序列协整检验的较好方法。
• 没有移动平均项的向量自回归模型表示为:
y t 1y t 1 p y t p t
CPCt 0 1GDPPC t t
• 尽管两个时间序列是非平稳的,也可以用经典
的回归分析方法建立回归模型。
•
从这里,我们已经初步认识到: 检验变量之 间的协整关系,在建立计量经济学模型中是非常 重要的。 而且,从变量之间是否具有协整关系出发选 择模型的变量,其数据基础是牢固的,其统计性 质是优良的。
一定是I(0)序列。 由于vt象t一样,也是Z、X、Y、W四个变量的线性 组合,由此vt 式也成为该四变量的另一稳定线性组合。 (1, -0,-1,-2,-3)是对应于t 式的协整向量, (1,-0-0,-1,1,-1)是对应于vt式的协整向量。
• 检验程序:
–对于多变量的协整检验过程,基本与双变量情形相 同,即需检验变量是否具有同阶单整性,以及是否 存在稳定的线性组合。 –在检验是否存在稳定的线性组合时,需通过设置一 个变量为被解释变量,其他变量为解释变量,进行 OLS估计并检验残差序列是否平稳。 –如果不平稳,则需更换被解释变量,进行同样的 OLS估计及相应的残差项检验。
•
例 检验中国居民人均消费水平CPC与人均国内生产总 值GDPPC的协整关系。
已知CPC与GDPPC都是I(2)序列,已知它们的回归式
CPCt 49.764106 0.45831 GDPPC t
R2=0.9981
对该式计算的残差序列作ADF检验,适当检验模型为:
ˆt 1.55e ˆt 1 1.49e ˆt 1 2.27e ˆt 3 e
然而,如果Z与W,X与Y间分别存在长期均衡关系:
Zt 0 1Wt v1t
X t 0 1Yt v2t
则非均衡误差项v1t、v2t一定是稳定序列I(0)。于是它 们的任意线性组合也是稳定的。例如
vt v1t v2t Zt 0 0 1Wt X t 1Yt
j 1
p
该式要求
y t 1 为 一 个 I (0) 向 量 , 其 每 一 行 所 表 示 的
y1t 1 , y2 t 1 ,, yM t 1 的线性组合都是一种协整形式。
• (d,d)阶协整是一类非常重要的协整关系, 它的经济意义在于:两个变量,虽然它们具有 各自的长期波动规律,但是如果它们是(d,d) 阶协整的,则它们之间存在着一个长期稳定的 比例关系。
• 例如,中国CPC和GDPPC,它们各自都是2阶单整,如果 它们是(2,2)阶协整,说明它们之间存在着一个长期稳 定的比例关系,从计量经济学模型的意义上讲,建立 如下居民人均消费函数模型是合理的。
多变量协整关系的检验要比双变量复杂一些,主要在 于协整变量间可能存在多种稳定的线性组合。 假设有4个I(1)变量Z、X、Y、W,它们有如下的长期 均衡关系:
Z t 0 1Wt 2 X t 3Yt t
非均衡误差项t应是I(0)序列:
t Z t 0 1Wt 2 X t 3Yt
表 9.3.2 样本 容量 25 50 100 ∝ 多变量协整检验 ADF 临界值 变量数=4 显著性水平 0.01 0.05 0.1 -5.43 -4.56 -4.15 -5.02 -4.32 -3.98 -4.83 -4.21 -3.89 -4.65 -4.1 -3.81 变量数=6 显著性水平 0.01 0.05 0.1 -6.36 -5.41 -4.96 -5.78 -5.05 -4.69 -5.51 -4.88 -4.56 -5.24 -4.7 -4.42 变量数=3 显著性水平 0.01 0.05 0.1 -4.92 -4.1 -3.71 -4.59 -3.92 -3.58 -4.44 -3.83 -3.51 -4.30 -3.74 -3.45
如果 R() M ,显然只有 y1t 1 , y2 t 1 ,, y M t 1 都是 I (0) 变量, 才能保证新生误差是平稳过程。而这与已知的 y t 为 I (1) 过程相矛 盾。所以必然存在 R() M 。
如果 R() 0 ,意味着 0 ,因此仅仅是个差分方程,各项 都是 I (0) 变量,不需要讨论 y1t 1 , y2 t 1 ,, yM t 1 之间是否具有协 整关系。
如果 R() r (0 r M ) ,表示存在 r 个协整组合,其余 M r 个 关系仍为 I (1) 关系。 在这种情况下, 可以分解成两个 (M r ) 阶 矩阵 和 的乘积: ,其中 R( ) r , R( ) r 。
y t j y t j y t 1 t
该均衡关系意味着:给定X的一个值,Y相应的均衡值也随 之确定为0+1X。
• 在t-1期末,存在下述三种情形之一:
– Y等于它的均衡值:Yt-1= 0+1Xt ; – Y小于它的均衡值:Yt-1< 0+1Xt ; – Y大于它的均衡值:Yt-1> 0+1Xt ; • 在时期t,假设X有一个变化量Xt,如果变量X
• 式Yt=0+1Xt+t中的随机扰动项也被称为非均 衡误差(disequilibrium error),它是变量X 与Y的一个线性组合:
t Yt 0 1 X t
• 如果X与Y间的长期均衡关系正确,该式表述的非
均衡误差应是一平稳时间序列,并且具有零期望值, 即是具有0均值的I(0)序列。 • 非稳定的时间序列,它们的线性组合也可能成为 平稳的。称变量X与Y是协整的(cointegrated)。
y t j y t j t
j 1
差分 Yt为M个I(1)过程构成的向量
p
y t j y t j y t 1 t
j 1
I(0)过程 I(0)过程 只有产生协整,才能保证 新生误差是平稳过程
p
• 将y的协整问题转变为讨论矩阵Π的性质问题
t t t
称为协整回归(cointegrating)或静态回归(static regression)。
t 的单整性。如果 t 为稳定序列,则认为变量 e e Yt , X t 第二步,检验 t 为 1 阶单整, e Yt , X t 为 (2,1)阶协整; 为 (1,1)阶协整; 如果 则认为变量 „。
(-4.47) (3.93) (3.05) LM(1)=0.00 LM(2)=0.00
t=-4.47<-3.75=ADF0.05,拒绝存在单位根的假设,残差项 是平稳的。因此中国居民人均消费水平与人均GDP是(2,2) 阶协整的,说明了该两变量间存在长期稳定的“均衡”关 系。
2、多变量协整关系的检验—扩展的E-G检验
• MacKinnon(1991)通过模拟试验给出了协整检 验的临界值。
表 9.3.1 样本容量 25 50 100 ∝ 双变量协整 ADF 检验临界值 显 著 性 水 平 0.01 -4.37 -4.12 -4.01 -3.90 0.05 -3.59 -3.46 -3.39 -3.33 0.10 -3.22 -3.13 -3.09 -3.05