多元线性回归参数估计

合集下载

多元线性回归模型参数的最小二乘估计

多元线性回归模型参数的最小二乘估计

x
2 ki
yi
x1i
yi
X
Y
xki yi
ˆ0
ˆ1
ˆ
ˆ k
于是正规方程组的矩阵形式为
( X X )ˆ X Y
(3.2.5)
于是有 ˆ ( X X )1 X Y (3.2.6)
二、中心化模型的参数最小二乘估计 我们已经知道,总体线性回归模型可以表示为
yi 0 1 x1i 2 x2i k xki ui (3.2.7)
u1
U
u2
un
残差平方和
1
2
n
2 i
(Y
Xˆ )(Y
Xˆ )
YY 2ˆ X Y ˆ X Xˆ
其中用到 Y Xˆ 是标量的性质。
(3.2.15)
将残差平方和(3.2.15)对 ˆ 求导,并令其为零:
( ˆ
)
2 X
Y
2 X

0
整理得正规方程组
X Xˆ X Y
(3.2.16)
这里 =0,可以看作是对参数施加一个限制条件。
其中心化模型
yi 1 x1i 2 x2i k xki ui (3.2.11)
yi ˆ1 x1i ˆ2 x2i ˆk xki i (3.2.12)
(i =1,2,…,n)
将它们写成矩阵形式:
Y X U
(3.2.13)
Y Xˆ
ˆ0 xki ˆ1 x1i xki ˆ2 x2i xki ˆk xk2i xki yi
由(3.2.3)第一个方程,可以得到:
y ˆ0 ˆ1 x1 ˆ2 x2 ˆk xk
(3.2.4)
将正规方程组写成矩阵形式:
n x1i xki

多元线性回归模型参数估计

多元线性回归模型参数估计

多元线性回归模型参数估计Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y是因变量,X1,X2,...,Xn是自变量,β0,β1,β2,...,βn 是待求的模型参数,ε是偏差项。

参数估计的目标是找到具有最小残差平方和(RSS)的模型参数。

残差是观测值与模型预测值之间的差异,残差平方和则是所有观测值的残差平方的和。

对于参数估计,常用的方法是最小二乘法。

最小二乘法的思想是最小化残差平方和以找到最佳的模型参数。

最小二乘法的步骤如下:1.假设自变量X和因变量Y之间存在线性关系。

2. 对每一个自变量Xj(j = 1, 2, ... , n),计算Xj的均值(记作xj_mean)和标准差(记作xj_std)。

3. 对每一个自变量Xj,将Xj进行标准化处理(Z-score标准化),即将Xj减去其均值后除以其标准差。

4. 根据标准化的自变量Xj,计算其相关系数(记作rj)与因变量Y 的相关系数(记作ry)。

相关系数表示两个变量之间的线性关系的强度和方向。

相关系数的取值范围为-1到1,接近-1表示负相关,接近1表示正相关,接近0表示无相关。

5. 对每个自变量Xj,计算其回归系数(记作bj)等于ry乘以xj_std除以rj。

6. 计算截距项(记作b0)等于Y的均值减去所有回归系数bj与自变量Xj的均值相乘的和。

7.得到完整的多元线性回归模型。

在进行参数估计时,需要注意以下几点:1.数据的准备:确保数据符合多元线性回归模型的假设,包括自变量与因变量的线性关系、多重共线性等。

2.异常值的处理:需要检测和处理可能存在的异常值,以避免对参数估计的干扰。

3.模型的评估:通过评估模型的适应度指标(如决定系数R^2、调整决定系数等)来判断模型的拟合优度,并对模型进行修正。

4.参数的解释:对于得到的参数估计结果,需要解释其含义和影响,以便进行预测和决策。

总之,多元线性回归模型的参数估计是通过最小二乘法等方法来找到最佳的模型参数,以拟合数据并进行预测。

3多元线性回归模型参数估计

3多元线性回归模型参数估计

3多元线性回归模型参数估计多元线性回归是一种用于预测多个自变量与因变量之间关系的统计模型。

其模型形式为:Y=β0+β1X1+β2X2+...+βnXn+ε,其中Y是因变量,X1、X2、..、Xn是自变量,β0、β1、β2、..、βn是模型的参数,ε是误差项。

多元线性回归模型参数的估计可以使用最小二乘法(Ordinary Least Squares,OLS)来进行。

最小二乘法的基本思想是找到一组参数估计值,使得模型预测值与实际观测值之间的平方差最小。

参数估计过程如下:1.根据已有数据收集或实验,获取因变量Y和自变量X1、X2、..、Xn的观测值。

2.假设模型为线性关系,即Y=β0+β1X1+β2X2+...+βnXn+ε。

3.使用最小二乘法,计算参数估计值β0、β1、β2、..、βn:对于任意一组参数估计值β0、β1、β2、..、βn,计算出模型对于所有观测值的预测值Y'=β0+β1X1+β2X2+...+βnXn。

计算观测值Y与预测值Y'之间的平方差的和,即残差平方和(RSS,Residual Sum of Squares)。

寻找使得RSS最小的参数估计值β0、β1、β2、..、βn。

4.使用统计方法计算参数估计值的显著性:计算回归平方和(Total Sum of Squares, TSS)和残差平方和(Residual Sum of Squares, RSS)。

计算决定系数(Coefficient of Determination, R^2):R^2 = (TSS - RSS) / TSS。

计算F统计量:F=(R^2/k)/((1-R^2)/(n-k-1)),其中k为自变量的个数,n为观测值的个数。

根据F统计量的显著性,判断多元线性回归模型是否合理。

多元线性回归模型参数估计的准确性和显著性可以使用统计假设检验来判断。

常见的参数估计的显著性检验方法包括t检验和F检验。

t检验用于判断单个参数是否显著,F检验用于判断整个回归模型是否显著。

多元线性回归模型参数估计

多元线性回归模型参数估计

多元线性回归模型参数估计多元线性回归是一种用于建立自变量与因变量之间关系的统计模型。

它可以被视为一种预测模型,通过对多个自变量进行线性加权组合,来预测因变量的值。

多元线性回归模型的参数估计是指利用已知的数据,通过最小化误差的平方和来估计回归模型中未知参数的过程。

本文将介绍多元线性回归模型参数估计的基本原理和方法。

Y=β0+β1X1+β2X2+...+βpXp+ε其中,Y是因变量,X1、X2、..、Xp是自变量,β0、β1、β2、..、βp是回归系数,ε是残差项。

参数估计的目标是找到使得误差的平方和最小的回归系数。

最常用的方法是最小二乘法(Ordinary Least Squares, OLS)。

最小二乘法通过最小化残差的平方和来确定回归系数的值。

残差是观测值与回归模型预测值之间的差异。

为了进行最小二乘法参数估计,需要计算回归模型的预测值。

预测值可以表示为:Y^=β0+β1X1+β2X2+...+βpXp其中,Y^是因变量的预测值。

参数估计的目标可以表示为:argmin(∑(Y - Y^)²)通过对目标函数进行求导,可以得到参数的估计值:β=(X^TX)^-1X^TY其中,X是自变量的矩阵,Y是因变量的向量,^T表示矩阵的转置,^-1表示矩阵的逆。

然而,在实际应用中,数据往往存在噪声和异常值,这可能导致参数估计的不准确性。

为了解决这个问题,可以采用正则化方法,如岭回归(Ridge Regression)和LASSO回归(Least Absolute Shrinkage and Selection Operator Regression)。

这些方法通过在目标函数中引入正则化项,可以降低估计结果对噪声和异常值的敏感性。

岭回归通过在目标函数中引入L2范数,可以限制回归系数的幅度。

LASSO回归通过引入L1范数,可以使得一些回归系数等于零,从而实现变量选择。

这些正则化方法可以平衡模型的拟合能力与泛化能力,提高参数估计的准确性。

多元线性回归模型及其参数估计多元线性回归的显著性

多元线性回归模型及其参数估计多元线性回归的显著性

多元线性回归模型及其参数估计多元线性回归的显著性Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y表示因变量(被预测或解释的变量),X1,X2,...,Xn表示自变量(用于预测或解释因变量的变量),β0,β1,β2,...,βn表示模型的参数,ε表示误差项。

参数估计就是指通过样本数据来估计模型中的参数。

在多元线性回归中,常用的参数估计方法是最小二乘法。

最小二乘法的目标是最小化实际观测值与回归方程所预测值之间的残差平方和。

为了评估多元线性回归模型的显著性,可以进行假设检验。

最常用的假设检验是利用F检验来检验整个回归模型的显著性。

F检验的原假设是回归模型中所有自变量的系数都等于零,即H0:β1=β2=...=βn=0,备择假设是至少存在一个自变量的系数不等于零,即H1:β1≠β2≠...≠βn≠0。

F统计量的计算公式为:F=(SSR/k)/(SSE/(n-k-1))其中,SSR表示回归平方和,即实际观测值与回归方程所预测值之间的残差平方和,k表示自变量的个数,SSE表示误差平方和,即实际观测值与回归方程所预测值之间的残差平方和,n表示样本容量。

根据F统计量的分布特性,可以计算得出拒绝原假设的临界值,若计算出来的F统计量大于临界值,则可以拒绝原假设,认为回归模型是显著的,即至少存在一个自变量对因变量有显著影响。

除了整体的回归模型显著性检验,我们还可以进行各个自变量的显著性检验。

每一个自变量的显著性检验都是基于t检验。

t检验的原假设是自变量的系数等于零,即H0:βi=0,备择假设是自变量的系数不等于零,即H1:βi≠0。

t统计量的计算公式为:t = (βi - bi) / (SE(βi))其中,βi表示模型中第i个自变量的系数估计值,bi表示模型中第i个自变量的理论值(一般为零),SE(βi)表示第i个自变量的系数的标准误。

根据t统计量的分布特性,可以计算得出对应自由度和置信水平的临界值,若计算出来的t统计量的绝对值大于临界值,则可以拒绝原假设,认为该自变量是显著的,即对因变量有显著影响。

多元线性回归模型的参数估计

多元线性回归模型的参数估计
加权最小二乘法(WLS)
在最小二乘法基础上,对不同的观测值赋予不同的权重,以调整其 对回归参数估计的影响。
广义最小二乘法(GLS)
考虑自变量之间的相关性,通过转换自变量和因变量来消除自变量 之间的多重共线性影响。
03
参数估计的方法
普通最小二乘法
最小二乘法是一种常用的参数估计方法,通过最小化误差 平方和来估计参数。在多元线性回归模型中,普通最小二 乘法通过求解线性方程组来得到参数的估计值。
模型选择
选择多元线性回归模型作 为预测模型,以商品价格 和用户评价作为自变量, 销量作为因变量。
参数估计
使用最小二乘法进行参数 估计,通过最小化误差平 方和来求解回归系数。
模型检验
对模型进行假设检验,确 保满足线性回归的前提假 设。
结果解释与模型评估
结果解释
根据回归系数的大小和符号,解释各自变量对因变量 的影响程度和方向。
05
参数估计的实例分析
数据来源与预处理
数据来源
数据来源于某大型电商平台的销售数据,包括商 品价格、销量、用户评价等。
数据清洗
对原始数据进行清洗,去除异常值、缺失值和重 复值,确保数据质量。
数据转换
对连续变量进行离散化处理,对分类变量进行独 热编码,以便进行回归分析。
模型建立与参数估计
01
02
03
THANKS
感谢观看
04
参数估计的步骤
确定模型形式
确定自变量和因变

首先需要确定回归模型中的自变 量和因变量,通常因变量是研究 的响应变量,自变量是对响应变 量有影响的预测变量。
确定模型的形式
根据自变量和因变量的关系,选 择合适的回归模型形式,如线性 回归、多项式回归等。

多元线性回归分析的参数估计方法

多元线性回归分析的参数估计方法

多元线性回归分析的参数估计方法多元线性回归是一种常用的数据分析方法,用于探究自变量与因变量之间的关系。

在多元线性回归中,参数估计方法有多种,包括最小二乘估计、最大似然估计和贝叶斯估计等。

本文将重点讨论多元线性回归中的参数估计方法。

在多元线性回归中,最常用的参数估计方法是最小二乘估计(Ordinary Least Squares,OLS)。

最小二乘估计是一种求解最优参数的方法,通过最小化残差平方和来估计参数的取值。

具体而言,对于给定的自变量和因变量数据,最小二乘估计方法试图找到一组参数,使得预测值与观测值之间的残差平方和最小。

这样的估计方法具有几何和统计意义,可以用来描述变量之间的线性关系。

最小二乘估计方法有一系列优良的性质,比如无偏性、一致性和有效性。

其中,无偏性是指估计值的期望等于真实参数的值,即估计值不会出现系统性的偏差。

一致性是指当样本容量趋近无穷时,估计值趋近于真实参数的值。

有效性是指最小二乘估计具有最小的方差,即估计值的波动最小。

这些性质使得最小二乘估计成为了多元线性回归中最常用的参数估计方法。

然而,最小二乘估计方法在面对一些特殊情况时可能会出现问题。

比如,当自变量之间存在多重共线性时,最小二乘估计的解不存在或不唯一。

多重共线性是指自变量之间存在较高的相关性,导致在估计回归系数时出现不稳定或不准确的情况。

为了解决多重共线性问题,可以采用一些技术手段,如主成分回归和岭回归等。

另外一个常用的参数估计方法是最大似然估计(Maximum Likelihood Estimation,MLE)。

最大似然估计方法试图找到一组参数,使得给定样本观测值的条件下,观测到这些值的概率最大。

具体而言,最大似然估计方法通过构建似然函数,并对似然函数求导,找到能够最大化似然函数的参数取值。

最大似然估计方法在一定条件下具有良好的性质,比如一致性和渐近正态分布。

但是,在实际应用中,最大似然估计方法可能存在计算复杂度高、估计值不唯一等问题。

3多元线性回归模型参数估计

3多元线性回归模型参数估计

3多元线性回归模型参数估计多元线性回归是一种回归分析方法,用于建立多个自变量和一个因变量之间的关系模型。

多元线性回归模型可以表示为:Y=β0+β1X1+β2X2+…+βnXn+ε其中,Y表示因变量,X1,X2,…,Xn表示自变量,β0,β1,β2,…,βn表示模型参数,ε表示误差项。

多元线性回归模型的目标是估计出模型参数β0,β1,β2,…,βn,使得实际观测值与模型预测值之间的误差最小化。

参数估计的方法有很多,下面介绍两种常用的方法:最小二乘法和梯度下降法。

1. 最小二乘法(Ordinary Least Squares, OLS):最小二乘法是最常用的多元线性回归参数估计方法。

它的基本思想是找到一组参数估计值,使得模型预测值与实际观测值之间的残差平方和最小化。

首先,我们定义残差为每个观测值的实际值与模型预测值之间的差异:εi = Yi - (β0 + β1X1i + β2X2i + … + βnXni)其中,εi表示第i个观测值的残差,Yi表示第i个观测值的实际值,X1i, X2i, …, Xni表示第i个观测值的自变量,β0, β1, β2, …,βn表示参数估计值。

然后,我们定义残差平方和为所有观测值的残差平方的总和:RSS = ∑(Yi - (β0 + β1X1i + β2X2i + … + βnXni))^2我们的目标是找到一组参数估计值β0,β1,β2,…,βn,使得残差平方和最小化。

最小二乘法通过数学推导和求导等方法,可以得到参数估计值的解析解。

2. 梯度下降法(Gradient Descent):梯度下降法是一种迭代优化算法,可以用于估计多元线性回归模型的参数。

它的基本思想是通过迭代调整参数的值,使得目标函数逐渐收敛到最小值。

首先,我们定义目标函数为残差平方和:J(β) = 1/2m∑(Yi - (β0 + β1X1i + β2X2i + … + βnXni))^2其中,m表示样本数量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
称为原总体回归方程的一组矩条件,表明了原总 体回归方程所具有的内在特征。
1 X(Y Xβˆ ) 0 n
由此得到正规方程组
X' Xβˆ X' Y
解此正规方程组即得参数的MM估计量。 易知MM估计量与OLS、ML估计量等价。 19
矩方法是工具变量方法(Instrumental Variables,IV) 和广义矩估计方法(Generalized Moment Method, GMM)的基础

y1
y
y2 yn
x11
x
x12 x1n
x21 x22 x2n
xk1
xk2
xkn
ˆ1
βˆ
ˆ2
ˆk
注意:此 处的 不 包括0
则离差形式可用矩阵形式为
y xβˆ e
在离差形式下,参数的最小二乘估计结果为
why?
ˆ0 Y ˆ1 X1 ˆk X k
最小。
2
根据微分运算,参数估计值应该是下列方程组的解
ˆ
0
Q
0
ˆ1
Q
0
ˆ
2
Q
0
ˆ k
Q
0
n
n
其中 Q ei2 (Yi Yˆi )2
i 1
i 1
n
2
(Yi (ˆ0 ˆ1 X 1i ˆ2 X 2i ˆk X ki ))
i 1
3
ˆ
0
Q
0
化简
ˆ1
Q
0
ˆ
2
Q
0
ˆ k
Why?
2. 估计的Y
均值等于实测的Y均值
Why?
3. 残差 e的i 均值为零
即:
ei 0 或 e 0 Why?
13
4. 残差 e和i Xi值不相关

X jiei 0
Why?
5. 残差 e和i 预测的Yi值不相关,

Yµiei 0
Why?
14
*二、最大似然估计
对于多元线性回归模型
Yi 0 1 X 1i 2 X 2i k X ki i
对于正规方程组
XY XXβˆ
于是 或
XXβˆ Xe XXβˆ
Xe 0
(*)
ei 0
(**)
X ji ei 0
i
(*)或(**)是多元线性回归模型正规方程组的另一 种写法
8
参数的普通最小二乘估计的离差形式
记 和 X
j
1 n
n i 1
X
ji
xji xji X j 和
Y 1
n
n 1
易知
Yi ~ N (Xiβ , 2 )
Y的随机抽取的n组样本观测值的联合概率
即为变量Y的似然函数
15
对数似然函数为
对对数或然函数求极大值,也就是对 求极小值。
寻找一组参数估计值 ,使得残差平方和最小。
因此,参数的最大或然估计与参数的普通最小二乘估 计相同,为:
16
2的最大似然估计
已知: 则有:
此估计量不同于OLS的估计联,不是无偏估计量
• 在矩方法中关键是利用了
1 Y1
X 1n Y2
X kn
Yn

(XX)βˆ XY
记住
由于X’X满秩,故有 βˆ (XX)1 XY
如何用矩阵证明 ?
5
将上述过程用矩阵表示如下:(见教材P61)
即求解方程组:
βˆ (Y Xβˆ )(Y Xβˆ ) 0
得到:
βˆ (YY βˆ XY YXβˆ βˆ XXβˆ ) 0 βˆ (YY 2YXβˆ βˆ XXβˆ ) 0 XY XXβˆ 0
XY XXβˆ
于是: βˆ (XX)1 XY
记住
6
例3.2.1:在例2.1.1的家庭收入-消费支出例中,
(X'X)
1 X1
1 X2
1
1 Xn
11
X 1
X 2
Xn
n Xi
Xi
X
2 i
10 21500
21500 53650000
XY
1 X1
可求得
1 X2
Y1
1 X n
Q
0
((ˆˆ00(ˆ0ˆˆ11XX1ˆ1i1i X1ˆiˆ22i XXˆ222ii
X 2i ˆk ˆk X ki ˆk X ki
X ki) ) X 1i ) X 2i
Yi Yi X 1i Yi X 2i
(ˆ0 ˆ1 X 1i ˆ2 X 2i ˆk X ki ) X ki Yi X ki
17
*三、矩估计(Moment Method, MM)
OLS估计是通过得到一个关于参数估计值的正 规方程组
(XX)βˆ XY
并对它进行求解而完成的。
该正规方程组 可以从另外一种思路来导出:
求期望 :
Y Xβμ
XY XXβ Xμ
X(Y Xβ) Xμ
E(X(Y Xβ) 0
18
E(X(Y Xβ) 0
Y2 Yn
ቤተ መጻሕፍቲ ባይዱ
Yi X iYi
15674 39468400
(XX) 1
0.7226 0.0003
0.0003 1.35 E 07
于是
βˆ
ˆ1 ˆ 2
0.7226 0.0003
0.0003 1.35E 07
15674 39648400
103 .172 0.7770
7
正规方程组 的另一种写法
(*)
方程组(*)称为正规方程组(normal equations)。
4
正规方程组的矩阵形式
n
X 1i
X 1i
X
2 1i
X ki
X ki X 1i
X ki
X 1i X
X
2 ki
ki
ˆ 0 ˆ1
ˆ k
1 X 11 X k1
1 X 12 Xk2
10
2的最小二乘估计
随机误差项的方差的估计量为
ˆ 2
e
2 i
e e
n k 1 n k 1
其中,n- k+1是 ei2的自由度。
注意:该估计量为无偏估计量
why?
11
估计参数的方差-协方差矩阵(补充)
的方差-协方差矩阵如下:
Why?
Why?
12
多变量OLS回归线的性质
1. OLS回归线通过Y和X1, X2, …, Xk的样本均值点
Yi
yi Yi Y
为Xj和Y的样本均值 为Xji和Yi对均值的离差
可得样本回归函数的离差形式为:
yi ˆ1x1i ˆ2 x2i ˆk xki ei
i=1,2…n
如何得到?
9
样本回归函数的离差形式的矩阵表示
离差形式为: yi ˆ1x1i ˆ2 x2i ˆk xki ei i=1,2…n
§3.2 多元线性回归模型的估计
一、普通最小二乘估计 *二、最大或然估计 *三、矩估计 四、参数估计量的性质 五、样本容量问题 六、估计实例
1
参数的普通最小二乘估计(OLS)
普通最小二乘法给出的判断标准是:观测值与回 归函数值二者之差的平方和最小。
对于随机抽取的n组观测值 (Yi , X ji ), i 1,2, , n, j 0,1,2, k 有:
相关文档
最新文档