半导体材料研究的新进展
新型有机半导体材料的研究与应用

新型有机半导体材料的研究与应用随着科技的不断发展,新型有机半导体材料正在成为材料科学领域的热门研究课题之一。
这些材料具有许多独特的特性和潜在的应用前景,引起了学术界和工业界的广泛关注。
本文将介绍新型有机半导体材料的研究进展以及它们在各个领域的应用。
一、新型有机半导体材料的定义和分类新型有机半导体材料是指以含有碳元素为主要构成成分的有机化合物。
根据其电子结构和导电性质的不同,可以将其分为小分子有机半导体和聚合物有机半导体两类。
1. 小分子有机半导体小分子有机半导体是由一系列分子组成的单晶薄膜。
它们具有较高的载流子迁移率和较好的空间有序性,因此在有机薄膜晶体管、有机发光二极管等器件中具有广泛应用。
2. 聚合物有机半导体聚合物有机半导体是由大量重复单位组成的高分子材料。
相较于小分子有机半导体,聚合物有机半导体具有更高的柔韧性和可加工性,适用于柔性显示器、太阳能电池和传感器等领域。
二、新型有机半导体材料的研究进展随着对新型有机半导体材料的深入研究,人们不断探索和开发具有优异性能的新材料。
1. 共轭聚合物共轭聚合物是一种优秀的聚合物有机半导体材料。
它们通过在分子链上引入具有交叉共轭结构的芳环单元,提高了载流子的迁移率和光电转换效率。
目前,许多基于共轭聚合物的器件已经实现了高效率和长寿命。
2. 有机小分子有机小分子是小分子有机半导体材料中的关键对象。
通过精确控制分子结构和晶体形态,可以提高它们的载流子迁移率和发光效率。
近年来,利用有机小分子材料构建的高性能晶体管和发光二极管等器件已经取得了很大的进展。
三、新型有机半导体材料在各领域的应用新型有机半导体材料的独特性能使其在各个领域具有广阔的应用前景。
1. 光电子器件新型有机半导体材料在光电子器件领域具有巨大潜力。
以有机薄膜晶体管为例,其可实现低成本、柔性和大面积制备,适用于显示器、智能卡等可穿戴设备。
2. 光伏领域新型有机半导体材料在太阳能电池领域表现出良好的应用前景。
新型半导体材料研究进展

新型半导体材料研究进展第一章概述半导体是一种电子材料,具有介于导体与绝缘体之间的电导率。
在现代电子技术领域,半导体材料的研究和应用已经极为广泛,对于提高电子设备的性能和减小尺寸具有重要作用。
近年来,新型半导体材料的研究成为了研究热点,并促进了半导体技术的发展。
本文将探讨新型半导体材料在实际应用中的研究进展。
第二章碳基半导体材料碳基半导体材料是近年来半导体研究的新兴领域之一。
其中,全氟芴分子(C10F18)是一种在电子应用中被广泛研究的碳基半导体材料。
由于其分子结构中含有氟基团,可改变分子的电性和空间构型,从而调节C10F18分子的电学性质。
研究表明,C10F18能够在纳米电子器件中作为高效的电子传输层材料,可用于提高电子设备的性能和寿命。
另外,石墨烯是一种由碳构成的新型材料,具有极高的导电性和热导性,因此在纳米电子器件中有着广泛的应用前景。
研究表明,石墨烯材料的特殊结构和性质能够有效地提高电子设备的储能和传输能力。
第三章氮化物半导体材料氮化物半导体材料是一种具有优异性能的半导体材料,由于其在目前的半导体照明领域中具有重要应用,因此备受关注。
其中,氮化铟/镓(InGaN)是一种氮化物半导体材料,具有广泛的应用前景。
利用InGaN材料可以制备出高亮度、高效率的发光二极管(LED),使得LED在照明领域中得到广泛应用。
此外,利用氮化物半导体材料也可以制备出高效的太阳能电池,提高太阳能电池的转换效率。
第四章磁性半导体材料磁性半导体材料是一种同时具备半导体和磁性的特性材料。
这类材料的磁性质可通过施加外磁场调节,使其同时具有电性和磁性控制功能。
研究表明,磁性半导体材料被广泛应用于磁存储、磁重排和自旋电子学器件等领域。
其中,锰铁热化合物(MnFe)是一种新型磁性半导体材料,具有优异的磁电效应和稳定性,是一种新兴的自旋电子学器件材料。
第五章未来展望综合以上,新型半导体材料的研究在半导体技术发展中具有重要意义。
在碳基半导体材料中,石墨烯的研究将为电子设备的实际应用带来新的进展;氮化物半导体材料的研究将进一步促进LED等照明设备的应用;而磁性半导体材料的研究将为新型的自旋电子学器件提供新的材料选择。
半导体技术的进展及应用展望

半导体技术的进展及应用展望近年来,随着信息技术的高速发展,半导体技术也在迅猛发展。
半导体是一种具有电导性的材料,可以对电流的传递进行控制,因此在电子器件的制造、集成电路、光电子器件等领域中得到了广泛应用。
本文将从半导体技术的进展与应用,展望未来半导体技术的发展方向。
一、半导体技术进展半导体技术从上世纪50年代开始发展至今,经历了数十年的发展,技术水平不断提高。
其中,材料和工艺技术的发展是半导体技术进步的重要推动力。
目前,半导体技术的研究重点主要集中在以下几个方面:1.集成电路技术的高度集成化集成电路技术是半导体技术最为重要的应用之一。
近年来,随着芯片制造工艺的不断改进,集成度已经达到百亿级别。
这些高度集成电路的问世,使得计算机的性能和存储能力得到了极大的提升,同时也为人类带来了许多便利。
2.功耗与散热的控制技术随着芯片集成度的提高,其功耗与散热问题也越加突出。
因此,半导体技术的发展重点逐渐转向了功耗与散热的控制技术。
近年来,半导体行业先后推出了一系列低功耗芯片和高效散热技术,极大地提升了服务器、手机等设备的使用寿命。
3.新型半导体原材料研究新型半导体原材料是半导体技术的一大研究热点,也是未来半导体技术的发展趋势之一。
以石墨烯、碳化硅等为代表的新材料不仅具有较高的电导率和压电性能,而且可在高温、高压等复杂环境下稳定运行,因此具有广泛的应用前景。
4.量子计算技术的突破量子计算技术是近年来半导体技术的一个重要方向。
量子计算机以量子比特为基础,比传统的二进制数码处理速度更快并且能够同时处理多种数据。
尽管目前还处于实验阶段,量子计算机的问世预示了未来信息技术的一个全新的时代已经开始。
二、半导体技术应用半导体技术已经成为了电子、信息、通讯等众多领域的支柱技术。
下面列举一些典型的应用:1.通讯设备半导体技术在通讯领域的应用非常广泛。
手机、GPS、通信卫星、交换机、传感器等都离不开半导体技术的支持。
2.计算机设备CPU、内存、显卡等计算机硬件都是靠半导体技术制成的。
新型半导体材料的研究进展及其应用

新型半导体材料的研究进展及其应用随着科学技术的不断发展,新型半导体材料的研究和应用也越来越受到关注。
半导体材料是电子技术和计算机技术的基础,具有广泛的应用前景。
本文将就新型半导体材料的研究进展及其应用进行探讨。
一、新型半导体材料的研究进展1、碳化硅材料碳化硅是一种优异的半导体材料,它的电学性质和热学性质都比硅好。
碳化硅材料既能够承受高温、高压环境,也能够实现高功率、高速、高频应用。
目前已有一些碳化硅材料被广泛应用在电源变换器、汽车电源、航空器电子设备等领域。
2、氮化硅材料氮化硅是一种新型的宽能隙半导体材料,具有优越的物理和化学性质。
它的电子迁移率高,能够实现高功率、高速、高频率应用,特别适用于射频电子设备的制造。
目前,氮化硅材料被广泛应用于5G通讯、高亮度LED、蓝色激光器等领域。
3、氧化锌材料氧化锌是一种新型的半导体材料,具有良好的光学、电学、磁学等性质。
它的能隙较宽,透明性好,可应用于薄膜电晶体管、太阳能电池等领域。
此外,氧化锌具有优异的生物相容性,可应用于生物医学器械等领域。
二、新型半导体材料的应用1、汽车电子随着汽车产业的不断发展,汽车电子产品也得到了极大的推广和应用。
新型半导体材料的应用为汽车电子开发提供了新的解决方案。
现在的汽车电子产品采用了许多半导体材料,如碳化硅材料的应用可以提高电源变换器的效率,氮化硅材料的应用可以提高电力转换效率,氧化锌材料的应用可以提高太阳能电池的效率。
2、LED照明LED照明是一种新型的环保、节能的照明技术,其应用范围越来越广泛。
新型半导体材料的应用可以提高LED照明产品的效率和品质。
如氮化硅材料的应用可以提高LED芯片的发光效率和亮度,碳化硅材料的应用可以提高LED器件的寿命和稳定性。
3、5G通讯5G通讯是一项颠覆性的技术革新,它将会给互联网、智能制造、智慧城市等领域带来巨大的变化。
新型半导体材料的应用对5G通讯的发展也有着重要的促进作用。
如氮化硅材料的应用可以提高5G收发信机的效率和速度,碳化硅材料的应用可以提高5G 通讯的频率和功率。
新型有机半导体材料的研究与发展

新型有机半导体材料的研究与发展一、介绍近年来,新型有机半导体材料在电子学领域中崭露头角。
这些材料拥有许多优点,如低成本、低功耗和柔性等,使得它们逐渐成为大型显示屏(如电子阅读器和智能手机),有机发光二极管(OLED)等领域的有前途的替代品。
本文将介绍新型有机半导体材料的研究与发展,总结其特点及未来发展方向。
二、有机半导体材料的特点有机半导体材料是指使用分子或聚合物作为半导体材料来制造电子设备。
相对于传统的无机材料,有机半导体材料有以下几个特点:1. 低成本与无机材料相比,有机半导体材料的制造成本较低。
合成途径简单,高纯度的有机半导体材料制备成本相对较低。
2. 低功耗有机半导体材料和器件的耗电量相比于无机半导体技术更低。
从某种意义上说,这导致了更省电、更具可持续性的电子设备的出现。
3. 柔性有机半导体材料可以被制成柔性塑料,这使得它们可以用于可折叠的电子设备、穿戴设备等。
相对于无机半导体材料而言,有机半导体材料更加适应多变的形状和曲线。
4. 易于制造有机半导体材料的制造可以通过柔性印刷和解决技术实现,相对于无机半导体材料制造周期更短。
三、种类和研究进展有机半导体材料主要可分为三类:薄膜半导体材料、高分子半导体材料和共轭聚合物。
1. 薄膜半导体材料薄膜半导体材料以共轭分子衍生物为基础,用于制备有机薄膜晶体管(OTFT)和OLED。
其中,有机薄膜晶体管的性能包括电导率、移动率和自然频率等,目前已经得到了快速发展。
而用于制造OLED的薄膜半导体材料则可以实现亮度更高和更长的寿命。
2. 高分子半导体材料高分子半导体材料是指以多个单体重复聚合成的高分子材料。
高分子半导体材料的导电性能非常好,而且相对应的费米能级处于带隙范围内,可以用于OLED器件的制备。
3. 共轭聚合物共轭聚合物具有分子链的π电荷共轭,电荷的移动速度非常快。
这使得共轭聚合物优于其他有机半导体材料,以用于太阳能电池,也可以用于OLED和有机场效应晶体管等这些电子设备的制造。
半导体材料研究的新进展

半导体二极管和三极管
二. N型半导体和P型半导体
1. 本征半导体与掺杂半导体
在常温下,本征半导体的两种载流子数量还是极少 的,其导电能力相当低。 如果在半导体晶体中掺入微量杂质元素,将得到掺 杂半导体,而掺杂半导体的导电能力将大大提高。
由于掺入杂质元素的不同,掺杂半导体可分为两大 类——N型半导体和 P型半导体。
半导体二极管和三极管
• 肖特基缺陷和弗仑克尔缺陷统称点缺陷。 • 虽然这两种点缺陷同时存在,但由于在Si、Ge中形成间隙
原子一般需要较大的能量,所以肖特基缺陷存在的可能性
远比弗仑克尔缺陷大,因此Si、Ge中主要的点缺陷是空位
(a) 弗仑克尔缺陷 (b) 肖特基缺陷 图1.11 点缺陷
半导体二极管和三极管
价电子受到激发,形成自 由电子并留下空穴。 自由电子和空穴同时产生 半导体中的自由电子和空 穴都能参与导电——半导 体具有两种载流子。
价电子
硅原子
载流子的产生与复合:
共价键
半导体二极管和三极管
• 本征半导体中的自由电子和空穴总是成对出现, 同时又不断进行复合。在一定温度下,载流子 的产生与复合会达到动态平衡,即载流子浓度 与温度有关。温度愈高,载流子数目就愈多, 导电性能就愈好——温度对半导体器件的性能 影响很大。 • 半导体中的价电子还会受到光照而激发形成自 由电子并留下空穴。光强愈大,光子就愈多, 产生的载流子亦愈多,半导体导电能力增强。 故半导体器件对光照很敏感。 • 杂质原子对导电性能的影响将在下面介绍。
一晶面发生移动,如图1.12(a)所示。这种相对移动称为滑移, 在其上产生滑移的晶面称为滑移面,滑移的方向称为滑移向。
(a) (b) 图1.12 应力作用下晶体沿某一晶面的滑移
半导体材料研究的新进展

半导体材料研究的新进展近年来,半导体材料的研究取得了许多新的进展。
这些进展涵盖了材料的制备方法、性能调控以及应用领域的拓展等多个方面。
在本文中,我们将介绍一些半导体材料研究的新进展。
首先,研究人员在半导体材料的制备方法方面取得了重要突破。
传统的半导体材料制备方法包括溶液法、气相沉积法和物理蒸镀法等,但这些方法通常具有成本高、工艺复杂等缺点。
然而,随着纳米技术的发展,一些新的制备方法被提出,如溶胶-凝胶法和电化学法等。
这些新的制备方法可以实现高效、低成本的制备,并且可以控制材料的尺寸和形状,从而提高材料的性能和稳定性。
其次,研究人员在半导体材料的性能调控方面取得了重要进展。
随着科技的发展,人们发现了一些新的半导体材料,如二维材料、量子点和有机半导体等。
这些材料具有独特的电子结构和光学性质,可以用于制备高性能的电子器件。
同时,研究人员还通过改变半导体材料的组分和结构,调控了材料的导电性、光电性以及热性能等,从而实现了半导体材料性能的优化。
另外,半导体材料的应用领域也在不断拓展。
传统的半导体材料主要应用于电子器件领域,如晶体管和集成电路等。
然而,近年来,随着人们对新材料和新能源的追求,半导体材料在光电子、能源存储和传感器等领域也得到了广泛应用。
例如,一些新的半导体材料被用于制备高效的光伏材料,用于太阳能电池的制备。
此外,半导体材料还被应用于制备高性能的光电器件、柔性电子器件和化学传感器等。
总结起来,半导体材料研究的新进展包括制备方法、性能调控和应用领域的拓展等多个方面。
这些进展使得半导体材料具有了更广阔的应用前景,为科技的发展带来了潜在的机会和挑战。
随着对半导体材料的深入研究,相信在不久的将来,我们将能够看到更多创新的半导体材料和应用领域的突破。
半导体材料的新进展及应用前景

半导体材料的新进展及应用前景近年来,随着科技不断发展,半导体材料作为一种具有很高科技含量的材料,在各个领域中的应用也越来越广泛。
在这个背景下,半导体材料的研究和开发也不断得到了推动和进展,促使半导体材料在未来的应用前景越来越广阔。
一、新型半导体材料的研究进展1、碳化硅(SiC)碳化硅是一种具有广泛应用前景的材料,它不仅具有高温性能、耐化学腐蚀、强度高等优点,而且在高速电子器件和光电器件、半导体照明、太阳能电池等领域具有重要应用前景。
当前,世界各地先后建立了大量碳化硅材料的研究中心,不断推动碳化硅的研究进程。
2、氮化硅(SiN)氮化硅是一种优良的透明导电材料,在离子注入、光学多层膜、太阳能电池、光电子器件等领域具有广泛的应用前景。
氮化硅材料具有良好的晶体结构和稳定性,可以提高器件的效率和可靠性,广泛应用于机械零件、射频电子设备、光电器件等各个领域。
3、氧化铈(CeO2)氧化铈是一种广泛应用于半导体、光电、催化、能源等领域的材料,它具有高氧化还原性、稳定性等特点。
在能量转换方面,氧化铈可以用于固态电解质的开发以及太阳能电池、燃料电池、电液化器等领域。
此外,氧化铈也在光电子领域具有广泛应用,如氧化铈薄膜可以用于透明导电材料、光学多层膜等方面。
二、新型半导体材料的应用前景1、半导体照明半导体照明是应用半导体材料制成的LED照明,它具有高效率、长寿命、高品质、低成本等特点。
LED照明可以广泛应用于商业照明、室内照明、路灯、车灯等领域,具有大大降低能源消耗、减少环境污染、提高生活质量等诸多优点。
2、硅光电子学硅光电子学是应用硅片在通讯、计算机、储存、飞行控制、机器视觉等领域中的应用。
硅光子学可以提高器件的速度、容量和可靠性,具有广泛的应用前景。
3、太阳能电池太阳能电池是应用半导体材料制成的电池,它可以将太阳能转化为电能,具有清洁、可持续、稳定的优点。
太阳能电池可以广泛应用于航空航天、农牧等领域,为现代工业和生活创造出更广阔的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体材料研究的新进展作者简介王占国,1938年生,半导体材料物理学家,中科学院院士。
现任中科院半导体所研究员、半导体材料科学重点实验室学委会主任和多个国际会议顾问委员会委员。
主要从事半导体材料和材料物理研究,在半导体深能级物理和光谱物理研究,半导体低维结构生长、性质和量子器件研制等方面,取得多项成果。
先后获国家自然科学二等奖、国家科技进步三等奖,中科院自然科学一等奖和科技进步一、二和三等奖及何梁何利科技进步奖等多项,在国内外学术刊物和国际会议发表论文180多篇,被引用数百次。
摘要本文重点对半导体硅材料,GaAs和InP单晶材料,半导体超晶格、量子阱材料,一维量子线、零维量子点半导体微结构材料,宽带隙半导体材料,光子晶体材料,量子比特构建与材料等目前达到的水平和器件应用概况及其发展趋势作了概述。
最后,提出了发展我国半导体材料的建议。
关键词半导体材料量子线量子点材料光子晶体1半导体材料的战略地位上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。
超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。
纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。
2几种主要半导体材料的发展现状与趋势2.1硅材料从提高硅集成电路成品率,降低成本看,增大直拉硅(Z-Si)单晶的直径和减小微缺陷的密度仍是今后Z-Si发展的总趋势。
目前直径为8英寸(200)的Si单晶已实现大规模工业生产,基于直径为12英寸(300)硅片的集成电路(I’s)技术正处在由实验室向工业生产转变中。
目前300,0.18μ工艺的硅ULSI生产线已经投入生产,300,0.13μ工艺生产线也将在2003年完成评估。
18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。
从进一步提高硅I’S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。
另外,SI材料,包括智能剥离(Sartut)和SIX材料等也发展很快。
目前,直径8英寸的硅外延片和SI材料已研制成功,更大尺寸的片材也在开发中。
理论分析指出30n左右将是硅S集成电路线宽的“极限”尺寸。
这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、Si2自身性质的限制。
尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代Si2),低K介电互连材料,用u代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。
为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。
2.2GaAs和InP单晶材料GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。
目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。
美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。
InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。
#p#分页标题#e#GaAs和InP单晶的发展趋势是:(1).增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。
(2).提高材料的电学和光学微区均匀性。
(3).降低单晶的缺陷密度,特别是位错。
(4).GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。
2.3半导体超晶格、量子阱材料半导体超薄层微结构材料是基于先进生长技术(BE,VD)的新一代人工构造材料。
它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。
(1)Ⅲ-V族超晶格、量子阱材料。
GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。
高电子迁移率晶体管(HET),赝配高电子迁移率晶体管(P-HET)器件最好水平已达fax=600GHz,输出功率58,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fax也已高达500GHz,HET逻辑电路研制也发展很快。
基于上述材料体系的光通信用1.3μ和1.5μ的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。
目前,研制高质量的1.5μ分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40k的实验。
另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。
虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μ)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。
采用多有源区量子级联耦合是解决此难题的有效途径之一。
我国早在1999年,就研制成功980nInGaAs带间量子级联激光器,输出功率达5以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。
最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。
为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。
自从1994年InGaAs/InAIAs/InP量子级联激光器(QLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。
2001年瑞士Neuhatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μ的QLs的工作温度高达312K,连续输出功率3。
量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μ),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。
中科院上海微系统和信息技术研究所于1999年研制成功120K5μ和250K8μ的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μ室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。
目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的BE和0VD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。
英国卡迪夫的VD中心,法国的PigigaBE基地,美国的QED公司,trla公司,日本的富士通,NTT,索尼等都有这种外延材料出售。
生产型BE和VD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。
#p#分页标题#e#(2)硅基应变异质结构材料。
硅基光、电器件集成一直是人们所追求的目标。
但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。
虽经多年研究,但进展缓慢。
人们目前正致力于探索硅基纳米材料(纳米Si/Si2),硅基SiGe体系的Si1-yy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/Si量子点材料,GaN/BP/Si以及GaN/Si材料。
最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。
另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。
Si/GeSiDFET和SFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。
尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。
最近,tlra等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。
2.4一维量子线、零维量子点半导体微结构材料基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基矗它的发展与应用,极有可能触发新的技术革命。
目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。
俄罗斯约飞技术物理所BE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的BE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμ左右,单管室温连续输出功率高达3.6~4。