配电网继电保护
城市电网中10kV配电网继电保护的探析

城市电网中10kV配电网继电保护的探析摘要:城市电网10kv配电系统是电力系统发电、变电、输电、配电和用电等五个环节的一个重要组成部分。
它能否安全、稳定、可靠地运行,不但直接关系到党政机关、工矿企业、居民生活用电的畅通,而且涉及到电力系统能否正常的运行。
本文强调了继电保护的重要性,分析了电力系统对继电保护的要求及继电保护常见故障处理措施。
关键词:10kv配电网;继电保护;故障处理;重要性1 继电保护及其重要性所谓继电保护是指当电力系统中的电力元件或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这些事件发展的一种自动化措施和设备。
继电保护装置就是实现这种自动化措施的成套设备的通称,且继电保护装置具有灵敏性、可靠性、快速性、选择性等特点。
10kv 配电网作为城市电网的重要组成部分,其继电保护的正常运行对于城市供电具有十分重要的作用。
首先,继电保护是电力系统安全运行的重要保障。
当电力系统元件发生故障时,继电保护装置可以迅速准确地给脱离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响,并有效保持电力系统的暂态稳定性。
其次,继电保护是电力系统正常运行的保障。
继电保护装置能够对电力系统的运行进行监控,当电力系统本身发生故障时,继电保护装置会对电力系统的非正常运行做出提示,并根据不正常工作情况和设备运行维护条件的不同发出不同的提示信号,使值班人员及时发现并处理故障。
在无值班人员的情况下,继电保护装置会进行自动调整,将那些继续运行会引起事故的电气设备予以切除,从而保证电力系统的正常运行。
210kv继电保护的种类由于变压器在供电系统中的重要作用,因此在10kv配电网的继电保护中,对变压器的继电保护是不可忽视的。
2. 1 瓦斯保护瓦斯保护是变压器不可或缺的安全保护,当变压器局部发生击穿或短路故障时,常常是破坏绝缘或变压器油产生气体。
10kV配电网继电保护常见故障及其应对措施

10kV配电网继电保护常见故障及其应对措施摘要:随着我国社会经济的飞速发展,各行业对电力资源的需求量越来越多,10KV配网线路供电对人们的生产生活具有至关重要的作用。
为此,本文主要就10kV配电网继电保护与继电保护常见故障进行了相关的论述,以供参考。
关键词:10kV配电网;继电保护;故障;措施0引言配电网是电力系统中不可缺少的重要组成部分,是连接电网与用户的纽带,直接影响用户供电可靠性,因此配电网的安全稳定运行有着至关重要的作用。
配电网运行环境复杂,为了提高配电网运行的可靠性,配置了大量的继电保护装置,继电保护装置能够在发生事故时及时发出报警或自动切除故障,保障电网安全稳定运行。
1 10kV配电网中继电保护的有效配置10kV配电系统运行主要有三种状态,也就是正常运行(各种设备以及输配电线路、指示、信号仪表正常运行),异常运行(电力系统正常运行被破坏,但未变成故障运行状态)以及发生故障(设备线路发生故障危及到电力系统本身,甚至会造成事态扩大),按照10kV电力系统和供电系统设计规范要求,就必须要在其的供电线路、变压器、母线等相关部位布设保护设施,如下:1.1 10kV线路过电流保护一般10kV电路上最好要设置电流速断保护,她是略带时限或无时限动作的电流保护,主要有瞬时电流速断和略带时限电流速度,能够在最短时间内迅速切断短路故障,从而降低故障持续时间,有效控制事故蔓延,因此电流速断保护常常被用到配电网中重要变电所引出线路里,如果有选择性动作保护要求,就可以采取略带时限的电流保护装置。
1.2 10kV配电网中变压器的继电保护一般配电网供配电线路出现短路,其电流很高时,也可以采用熔断器保护,这种保护装置有一定条件。
如果在10kV配电网中,其变压器容量小于400kVA情况下,就可以采用高压熔断器保护装置,该装置能够几毫秒内切断电力,如果其变压器容量在400kVA-630kVA区域内,且其高压侧采用断路器的情况下,就要设置过电流保护装置或者过流保护时限大于0.5秒的电流速断保护。
配电网继电保护和自动装置配电网自动化实施细则

配电网继电保护和自动装置配电网自动化实施细则1.1 配电网继电保护和自动装置1.1.1 配电网应按GB50062《电力装置的继电保护和自动装置设计规范》、GB/T 14285《继电保护和安全自动装置技术规程》的要求配置继电保护。
1.1.2 10(20)千伏配电网的继电保护装置宜采用微机型保护装置,应考虑预留配合实施自动化的接口。
1.1.3 中压配电网应采用过流、速断保护,可选用重合闸装置;合环运行的配电网应增加纵差保护。
对于中性点经低电阻接地系统应增加零序电流保护。
1.1.4 保护信息的传输宜采用光纤通道。
对于线路电流差动保护的传输通道,往返均应采用同一信号通道传输。
1.1.5 非有效接地系统,保护装置宜采用三相保护模式,在配网中长期规划中指明的系统接地方式可能发生变化的保护装置配置,参考1.1.3条规定。
1.1.6 在中压低电阻接地方式中,考虑到零序电流保护整定值很难与熔断器的熔断曲线配合,因此当用户配电变压器容量在630千伏安及以上时,配电变压器应配置反映相间故障的电流保护和反映接地故障的零序保护;当客户配电变压器容量为500千伏安及以下,当采用熔丝保护时,熔丝熔断特性应满足200安电流下,熔断时间小于60毫秒。
否则应配置反映相间故障的电流保护和反映接地故障的零序保护。
1.2 配电网自动化1.2.1 系统构成配电网自动化系统是指对10(20)千伏及以下配电网进行监视、控制和管理的自动化系统,一般由主站、子站、远方终端设备、通道构成。
1.2.2 配电网自动化规划设计原则(1)配网自动化应以提高供电可靠性及配网运行管理水平为目标,配网自动化建设应遵循“统一规划、统一标准、统一建设”的原则,根据配电网的地区特点、负荷性质和重要性,选择适宜的配网自动化实现模式。
(2)配电网一次设备选型应性能先进、结构合理、质量可靠,并结合配电网自动化规划给二次设备留有可靠的接口。
通讯方式、自动化设备,以及电源选择与设置,应满足当故障或其它原因导致配电网设备停电时,各测控单元应可靠的上报信息和接受远方控制。
10KV配电网故障处理的继电保护探讨

10KV配电网故障处理的继电保护探讨摘要:本文结合笔者工作实践,讨论了10KV配电网故障处理的继电保护问题。
关键词:配电网继电保护1基于断路器的三段式电流保护目前。
10kV配网多为辐射性树状式供电。
这种供电方式一旦在某一点出现线路故障,如何在最短的时间内完成对故障区段的定位、隔离和恢复健全线路的供电,是摆在我们面前的一项迫切任务。
现以我局为例,所有10kv馈线均由35~110kV变电站的10kV母线送出,大部分馈线都属于直接向用户供电的终端线路(见图1的LI和L3),只有部分10kV馈线通过其他变电所10kV母线转供其他10kV终端线路,属非终端线路(见图1的L2)。
馈线保护装设在变电站内靠近母线的馈线断路器处,一般配置传统的三段式电流保护,即:瞬时电流速断保护、定时限电流速断保护和过电流保护。
其中,瞬时电流速断保护按照躲过线路末端故障产生的最大三相短路电流的方法整定,不能保护线路全长;定时限电流速断保护按照线路末端故障有灵敏度并与相邻线路的瞬时电流速断保护配合的方法整定,能够保护本线路全长;过电流保护按照躲过线路最大负荷电流并与相邻线路的过电流保护配合的方法整定,作相邻线路保护的远后备,能够保护相邻线路的全长。
除此之外,对非全电缆线路,配置三相一次重合闸,保证在馈线发生瞬时性故障时,快速恢复供电。
对于不存在与相邻线路配合问题的终端线路,为简化保护配置,一般采用瞬时电流速断保护加过电流保护组成的二段式保护,再配以三相一次重合闸(前加速)的保护方式,其中电流速断保护按照线路末端故障有灵敏度的方法整定,能够保护全线。
现有配电系统引入DG之后,原来的配电网络将不再是纯粹的单电源、辐射型供屯网络。
此时,若线路发生故障,配电网络中短路电流的大小、流向、分布以及重合闸的动作行为都会受到DG的影响,与DG引入之前有较大不同。
DG 对保护动作行为影响的主要表现如下。
(1)导致本线路保护的灵敏度降低及拒动当DG下游F1点故障时(图1),DG引入之前,故障点的短路电流只由系统提供。
配电网继电保护整定计算原则

配电网继电保护整定计算原则1.规范性引用文件1)GB/T14285-2006继电保护和安全自动装置技术规程2)DL/T584-20173kV~110kV电网继电保护装置运行整定规程3)Q/GDW766-201210kV~110(66)kV线路保护及辅助装置标准化设计规范4)Q/GDW767-201210kV~110(66)kV元件保护及辅助装置标准化5)Q/GDW442-2010国家电网继电保护整定计算技术规范235〜220kV变电站10kV出线开关整定原则2.1电流速断保护1)按躲过本线路末端最大三相短路电流整定,计算公式如下:I DZ1-K K Xl Dmax⑶式中:K K—可靠系数,取K K>1.3;取可靠系数大于1.3是在考虑各种误差的基础上进行的,一般可根据线路长度、装置误差等因素酌情考虑;I Dmax(3)—系统大方式下,本线路末端三相短路时流过保护的最大短路电流。
2)宜与上一级变压器低压侧限时速断保护配合,可靠系数不小于1.1。
3)对于保护范围伸入下级线路或设备的情况,为避免停电范围扩大,可增加短延时。
4)时间取0〜0.15s。
2.2限时速断电流保护1)按保线路末端故障有灵敏度整定,灵敏系数满足2.4要求。
2)按与下一级线路电流速断保护相配合,时间级差宜取0.3〜0.5s。
计算公式如下:I DZ2>K K XK fmax XI DZ1'式中:K K—可靠系数,取K K>I.I;K fmax—最大分支系数,其分支系数应考虑在下一级线路末端短路时,流过本线路保护的电流为最大的运行方式。
【DZ1'—下一级线电流速断保护电流定值。
3)灵敏度不满足要求时,按与下一级线路限时速断电流保护配合。
4)应与上一级变压器10kV侧限时速断电流保护配合,可靠系数不小于1.1。
若时间无法与上一级变压器10kV侧限时速断电流保护配合,可退出本段保护,只考虑投入电流速断保护。
10kV配电网继电保护及继电保护一般故障

10kV配电网继电保护及继电保护一般故障摘要:继电保护措施在配电网系统中的合理应用,可以促进配电网安全可靠运行,有利于系统预防和处理各种运行故障,缩小故障影响范围,减少事故损失。
它具有非常积极和非常积极的驱动作用。
10kv配电网作为电力系统的重要组成部分,其实际应用过程中隐藏着各种影响因素和故障。
有鉴于此,本文通过研究配电网继电保护的现状和存在的问题,探讨了提高继电保护质量的几种有效措施。
关键词:10Kv配电网;继电保护;常见故障引言在电力系统中,继电保护是其中一道重要防线,可有效避免系统内故障的产生与扩大,是电力系统运行中不可或缺的基础组成部分。
从某种角度看,电力系统运行是否正常主要取决于继电保护的正常与否。
但不同于其他类型配电网,10kv配电网无论是在覆盖范围还是设备类型方面均具有不等性,且天气条件、地理环境以及周边建筑等因素对其有着相对较为直接的影响,而随着10kv配电网继电保护复杂性的逐步提升,配电网系统整体运行的安全性和运行性将难以得到有效保障,甚至对社会日常生产生活造成严重影响。
1.10kV配电网继电保护措施应用原则1.1选择性原则所谓选择性原则,主要是在故障发生在配电系统运行过程中之后,可及时切除部分故障,以减轻对其他正常部分的影响,最大限度的遏制其影响范围的不断扩大,将损失控制在最低范围之内,并对配电网系统运行的稳定性进行系统维持。
通常情况下,10kv配电网短路故障的常见应对方法有两种,一种是主保护,另一种是后备保护。
其中,主保护的响应速度相对较快,可对保护设备和短路故障进行有效的切除,不破坏其他环节的正常运行;而后备保护则多发生在断路器启动终止后,在故障切除过程中,需耗费大量时间。
1.2灵敏性原则在10kv配电网实际应用过程中,需严格遵云灵敏性原则,该原则的履行强调对不同继电保护措施的选择,也就是在被保护范围之内,如果运行出现故障,可触发相关保护装置,使其产生及时的响应。
在与10kv配电网系统运行特点相结合的基础之上,对相关保护装置进行合理化选择,并选择科学的搭配方式,确保在故障发生期间能够以敏锐的洞察力进行解决,实施与之相应的保护动作,对故障影响范围进行有效控制,并且促使继电保护灵敏性的不断提升,使配电系统在轻微故障状态下也可作出反应,在保证系统运行可靠性全面提升的同时,也在某种程度上减少了电网后期维护难度和维护频率。
10kV配电网继电保护研究

并 衰减 的时间常数 同样与变 此时不可轻易判断此继 电器特 性好与不好 , 可马上去调整继电 周期分量 , 以一定时间系数 衰减 , 变 时间常数越 大, 涌流 器上的刻度值 , 或用同只表计去测量其他相 同回路的同类继电 压器 的容量大小有关 , 压器容量越 大 ,
回路存在短路 故障, 或二次交流 电压互 串 故障最 常用 的方法 是用好 的或认 为正常 的相 同元件 代替怀 疑 感器二次熔丝熔断, 可分支路 依次排查 , 电压 互感器二次 短路相的总引出处 从 的或认为有故 障的元件 , 以此 来判 断好坏 , 样可以快速 地缩 等, 这
此时故障消除然后逐个恢复, 直至故障出现 , 再分 小故 障查找范 围, 时对 故障进行处理。 及 对于微机保 护故障或 将端子分离, 支路进行依次排查; 对整 套装置的保护熔丝熔断或电源空气开 内部 回路复杂 的单元继 电器故 障, 可用附近备用或 暂时处于检 则可通过各块插件 的拔插排 查, 并结合观察熔丝熔 修的插件继电器取代原有设备, 如果故障消失, 则说明故障在换 关合不上 , 断情况变化来缩小故障范围。 下来 的元件内, 否则就必须在其他地方继续查找故障 。
12参照处理法 .
测试值与预想值有较大 出入又无法断定原因之类的故障。 通过
2 l k  ̄ 电网继 电保 护常见 问题 及 对 策 OV
励磁涌流 是变压器所特有 的, 是空投变压器 时, 变压器铁
此方法主要用于查找认为接线错误 , 定值校验 过程中发现 21配网中的励磁涌流问题 . 出现非周期分量磁通 , 使变压器铁芯饱 对正常设备技术参 数与非正常设备技术 参数的比对, 从参数 的 芯中的磁 通不能突变 , 励磁 电流急剧增大而产生 的。 压器励 磁涌流最大值可 以 变 不同处找出不正常设备的故障点, 进行 回路改造和设备更 换 和, 在 倍, 后二次接 线不能正确恢复时, 可参照同类 设备接 线在继电器定 达到变压器额 定电流的6 8 并且跟变 压器 的容量大小有关 , 值校验时, 如发现 某一只继电器测试值与其整定值相差甚远 ,
配电网多级继电保护配合的关键技术探讨

配电网多级继电保护配合的关键技术探讨配电网的发展中,多级继电保护配合有非常重要的作用,是供电平稳性与安全性的根本保障。
文章从配电网多级继电保护配合遵守的原则入手,介绍了我国配电网多级继电保护配合中存在的问题,然后就配电网多级继电保护配合的关键技术展开探讨。
标签:配电网;故障;自动化;继电保护通常情况下,配电设备与输电线路的故障会引起配电网的停电,而多级继电保护配合则能将故障设备与线路进行快速的切除,不仅能够有效减少停电的范围,同时还能减低线路或者设备的受损情况,确保配电网供电的稳定性,减少因设备与线路过多损坏而造成的经济损失。
三段式过流保护配合技术与多级级差保护配合技术,是当前配电网多级继电保护配合的关键技术。
1.我国配电网多级继电保护配合遵守的原则为了确保配电网多级继电保护的有效性,配电网多级继电保护必须遵循以下原则:(1)在《继电保护和安全自动装置技术规程》和《3~110kV 电网继电保护装置运行整定规程》等章程中明确规定了故障无需快速切除的要求,只要符合上述要求,变电站可将出线断路器中瞬时速断保护转换为延时速断保护;(2)断路器采用弹簧储能机构,则可将延时时间级差設置为0.22~0.31s,而配备永磁操动机构的级差则设置为0.16~0.21s;(3)在变电站出线断路器中必须配置瞬时速断保护装置,同时馈线(除去出线断路器瞬时保护外)可设置电流保护,以此在延长时间级差的情况下,实现过电流(两至三级)保护的有效配合;(4)在两级级差配合的电流保护情况下,如故障多发,修复时间较长且具备配合条件,则可在分支线路上安装断路器,延时时间以0s 为宜,而在三级级差配合的电流保护情况下,如故障多发,修复时间较长且具备配合条件,则在分支、次分支或用户路线上安装断路器。
2.配电网多级继电保护配合中存在的问题2.1配电网改造的设计不合理配电网改造后,其中的多分段和多联络接线等方式能够提高配电网运行方式的灵活性,但是由于设计等因素,配电网在改造后不能实现多级配合,对多级保护的选择性和可靠性产生不良影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配电网继电保护
赵希才
【期刊名称】《供用电》
【年(卷),期】2018(035)008
【摘要】配电网作为电力供应的神经末梢,连接着输电网和电力客户,其网络结构复杂,运行条件千差万别,经济、安全、可靠供电的任务十分艰巨。
分布式发电、大规
模储能和电动汽车充换电站的接入,给配电网运行控制带来新的挑战,同时也提供了
新的技术手段。
继电保护用于在电力系统中检出故障或其他异常情况,从而切除故障、终止异常情况、发出信号或指示。
作为保证电网安全运行的第一道防线,继电
保护对于故障处理起着至关重要的作用。
从技术角度讲,对继电保护有4个基本要求,即可靠性、选择性、灵敏性、速动性;在配电网应用时,还要考虑经济性约束。
基于供电连续性要求,配电网倾向于采用非有效性接地方式,包括不接地、谐振接地、
经高电阻接地。
在这种接地方式下,发生单相接地故障时,故障电流小,给继电保护准确地识别故障带来挑战。
单相接地故障检测、选线和隔离,可以采用基于稳态量或
暂态量的“被动式”,也可以采用投切接地开关、接地电阻的“主动式”,继之以人
工或者自动拉路实现,目前尚无适应面广、原理完善、动作可靠、实现简单的方案。
单相接地故障处置不力,不仅影响供电可靠性,甚至还威胁人身安全、牲畜安全、设
备安全。
相间短路故障检测,通常借助于过电流保护,其故障隔离和供电恢复,主要依赖于有通信条件下的主站集中处理方式或无主站分散处理方式,以及无通信方式下
的电压–时间型、综合型方案。
【总页数】2页(P1-2)
【作者】赵希才
【作者单位】南京南瑞继保电气有限公司
【正文语种】中文
【相关文献】
1.智能配电网建设中的继电保护问题讲座一配电网继电保护的特点与发展趋势[J], 徐丙垠;李天友;薛永端
2.智能配电网建设中的继电保护问题rn讲座三面向供电质量的配电网保护问题[J], 徐丙垠;李天友;薛永端
3.智能配电网建设中的继电保护问题讲座四配电网保护新技术 [J], 徐丙垠;李天友;薛永端
4.智能配电网建设中的继电保护问题讲座六有源配电网保护技术 [J], 徐丙垠;李天友;薛永端
5.基于配电网自动化的多Agent技术在含分布式电源的配电网继电保护中的研究[J], 胡汉梅;郑红;赵军磊;曾从海
因版权原因,仅展示原文概要,查看原文内容请购买。