大气湍流参数对图像退化效果影响的研究

大气湍流参数对图像退化效果影响的研究
大气湍流参数对图像退化效果影响的研究

长春理工大学学报(自然科学版)

Journal of Changchun University of Science and Technology (Natural Science Edition )Vol.41No.4Aug.2018

第41卷第4期2018年8月收稿日期:2018-04-17

作者简介:邹皓(1994-),男,硕士研究生,E-mail :2608752961@https://www.360docs.net/doc/5916639464.html,

通讯作者:赵群(1965-),女,高级实验师,硕士生导师,E-mail :yangzq@https://www.360docs.net/doc/5916639464.html, 大气湍流参数对图像退化效果影响的研究

邹皓,李清瑶,赵群,王建颖,刘智超,杨进华

(长春理工大学

光电工程学院,长春130022)摘要:对远处目标进行观测时,大气湍流是影响成像质量的主要因素,使得观测到的目标图像是严重抖动和模糊的。研究几种大气相关参数对图像退化的影响,总结了影响图像退化的主要的大气湍流相关参数,对退化图像的特征进行了分析。采用包含湍流内外尺度影响的波结构函数、折射率谱以及成像系统退化函数的改进的Kolmogorov 谱湍流退化模型,该模型引入更完整的先验约束条件,更接近于大气湍流的物理特性。通过该退化模型对大气湍流相关参数进行仿真研究,对图像退化进行理论描述,总结了对图像退化影响的主要的大气相关参数。对进行湍流相关参数的测量和湍流退化图像校正的复原算法的研究具有重要意义。实验结果表明大气相干长度和格林伍德频率是影响图像退化主要的大气湍流相关参数。关键词:大气湍流;图像退化;大气相干长度;格林伍德频率

中图分类号:TP391文献标识码:A 文章编号:1672-9870(2018)04-0095-05

Research On Influence of Atmospheric Turbulence Parameters on Image Degradation

ZOU Hao ,LI Qingyao ,ZHAO Qun ,WANG Jianying ,LIU Zhichao ,YANG Jinghua

(School of Optoelectronic Engineering ,Changchun University of Science and Technology ,Changchun 130022)

Abstract :When observing distant targets ,atmospheric turbulence is the main factor affecting the imaging quality ,mak-ing the observed target images are severely shaking and fuzzy.In this paper ,the effects of several atmospheric parame-ters on image degradation are studied.The main parameters of atmospheric turbulence affecting image degradation are summarized and the characteristics of the turbulent image are analyzed.The newmodel is derived from the wave struc-ture function and refractive index profiles considering turbulence internal and external scale and thin lens imaging degra-dation https://www.360docs.net/doc/5916639464.html,pared with the model derived from Kolmogorov spectrum ,more complete transcendent constraints is introduced in the new model ,and the model is more similar to the physical characteristics of atmospheric turbulence.The degradation model is used to simulate the atmospheric turbulence related parameters ,the image degradation is theo-retically described ,and the main atmospheric parameters of image degradation are summarized.It is of great significance for the study of the recuperation algorithm of further turbulence correlation parameters and the image correction of turbu-lence degradation.The results of the experiment show that the atmospheric coherent length and greenwood frequency are the main parameters of atmospheric turbulence affecting image degradation.

Key words :atmospheric turbulence ;image degradation ;atmosphere coherent length ;Greenwood frequency

图像质量的下降,会造成有价值信息的丢失。

在遥感、天文观测、交通监控等一些情况下所获得的

退化图像,如果信息丢失就会造成巨大的损失,所以

有效复原退化图像是至关重要的。其中目标通过大

气湍流成像必然会受到大气湍流的影响。在成像过

程中,大气湍流随机地干扰图像成像,使成像焦平面产生像点强度分布扩散、峰值降低、图像模糊和位置偏移等气动光学效应,给目标识别带来了很大的困难。大气湍流退化图像的复原是一个世界性难题,它的研究富有挑战性。近50年来,人们对湍流的认识越来越深入,最突出的是发现了湍流是多尺度有结构的不规则运动[1,2]。这为大气湍流的仿真研究

地物的波谱特性与大气对遥感监测的影响

地理科学学院 《遥感原理与应用》讲义 地物的波谱特性与大气对遥感监测的影响

目录 1 绪........................................................................................................................................... - 4 -1 电磁波谱及大气对遥感监测的影响…………………………………………..-3 1.1 电磁波及电磁波谱 ................................................................................................. - 4 - 1.1.1 电磁波................................................................................................................ - 4 - 1.1.2 电磁波谱............................................................................................................ - 4 - 1.2 大气对遥感监测的影响 ........................................................................................ - 5 - 1.2.1 大气成分............................................................................................................ - 5 - 1.2.2 大气结构............................................................................................................ - 5 - 1.2.3 大气对太阳辐射的影响.................................................................................... - 6 - 1.2.3.1 大气的反射作用........................................................................................... - 6 - 1.2.3.2 大气的吸收作用........................................................................................... - 6 - 1.2.3.3 大气的散射作用........................................................................................... - 7 - 1.2.3.4 小结.......................................................................................................... - 10 - 1.2.4 大气窗口.......................................................................................................... - 10 - 2 地物的波谱特性......................................................................................................... - 11 - 2.1 地物波谱与地物波谱特性.................................................................................. - 11 - 2.1.1 地物波谱.......................................................................................................... - 11 - 2.1.2 地物波谱特性.................................................................................................. - 11 - 2.2 地物的反射波谱特征........................................................................................... - 11 - 2.2.1 地物反射与反射类型...................................................................................... - 12 - 2.2.2 地物的反射率.................................................................................................. - 12 - 2.2.2.1 概念及影响因素......................................................................................... - 13 - 2.2.2.2 差异的意义 ............................................................................................... - 13 - 2.2.3 地物反射波谱与反射波谱曲线...................................................................... - 13 - 2.2. 3.1 概念.......................................................................................................... - 13 - 2.2. 3.2 不同地物不同反射波谱及其意义................................................................. - 14 - 2.2. 3.3 几种常见地物的反射波谱曲线特征 ............................................................. - 14 - 2.3 地物的发射波谱特征........................................................................................... - 16 - 2.3.1 黑体辐射.......................................................................................................... - 16 - 2.3.2 实际物体辐射.................................................................................................. - 17 - 2.3.2.1 基尔霍夫定律............................................................................................ - 17 - 3 地物波谱曲线的作用 .............................................................................................. - 18 - 4 心得体会......................................................................................................................... - 19 -

大气湍流引发图像畸变的校正研究

第32卷第3期电子科技大学学报V ol.32 No.3 2003年6月 Journal of UEST of China Jun. 2003 大气湍流引发图像畸变的校正研究 钱雪彪*刘永智 (电子科技大学宽带光纤传输与通信系统技术国家重点实验室成都 610054) 【摘要】用CCD(电荷耦合器件)拍摄远距离目标时,大气湍流使得图像发生畸变,导致CCD无法有效的用于远距离目标的识别与监控。由此该文分析了大气湍流的原理及对图像的主要影响,提出了克服大气湍流影响的有 效方法,实验证明,取得较好的效果。 关键词电荷耦合器件; 图像传感; 大气湍流; 图像畸变; 图像校正 中图分类号TN911.73 文献标识码 A Research of Correct Image Distortion Caused by Atmosphere Turbulence Qian Xuebiao Liu Yongzhi (State Key Laboratory of Broadband Optical Fiber Transmission and Communication Networks, UEST of China Chengdu 610054) Abstract The image will be distorted when we take the object’s picture with CCD at long range because of atmosphere turbulence. We can’t availably recognize and monitor long distance object for this reason. This article explained the theory of atmosphere turbulence and the main affection to image caused by atmosphere turbulence. The solution was given to correct image distortion. The effect of the solution is proved by experiment. Key words charge coupled device; image sense; atmosphere turbulence; image distortion; correct 在传感领域基于(charge coupled device,CCD)的图像传感系统是当前研究的一大热点,该系统使用CCD 摄取目标图像,通过图像处理得到所需信息,具有非接触、信息量大以及灵敏度高等优点,已经在图样识别、几何尺寸测量、位置测量等方面得到了广泛应用。但是到目前为止其应用都局限于短距离目标监测,而在大桥形变、山体滑坡等远距离监控领域却一直无法得到广泛的开展,这主要是由于CCD在获取远距离目标图像时受到大气湍流的影响,所得图像存在畸变,不能准确的再现目标的各种属性,会给最终的监测结果带来较大的误差。因此研究从受大气湍流影响的低质量图像中准确提取有用信息,并且有效克服大气湍流带来的噪声和误差是拓展CCD在远距离目标高精度监控领域应用的关键,具有相当重要的意义。本文将对大气湍流的成因及由其引发的图像畸变进行了深入的分析,提出了克服大气湍流影响的有效方法。 1 大气湍流效应对图像的主要影响 在大气中,任一点运动速度的方向和大小时刻发生着不规则变化,产生了各个大气分子团相对于大气整体平均运动的不规则运动,这种现象称为大气湍流[1]。大气湍流会引起空气中任意位置折射率的随机变化,导致光束在同一路径的空气中传播却有着不同的折射率,使得接收到的信号存在着闪烁现象。由湍流引起 2002年12月24日收稿 * 男 24岁博士生主要从事光通信与光传感方面的研究

图像退化与复原

G(u,v) =F(u,v)+N(u, v) ⑶ 实验名称:图像退化与复原 实验目的 1. 了解光电图像的退化原因; 2. 掌握和理解基本的噪声模型,并能对图像进行加噪处理; 3. 了解点扩展函数(PSF)与光学传递函数(OTF)的关系,熟悉几种经典的退化模 型的 模拟试验和OTF 估计方法; 4. 熟悉和掌握几种经典的图像复原方法及其基本原理; 5. 能熟练利用MATLAB 或C/C++工具进行图像的各种退化处理, 并能编程实现 退化 图像的复原。 三. 实验原理 光电成像系统出现图像退化的过程是复杂多变的,为了研究的需要,通常情 况下都把退化简化为化为一个线性移不变过程,见下图 1所示。 障质过稈 | 屯原 图1光电图像退化与复原原理图 因此,在空域中退化过程可以表示如下: g (x,y) = f (x,y) * h(x,y) + h(x,y) (1) 只有加性噪声不存在情况下,退化过程可以模型化如下表达式: g(x,y) = f (x,y) + h(x,y) (2) 其频域表达式为 :

针对这种退化图像的复原,除了周期噪声以外,通常都可以采用空间域滤波 的方法进行图像复原,此时图像复原与图像增强几乎是没有区别的。常见的空间 域滤波方法有均值滤波器和统计排序滤波器。 当退化图像存在线性移不变退化时, 图像的复原不能采用简单空间域滤波器 来实现,要实现线性移不变退化图像的复原, 必须知道退化系统的退化函数,即 点扩展函数h(x,y)。在点扩展函数已知的情况下,常见图像复原方法有逆滤波 和维纳滤波两种。 在考虑噪声的情况下,逆滤波的原理可以表示如下: 通常情况下,N (u,v)是未知的,因此即使知道退化模型也不能复原图像 此外,当H (u,v )的任何元素为零或者值很小时,N (u,v )/H (u,v )的比值决定 着复原的结果,从而导致图像复原结果出现畸变。对于这种情况, 通常采用限制 滤波频率使其难以接近原点值,从而减少遇到零值的可能性。 维纳滤波则克服了逆滤波的缺点,其数学模型表示如下: 然而,为退化图像的功率谱很少是已知的,因此常常用下面表达式近似: 因此,本实验的内容就是利用上述经典图像复原的原理,对降质退化图像进 行复原。 四. 实验步骤 本次实验主要包括光电图像的退化模型和复原方法实现两大部分内容。 (一)图像的退化图像 1、大气湍流的建模 ° F(u,v) = G(u,v) U F(u,v) = G(u,v) H(u,v) F(u,v) + N(u,v) H(u,v) ° 犏 F (u,v)=犏 J _________ (u,v) H (u,v) H *(u,v)2 + S h (u,v)/S f (u,v) G(u,v)

大气物理学基础综合考试大纲

中国科学院大气物理研究所硕士研究生入学考试 《大气物理学基础综合》考试大纲 本《大气物理学基础综合》考试大纲适用于中国科学院大气物理研究所大气科学学科有关专业的硕士研究生入学考试。大气物理学是大气科学的重要分支,是许多专业学科的基础理论课程。 大气物理学考试内容主要包括大气组成与物理特性及其垂直结构、大气辐射学、大气边界层物理、云和降水物理学和大气电学等几大部分。要求考生对这几部分的基本概念有较深入的了解,掌握描述大气状态和变化的基本原理和公式及其应用。 一、考试内容 (一)地球大气的成分与分布 1.对流层干空气的主要组成成分与次要组成成分 2.干空气状态方程 3.地球大气中与人类生存有关的碳化合物的主要来源及影响4.臭氧的产生、空间分布及臭氧损耗 5.大气中硫的化合物及氮的化合物的来源及影响 6. 表示大气湿度的物理量及相互关系 7. 克拉珀龙-克劳修斯方程 8. 水汽的状态方程 9. 湿空气的状态方程 10.大气气溶胶的概念、谱分布、来源及在大气过程中的作用(二)大气气压场及大气的分层结构 1. 大气静力学方程、大气压力与高度的关系

2. 标准大气 3. 全球海平面气压分布特征 4. 大气的垂直分层及其特点 (三)大气辐射学 1.大气辐射场的物理量 2.大气辐射的基本定律 3.大气分子吸收(谱) 4. 大气粒子对辐射的散射理论 5. 太阳辐射在地球大气中的传输 6. 地球-大气系统的长波辐射 7. 地气系统的辐射平衡 (四)大气热力学 1. 大气热力学基本规律 2. 大气中的干绝热过程 3. 温度对数压力图解 4. 绝热等压混合过程 5. 大气静力稳定度判据以及条件性不稳定 6. 形成大气逆温层的原因 (五)大气动力学 1. 大气动力学基本方程组 2. 大气运动的尺度分析及近似 (六)大气边界层 1. 湍流及大气湍流的基本特征 2.大气湍流特征量的统计描述 3. 大气湍流的控制方程

大气湍流参数对图像退化效果影响的研究

长春理工大学学报(自然科学版) Journal of Changchun University of Science and Technology (Natural Science Edition )Vol.41No.4Aug.2018 第41卷第4期2018年8月收稿日期:2018-04-17 作者简介:邹皓(1994-),男,硕士研究生,E-mail :2608752961@https://www.360docs.net/doc/5916639464.html, 通讯作者:赵群(1965-),女,高级实验师,硕士生导师,E-mail :yangzq@https://www.360docs.net/doc/5916639464.html, 大气湍流参数对图像退化效果影响的研究 邹皓,李清瑶,赵群,王建颖,刘智超,杨进华 (长春理工大学 光电工程学院,长春130022)摘要:对远处目标进行观测时,大气湍流是影响成像质量的主要因素,使得观测到的目标图像是严重抖动和模糊的。研究几种大气相关参数对图像退化的影响,总结了影响图像退化的主要的大气湍流相关参数,对退化图像的特征进行了分析。采用包含湍流内外尺度影响的波结构函数、折射率谱以及成像系统退化函数的改进的Kolmogorov 谱湍流退化模型,该模型引入更完整的先验约束条件,更接近于大气湍流的物理特性。通过该退化模型对大气湍流相关参数进行仿真研究,对图像退化进行理论描述,总结了对图像退化影响的主要的大气相关参数。对进行湍流相关参数的测量和湍流退化图像校正的复原算法的研究具有重要意义。实验结果表明大气相干长度和格林伍德频率是影响图像退化主要的大气湍流相关参数。关键词:大气湍流;图像退化;大气相干长度;格林伍德频率 中图分类号:TP391文献标识码:A 文章编号:1672-9870(2018)04-0095-05 Research On Influence of Atmospheric Turbulence Parameters on Image Degradation ZOU Hao ,LI Qingyao ,ZHAO Qun ,WANG Jianying ,LIU Zhichao ,YANG Jinghua (School of Optoelectronic Engineering ,Changchun University of Science and Technology ,Changchun 130022) Abstract :When observing distant targets ,atmospheric turbulence is the main factor affecting the imaging quality ,mak-ing the observed target images are severely shaking and fuzzy.In this paper ,the effects of several atmospheric parame-ters on image degradation are studied.The main parameters of atmospheric turbulence affecting image degradation are summarized and the characteristics of the turbulent image are analyzed.The newmodel is derived from the wave struc-ture function and refractive index profiles considering turbulence internal and external scale and thin lens imaging degra-dation https://www.360docs.net/doc/5916639464.html,pared with the model derived from Kolmogorov spectrum ,more complete transcendent constraints is introduced in the new model ,and the model is more similar to the physical characteristics of atmospheric turbulence.The degradation model is used to simulate the atmospheric turbulence related parameters ,the image degradation is theo-retically described ,and the main atmospheric parameters of image degradation are summarized.It is of great significance for the study of the recuperation algorithm of further turbulence correlation parameters and the image correction of turbu-lence degradation.The results of the experiment show that the atmospheric coherent length and greenwood frequency are the main parameters of atmospheric turbulence affecting image degradation. Key words :atmospheric turbulence ;image degradation ;atmosphere coherent length ;Greenwood frequency 图像质量的下降,会造成有价值信息的丢失。 在遥感、天文观测、交通监控等一些情况下所获得的 退化图像,如果信息丢失就会造成巨大的损失,所以 有效复原退化图像是至关重要的。其中目标通过大 气湍流成像必然会受到大气湍流的影响。在成像过 程中,大气湍流随机地干扰图像成像,使成像焦平面产生像点强度分布扩散、峰值降低、图像模糊和位置偏移等气动光学效应,给目标识别带来了很大的困难。大气湍流退化图像的复原是一个世界性难题,它的研究富有挑战性。近50年来,人们对湍流的认识越来越深入,最突出的是发现了湍流是多尺度有结构的不规则运动[1,2]。这为大气湍流的仿真研究

湍流的统计特性及对激光大气传输的影响

第4章湍流的统计特性及对激光大气传输的影响分析 激光大气传输湍流效应本质上就是光在湍流大气中的传播问题。20世纪50年代前苏联学者Tatarskii引入Kolmogorov和Obukhov发展的湍流统计理论,求解湍流大气中波传播方程,取得的一些理论结果相当好地解释了在此以前所取得的实验结果,从而奠定的光波在湍流大气中传播的理论基础。然而,由于激光在湍流大气中的传播是一个十分复杂的随即非线性过程,特别是大气湍流存在的间歇性,对激光传输有着难以估计的影响。 4.1大气湍流的成因 在大气中,任一点的大气运动速度的方向和大小无时无刻不发生着不规则变化,产生了各个大气分子团相对于大气整体平均运动的不规则运动,这种现象称为大气湍流。通常情况下大气都处于湍流状态,大气的随机运动产生了大气湍流,由于大气湍流的存在,大气温度和折射率也时刻发生着不规则的变化。形成大气湍流的原因大致有四点。第一,太阳的照射造成的大气温度差,太阳辐射对地表不同地区造成加热不同;第二,地球表面对气流拉伸移位导致了风速剪切;第三,地表热辐射产生了热对流;第四,伴随着热量释放的相变过程(沉积、结晶)导致了温度和速度场变化。图4.1形象的表述了湍流的形成。

上图是英国的物理学家形chardson描绘的湍流的一个级串模型,虽然湍流的运动很复杂,但通过上图仍能对湍流有一个形象的认识。上图表示湍流含有尺度不同的湍涡,而各种能量从大尺度湍涡一步一步向小尺度湍涡传递。外界的能量传递给第一级大湍涡,由于受风剪切等因素的影响,大湍涡逐渐变得不稳定形成次级小湍涡,小湍涡再次失稳后再形成更次一级的许多小湍涡。从图中可以看出,湍涡的大小有限,最大的湍涡的尺寸大小是外尺度 L,最小的湍涡是内尺度0l。 尤其重要的是,这些大大小小的湍涡没有分散存在于大气中,而是交叉重叠的存在于大气中。 4.2 Kolmogorov-Oboukhov湍流统计理论 虽然迄今为止人们对湍流的基本物理机制尚还不十分清楚,但已形成几个公认的基本概念,包括随机性、涡粘性、级串、和标度率。随机性构成了湍流统计理论的基础;涡粘性揭示了湍流相近尺度间的相互作用行为;级串给了我们最直观、最明晰的湍流图像;标度律则成为物理上定量研究湍流问题的数学手段。 在直观的湍流现象中,Richardson首先给出了湍流的级串图:湍流中存在着不同尺度间的逐级能量传递,由大尺度湍涡向小尺度湍涡输送能量。第一级大湍涡的能量来自外界,大湍涡失稳后形成次级的小湍涡,再失稳后产生更次一级的小湍涡。在大雷诺数下,所有可能的运动模式都被激发。 基于Richardson级串模型。Kolmogorov认为在大雷诺数下,这些不同尺度的湍

图像退化与复原

一. 实验名称:图像退化与复原 二. 实验目的 1. 了解光电图像的退化原因; 2. 掌握和理解基本的噪声模型,并能对图像进行加噪处理; 3. 了解点扩展函数(PSF)与光学传递函数(OTF)的关系,熟悉几种经典的退化模 型的模拟试验和 OTF 估计方法; 4. 熟悉和掌握几种经典的图像复原方法及其基本原理; 5. 能熟练利用 MATLAB 或 C/C++工具进行图像的各种退化处理,并能编程实现 退化图像的复原。 三. 实验原理 光电成像系统出现图像退化的过程是复杂多变的,为了研究的需要,通常情况下都把退化简化为化为一个线性移不变过程,见下图 1 所示。 因此, 在空域中退化过程可以表示如下: (x,y)(x,y)(x,y)(x,y)g f h h =*+ (1) 只有加性噪声不存在情况下,退化过程可以模型化如下表达式: (x,y)(x,y)(x,y)g f h =+ (2) 其频域表达式为: =(,)+(),)G ,(F u v N u v v u (3) 图1光电图像退化与复原原理图

针对这种退化图像的复原,除了周期噪声以外,通常都可以采用空间域滤波的方法进行图像复原,此时图像复原与图像增强几乎是没有区别的。常见的空间域滤波方法有均值滤波器和统计排序滤波器。 当退化图像存在线性移不变退化时,图像的复原不能采用简单空间域滤波器来实现,要实现线性移不变退化图像的复原,必须知道退化系统的退化函数,即点扩展函数(x,y)h 。 在点扩展函数已知的情况下,常见图像复原方法有逆滤波和维纳滤波两种。 在考虑噪声的情况下,逆滤波的原理可以表示如下: ()() ()()()() G u,v N u,v F u,v F u,v H u,v H u,v ù = =+ (4) 通常情况下,()N u,v 是未知的,因此即使知道退化模型也不能复原图像。 此外,当(),H u v 的任何元素为零或者值很小时,()(),/,N u v H u v 的比值决定着复原的结果,从而导致图像复原结果出现畸变。对于这种情况,通常采用限制滤波频率使其难以接近原点值,从而减少遇到零值的可能性。 维纳滤波则克服了逆滤波的缺点,其数学模型表示如下: 2* 2()1 ()()()()(,)/(,)f H u,v F u,v G u,v H u,v H u,v S u v S u v h ù 轾犏=犏犏+犏臌 (5) 然而,为退化图像的功率谱很少是已知的,因此常常用下面表达式近似: 2* 2()1 ()()()()H u,v F u,v G u,v H u,v H u,v k ù 轾犏=犏犏+犏臌 (6) 因此,本实验的内容就是利用上述经典图像复原的原理,对降质退化图像进行复原。 四. 实验步骤 本次实验主要包括光电图像的退化模型和复原方法实现两大部分内容。 (一) 图像的退化图像 1、 大气湍流的建模

大气湍流N-S方程

前面复习
什么是湍流? 湍流与层流有什么区别? 雷诺数Re的表达式和物理意义? 湍流有哪些理论? 流体运动的稳定性指的是什么? 处理流体运动的稳定性问题时,什么是 小扰动法和能量法?

流体力学和N-S方程
流体力学是力学的一个分支,它是研究 流体 ( 包括液体及气体 ) 这样一个连续介质 的宏观运动规律以及它与其他运动形态之 间的相互作用。通常所说的流体力学就是 指建立在连续介质假设基础上的流体力学。 连续介质假设认为真实流体所占有的空 间可近似地看做是由“流体质点”连续无 空隙地充满着的。所谓流体质点指的是微 观上充分大,宏观上充分小的分子团.

流体运动的描述
欧拉方法着眼于流场空间的固定点, 拉格朗日着眼于确定的流体质点。 两种方法可以互换。
K qi = qi (r , t )
qi = qi (ξ , t )

物理量的物质导数和当地导数
在欧拉方法的表达式中,专门引进了一 个运算符号d/dt,它表示某确定流体质点的 物理量随时间的变化率,称为该物理量的 物质导数;同时,将欧拉表述下物理量函 数对时间的偏导数,即空间固定点上物理 量的时间变化率,称为当地导数,记作э/эt。
dq ?q K = + (v ? ? ) q dt ?t

M 1m/s M 2m/s
M’ 2m/s (t=0) M’ 3m/s (t=1s)

应力张量
流体质点所受的力需要用二阶张量来描 述,σji。在通过某点并具有任意方向n的面 元上,应力矢量 T(n) 为二阶张量和该面元 的法向单位矢n唯一确定。
K Ti (n ) = σ ji n j

图像退化-图像复原

4记录和整理实验报告。图像降质的数学模型 图像复原处理的关键问题在于建立退化模型。输入图像f(x, y)经过某个退化系统后输出的是一幅退化的图像。为了讨论方便, 把噪声引起的退化即噪声对图像的影响一般作为加性噪声 考虑, 这也与许多实际应用情况一致,如图像数字化时的量化 噪声、 随机噪声等就可以作为加性噪声,即使不是加性噪声而 是乘性噪声, 也可以用对数方式将其转化为相加形式。 原始图像f(x, y) 经过一个退化算子或退化系统H(x, y) 的作 用, 再和噪声n(x,y)进行叠加,形成退化后的图像g(x, y)。图2-1表示退化过程的输入和输出的关系,其中H(x, y)概括了退化系统的物理过程,就是所要寻找的退化数学模型。 图2-1 图像的退化模型 数字图像的图像恢复问题可看作是: 根据退化图像g(x , y)和退化算子H(x , y)的形式,沿着反向过程去求解原始图像f(x , y), 或者说是逆向地寻找原始 图像的最佳近似估计。图像退化的过程可以用数学表达式写成如下的形式: g(x, y)=H [f(x, y)]+n(x, y) (2-1) 在这里,n(x, y)是一种统计性质的信息。在实际应用中, 往往假设噪声是白噪声,即它的频谱密度为常数,并且与图像不相关。 在图像复原处理中, 尽管非线性、 时变和空间变化的系统模型更具有普遍性和准确性,更与复杂的退化环境相接近,但它给实际处理工作带来了巨大的困难, 常常找不到解或者很难用计算机来处理。因此,在图像复原处理中, 往往用线性系统和空间不变系统模型来加以近似。这种近似的优点使得线性系统中的许多理论可直接用于解决图像复原问题,同时又不失可用性。 H (x , y )f (x , y )g (x , y ) n (x , y )

大气湍流的复原

大气湍流的复原 研究背景与意义 21 世纪以来,美国、欧空局、俄罗斯等空间科技强国都相继提出了新的空间发展规划。特别的,美国自特朗普上台后提出太空政策,加大对太空探索的投资力度,并积极开展多个民用太空项目。根据我国至2030 年空间科学发展规划,我国将建立以覆盖多个热点领域的空间科学卫星为标志的空间科学体系[1],通过发展系列空间科学计划,牵引和带动我国在空间目标识别与监视、深空测绘乃至其他重要科技领域的创新与突破,推动我国高科技产业的跨越式发展。而对空间目标的姿态、形状、特征以及太空星体表面的地形地貌进行高精度识别与判读,都需要采用光学成像系统对其观测与监视,从而获取足够数量的影像资料,从这些影像资料中提取使用者所期望的感兴趣信息。 由于地面受到太阳辐射作用,造成大气中分子和由悬浮粒子构成的离散混合介质的不规则热运动,使得大气呈现出非稳态性和随机性,这种现象称之为大气湍流现象。当光波穿过空间大气层时,由于大气中湍流介质中各处的压强、温度、湿度以及物理特性的随机变化,使得射出湍流介质的波阵面不再保持平面特性。因此,光学成像系统中的传感器透过大气对目标物或场景进行观测时,由于近地面的大气湍流强度在空间和时间上分布的差异,造成湍流介质内的空气折射率的随机涨落。这会导致光波到达像面的振幅和相位的随机起伏,从而导致光束扩散、波面畸变、像点漂移等现象[2][3],使得目标在成像设备上会产生严重的模糊和降质。大气对成像系统的影响主要包括:1)空间对地高分辨率遥感观测中,卫星或航天飞机对地面目标进行跟踪和监视。2)在地基成像观测系统中,自适应光学望远镜对卫星、行星以及其他宇宙天体进行识别与探测。3)在高速飞行器成像制导系统中,使用激光器对目标实施打击的过程(如图1.1 所示)。由于大气湍流的干扰,飞行器上发射的激光束产生随机扩散与畸变,严重减弱了激光器的打击精度,因此有效的减弱大气湍流的影响,避免激光器的能量扩散和路径偏移是十分必要的。 (a)美国战略导弹防御系统机(b)激光器打击导弹 (c)理想情况下激光束的能量分布(d)受大气湍流干扰的激光束能量分布 图1.1 美国战略导弹防御机系统 在地基空间目标观测过程中,大气湍流扰动的存在,使得光学望远镜的分辨率不再由其理论衍射极限来决定,而取决于其大气相干长度。当光学系统对受到大气湍流干扰的光波进行成像时,其分辨率不会超过口径为0r 的光学系统衍射极限分辨率,其中0r 就是大气相干长度的大小[4]。0r 值越大,表示大气整体湍流强度越小。如果口径数米乃至数十米的光学望远镜在没有自适应补偿系统的条件下,通过空间大气层对近地卫星、行星或其他星体进行观测成像时,由于受到大气湍流的影响,其成像分辨率不会超过口径为分米级小型望远镜[5],且获取的图像会出现模糊与抖动,这严重降低了观测图像的研究价值。针对大气湍流的扰动问题,目前研究人员提出了两种解决方案:1)发射太空望远镜(如美国哈勃望远镜、康普顿望远镜)。但是太空望远镜不仅造价和发射耗资巨大,而且出现故障不易检测和维护。望远镜如果没有补偿措施,在太空中会受到太空低温、失重环境导致镜面畸变,同样会观测图像出现模糊和降质。2)采用自适应光学补偿系统和波后复原技术。首先通过自适应光学系统对光波波前畸变进行实时补偿和校正,其后基于数字图像处理技术对目标受抑制的中高频信息进行恢复和重建,最终获得目标的高清晰图像。 在遥感对地观测领域,由于大气湍流干扰、卫星平台的不稳定振动、传感器与被拍摄目标之间的相对运动、光学成像系统的离焦和散焦等因素,再加上传感器在数据传输、扫描成像时引入的噪声,都会导致遥感图像的降质和退化。然而研究人员希望获取纹理和边缘清晰、易

退化及复原图像

4-4 退化及复原图像一、 实验目的 掌握生成退化图像和复原图像的方法. 二、 实验内容 1. 生成带噪声的运动退化图像 2. 使用decovwnr 复原模糊的带噪图像 三、 实验步骤 1.模糊噪声图像建模fspecial imfilter pixeldup clc clear f = checkerboard(8); PSF = fspecial('motion',7,45); gb = imfilter(f,PSF,'circular'); imshow (gb) title('使用PSF = fspecial(motion,7,45) 模糊后的图像') noise = imnoise(zeros(size(f)),'gaussian',0,0.001); imshow (noise,[]) title('高斯纯噪声图像') g = gb + noise; imshow (g,[]) title('模糊加噪声的图像')

2.使用deconvwnr 函数复原模糊噪声图像 clc clear f = checkerboard(8); PSF = fspecial('motion',7,45) gb = imfilter(f,PSF,'circular'); noise = imnoise(zeros(size(f)),'gaussian',0,0.001); g = gb + noise; imshow (g,[]) title('模糊加噪声的图像') % *************** fr1 = deconvwnr(g,PSF); imshow(fr1,[]) title('简单的维纳滤波(逆滤波)后的结果') Sn = abs(fft2(noise)).^2;

图像退化与复原

实验名称:图像退化与复原 实验目的 1. 了解光电图像的退化原因; 2. 掌握和理解基本的噪声模型,并能对图像进行加噪处理; 3. 了解点扩展函数(PSF)与光学传递函数(OTF)的关系,熟悉几种经典的退化模型的模拟试验和OTF估计方法; 4. 熟悉和掌握几种经典的图像复原方法及其基本原理; 5. 能熟练利用MATLAB或C/C++工具进行图像的各种退化处理,并能编程实现退化图像的复原。 实验原理 光电成像系统出现图像退化的过程是复杂多变的,为了研究的需要,通常情况下都把退化简化为化为一个线性移不变过程,见下图1所示。 f(工,v)I I 厂、冒(工J)了 =0退化函数H = --------------- U + t——复原滤波器 I------- 曝声V I ------------------- I I "(3)I I I 」I I ! 降质过程I 屯原! 图i光电图像退化与复原原理图 因此,在空域中退化过程可以表示如下: g (x,y) = f (x,y) * h(x,y) + h(x,y) 只有加性噪声不存在情况下,退化过程可以模型化如下表达式: g(x,y) = f (x,y) + h(x,y) 其频域表达式为:

G(u,v) =F(u,v)+N(u, v)

针对这种退化图像的复原,除了周期噪声以外,通常都可以采用空间域滤波 的方法进行图像复原,此时图像复原与图像增强几乎是没有区别的。常见的空间 域滤波方法有均值滤波器和统计排序滤波器。 当退化图像存在线性移不变退化时, 图像的复原不能采用简单空间域滤波器 来实现,要实现线性移不变退化图像的复原, 必须知道退化系统的退化函数,即 点扩展函数h(x,y)。在点扩展函数已知的情况下,常见图像复原方法有逆滤波 和维纳滤波两种。 在考虑噪声的情况下,逆滤波的原理可以表示如下: F (")二^^= F(u,v)+^) H(u,v) ' / H(u,v) 通常情况下,N(u,v)是未知的,因此即使知道退化模型也不能复原图像 此外,当H (u,v )的任何元素为零或者值很小时,N (u,v )/H (u,v )的比值决定 着复原的结果,从而导致图像复原结果出现畸变。对丁这种情况, 通常采用限制 滤波频率使其难以接近原点值,从而减少遇到零值的可能性。 维纳滤波则克服了逆滤波的缺点,其数学模型表示如下: F(u , v) 顼 |H *(u,v)「 2 (u,v) H (u,v) + S h (u,v)/S f (u,v) G(u,v) 然而,为退化图像的功率谱很少是已知的,因此常常用下面表达式近似: F(u,v) = & 1 |H *(u,v)|2 :扩声 |H (u,v)| 2+ k G(u,v) 因此,本实验的内容就是利用上述经典图像复原的原理,对降质退化图像进 行复原。 四.实验步骤 本次实验主要包括光电图像的退化模型和复原方法实现两大部分内容。 (一)图像的退化图像 1、大气湍流的建模

浅谈遥感技术在大气监测中的应用

文章编号:1004-7204(2005)01-0015-03 浅谈遥感技术在大气监测中的应用 王丽娟1,景耀全2 (1.西南交通大学环境科学与工程学院,成都610031; 2.四川省遥感信息测绘院,成都610100) 摘要:碳的氧化物、硫的氧化物、氮的氧化物和臭氧等是人类在生产活动和社会活动产生中的主要的环境污染物,它们威胁着人类的生存环境和地球上的生态平衡。因此,对它们进行实时监测和综合治理显得非常重要。文章介绍了遥感(RS )技术,重点介绍遥感技术在大气环境监测中的应用。关键词:遥感;环境监测;大气遥感监测;遥感图像中图分类号:X 87 文献标识码:A T alk About Application R emote Sensing T echnology for Atmosphere Monitoring W ANGLi 2juan 1,J I NG Y ao 2quan 2 (1.C ollege of Environmental Science and Engineering ,S outhwest Jiaotong University ,Chengdu 610031,China ;2.Sichuan Province Surveying&Mapping Institute of Rem ote Sensing In formation ,Chengdu 610100,China )Abstract :Oxides of carbon ,sulfur ,nitrogen and ozone are serious environmental pollutants produced by the productive and s ocial activities of humans.They seriv ously threaten our life and the ecological balance of the earth.Hence ,real -time m onitoring and com prehensive control on them are very im portant.We introduce the rem ote sensation techniques ,then discuss in detail their application in the m onitoring of atm ospheric environ 2mental pollution. K eyw ords :Rem ote sensing ;Environmental m onitoring ;Atm ospheric rem ote sensing and m onitoring ;Rem ote sensing image 1 引言 清洁的空气是人类和生物赖以生存的环境要素之一,而且也是最重要的环境要素之一。然而,随着工业及交通运输等事业的迅速发展,特别是煤和石油的大量使用,将产生的大量有害物质排放到大气中,当其浓度超过环境所允许的极限并持续一定时间后,就会改变大气的正常组成,破坏自然的物理、化学和生态平衡体系,即造成大气污染。 为了维护自然环境的生态平衡,保护人群的健康及可持续性,就必须对大气环境中的主要污染物质进行定期或连续地监测,并研究大气质量的变化 规律和发展趋势以及此变化对人类社会的影响等。我国大气环境监测工作仍不是很完善,监测频次低,时效性差。在大气环境监测中,目前应用最多的方法还属分光光度法和气相色谱法。 卫星遥感技术的出现与发展,使人们能从宇宙空间观测全球。这种技术具有视域广、及时连续的特点,可以迅速地查明环境现状、污染状况,为预防和治理环境污染提供及时、可靠的依据。目前国内外,遥感技术在环境方面的应用越来越广泛,其主要是用于监测海洋石油污染、监测森林火灾和草场演化、水环境污染监测、赤潮分析以及水体浑浊度与含沙量分析等,其应用于大气污染监测的研究很少。 收稿日期:2004-07-12 作者简介:王丽娟(1974— ),女,汉族,成都市龙泉驿人,西南交通大学硕士研究生,研究方向:环境管理与规划;景耀全(1974—),男,汉族,成都市龙泉驿人,四川省遥感信息测绘院助理工程师,主研方向:测绘、遥感数据的 处理及其数字化。 ? 51??大气监测? 《环境技术》 2005年第1期

相关文档
最新文档