二次函数图像与性质总结

合集下载

九年级二次函数知识点总结

九年级二次函数知识点总结

九年级二次函数知识点总结一、二次函数的基本形式二次函数一般写为y=ax^2+bx+c(a≠0),其中a、b、c为常数,x为自变量,y为因变量。

其中a决定了抛物线开口的方向,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

b决定了抛物线的位置,c决定了抛物线与y轴的交点。

二、二次函数的图像1. 抛物线的开口方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2. 抛物线的顶点:抛物线的顶点坐标为(-b/2a, f(-b/2a)),其中f(x)=ax^2+bx+c。

3. 抛物线的对称轴:抛物线的对称轴方程为x=-b/2a。

4. 抛物线的焦点:抛物线没有焦点。

5. 抛物线的焦距:抛物线没有焦距。

三、二次函数的性质1. 零点:二次函数的零点即为其实根,求零点的方法可以通过求解二次方程ax^2+bx+c=0来得到。

2. 正负性:当a>0时,抛物线上方为正区间,下方为负区间;当a<0时,抛物线上方为负区间,下方为正区间。

3. 单调性:当a>0时,函数单调递增;当a<0时,函数单调递减。

4. 极值:当a>0时,抛物线的最小值为f(-b/2a);当a<0时,抛物线的最大值为f(-b/2a)。

四、二次函数的相关应用1. 最值问题:通过求解二次函数的极值来解决相关的最值问题,如求解最大值、最小值等。

2. 零点问题:通过求解二次函数的零点来解决相关的方程问题,如求解方程ax^2+bx+c=0的解。

3. 切线问题:通过求解二次函数的导数来得到其切线的斜率,从而解决相关的切线问题。

4. 抛物线运动问题:通过二次函数的图像特点,解决相关的抛物线运动问题,如抛体的运动轨迹、最大高度、飞行时间等。

五、二次函数的解题方法1. 求解零点:通过求解二次方程ax^2+bx+c=0来得到函数的零点。

2. 求解极值:通过求解函数的导数来得到函数的极值点,并求解其极值。

人教版九年级上册第22章二次函数图像与性质知识点题型总结

人教版九年级上册第22章二次函数图像与性质知识点题型总结

二次函数图像及性质【二次函数的定义】一般地,形如y = ax2+bx + c Wc为常数,“工0)的函数称为兀的二次函数,其中兀为自变量,为因变量,J b、c分别为二次函数的二次项、一次项和常数项系数.注意:和一元二次方程类似,二次项系数“工0,而b、c可以为零.二次函数的自变量的取值范朗是全体实数.【二次函数的图象】1.二次函数图象与系数的关系(1)“决左抛物线的开口方向当“>0时,抛物线开口向上;当“<0时,抛物线开口向下.反之亦然.同决过抛物线的开口大小:同越大,抛物线开口越小;同越小,抛物线开口越大.温馨提示:几条抛物线的解析式中,若问相等,则其形状相同,即若"相等,则开口及形状相同,若a互为相反数,则形状相同、开口相反.(2)〃和"共同决左抛物线对称轴的位置(抛物线的对称轴:S2a当b=o时,抛物线的对称轴为y轴;当方同号时,对称轴在轴的左侧;当〃异号时,对称轴在y轴的右侧・(3)“的大小决泄抛物线与y轴交点的位置(抛物线与y轴的交点坐标为(o,C)当c=o时,抛物线与y轴的交点为原点:当c>o时,交点在轴的正半轴:当c<0时,交点在y轴的负半轴.2•二次函数图象的画法五点绘图法:利用配方法将二次函数y = ax2 +bx + c化为顶点式y = a(x-h)2 +k,确泄其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点(0, c)、以及(0, c)关于对称轴对称的点(2力,c)、与x轴的交点(占,0) , (x2 , 0)(若与x 轴没有交点,则取两组关于对称轴对称的点)・画草图时应抓住以下几点:开口方向,对称轴,顶点,与X轴的交点,与y轴的交点.3•点的坐标设法(1)一次函数y = ax + h图像上的任意点可设为(“与+“)•其中再=0时.该点为直线与y轴交点.(2)二次函数y = ax2+bx + c(心0)图像上的任意一点可设为(石,妙?+站+可.再=0时,该点为抛物线与y轴交点,当x=-A时,该点为抛物线顶点.2a⑶ 点(召,yj关于(兀2,x2)的对称点为(2兀-若,2比-)・4•二次函数的图象信息(1)根据抛物线的开口方向判断a的正负性.(2)根据抛物线的对称轴判断-仝的大小.2a(3)根据抛物线与y轴的交点,判断。

二次函数的图像和性质总结

二次函数的图像和性质总结

二次函数的图像和性质总结二次函数的图像和性质总结二次函数的图像和性质一、二次函数的定义:形如的函数叫二次函数。

二、二次函数的解析式三种形式1一般式:;2顶点式:ya(xh)2k(a≠0),顶点坐标为(,),对称轴是。

3两点式:设x1、x2是抛物线与x轴的两个交点的横坐标,则ya(xx1)(xx2)对称轴为直线xx1x2。

2三、二次函数yax2bx+c(a≠0)的图象与性质二次函数1.开口大小。

由决定,越大,开口越。

2.开口方向:由决定。

当a>0时,函数开口方向向;当a若交点在X轴的上方,则c0;若交点在X轴的下方,则C0;(3)b的符号由对称轴来确定:b0知a、b同号;2ab若对称轴在Y轴的右侧,由0知a、b异号。

2a对称轴在Y轴的左侧,由7.缺项二次函数的特征2(1)抛物线yax(a≠0)的顶点在Y轴上时抛物bx+c线关于轴对称,=0;解析式为。

2(2)抛物线yax(a≠0)经过原点,则=0;bx+c解析式为。

2(3)抛物线yax(a≠0)顶点在原点,则b=bx+cc=,解析式为。

8.抛物线的平移和轴对称.左右平移在括号,记上反符号上下平移在末梢(1)抛物线yax2bx+c上(下)平移n(n0)个单位后的解析式求法:将原解析式中的不变,把转换为;(2)抛物线yax2bx+c左(右)平移n(n0)个单位后的解析式求法:将原解析式中的不变,把转换为。

2(3)抛物线yax关于x轴对称的抛物线解析式bx+c是(方法是将原yax2bx+c解析式中的不变,把转换为,再整理)2④物线yaxbx关于y轴对称的抛物线解析式是+c(方法是将原解析yax2bx+c式中的不变,把转换为,再整理)扩展阅读:二次函数的图像和性质总结二次函数的图像和性质1.二次函数的图像与性质:解析式a的取值开口方向函数值的增减顶点坐标对称轴图像与y轴的交点yax22当a0时;开口向上;在对称轴的左侧y随x的增大而减小,在对称轴的(0,0)x0(0,0)yaxkya(xh)2(0,c)x0(0,k)右侧y随x的增大而增大。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结一、二次函数的定义1. 二次函数的定义:一般的形如c bx ax y ++=2(其中0,,≠a c b a 是常数且)的函数叫做二次函数. 注:c bx ax y ++=2不一定是二次函数,只有当0≠a 时,c bx ax y ++=2才是二次函数. 二、二次函数y =ax ²的图像与性质1. 2ax y =的图像性质:一般的,当0>a 时,抛物线2ax y =的开口向上,对称轴是y 轴,顶点是原点,顶点是抛物线的最低点,a 越大,抛物线的开口越小;当0<a 时,抛物线2ax y =的开口向下,对称轴是y 轴,顶点是原点,顶点是抛物线的最高点,a 越大,抛物线的开口越大.2. 2ax y =的增减性:如果a >0,当x <0时,y 随着x 的增大而减小,当x >0时y 随着x 的增大而增大;如果a <0,当x <0时,y 随着x 的增大而增大,当x >0时,y 随着x 的增大而减小. 三、二次函数y =a (x -h )²+k 的图像与性质1. k h x a y +-=2)(的图像与性质:一般的,当0>a 时,抛物线k h x a y +-=2)(的开口向上,对称轴是h x =,顶点是),(k h ,顶点是抛物线的最低点,a 越大,抛物线的开口越小;当0<a 时,抛物线k h x a y +-=2)(的开口向下,对称轴是h x =,顶点是),(k h ,顶点是抛物线的最高点,a 越大,抛物线的开口越大.2. k h x a y +-=2)(的增减性:如果a >0,当x <h 时,y 随着x 的增大而减小,当x >h 时y 随着x 的增大而增大;如果a <0,当x <h 时,y 随着x 的增大而增大,当x >h 时,y 随着x 的增大而减小. 四、二次函数的平移1. 二次函数的平移:任意抛物线k h x a y +-=2)(可由2ax y =平移得到,k h x a y +-=2)(是由2ax y =向上平移k 个单位,向右平移h 个单位得到(k ,h 为正数时).2. 平移原则:左加右减,上加下减.五、二次函数y =ax ²+bx +c 的图像与性质1. c bx ax y ++=2的图像与性质:一般的,当0>a 时,抛物线c bx ax y ++=2的开口向上,对称轴是ab x 2-=,顶点是)44,2(2a b ac a b --,顶点是抛物线的最低点,a 越大,抛物线的开口越小;当0<a 时,抛物线c bx ax y ++=2的开口向下,对称轴是a b x 2-=,顶点是)44,2(2a b ac a b --,顶点是抛物线的最高点,a 越大,抛物线的开口越大.2. c bx ax y ++=2的增减性:如果a >0,当a b x 2-<时,y 随着x 的增大而减小,当ab x 2->时y 随着x 的增大而增大;如果a <0,当a b x 2-<时,y 随着x 的增大而增大,当ab x 2->时,y 随着x 的增大而减小. 3. 二次项系数a 的特性:a 的大小决定抛物线的开口大小,a 越大抛物线的开口越小,a 越小抛物线的开口越大.4. 左同右异:当a 、b 符号相同时,对称轴在y 轴的左面;当a 、b 符号不同时,对称轴在y 轴的右面.5. 常数项c 的意义:c 是抛物线与y 轴交点的纵坐标,即x=0时y=c.6. 一般式的赋值:判断c b a c b a c b a c b a ++++++2-424-、、、值的正负时,令x=1、-1、2、-2时y 值的正负.六、二次函数的最值 1. 形如c bx ax y ++=2的最值:当a >0时抛物线在a b x 2-=时取到最小值a b ac y 442min -=,当a <0时抛物线在ab x 2-=时取到最大值a b ac y 442max -=七、待定系数法求二次函数解析式1. 一般式(三点式):一般的,所给的条件是三个点的坐标是时可以设解析式为c bx ax y ++=2,再将三个点带入解析式解三元一次方程组来求解。

二次函数的图像和性质总结精心整理

二次函数的图像和性质总结精心整理
二次函数的图像和性质总结
一、二次函数的定义
一般地,形如 的函数叫作二次函数。
二、二次函数的五种形式:
①y=ax (a≠0) ②y=ax +c (a≠0)
③y=a(x-h) (a≠0) ④y=a(x-h) +k (a≠0)顶点式
⑤y=ax +bx+c (a≠0) 一般式
三、y=ax (a≠0)的图像和性质:
⑥采用五点法画y=a(x-h) +k的图像
首选顶点(h,k),以顶点(h,k)为中心,往两边对称性的取两对点。
⑦平移
抛物线的 图像是由抛物线 的图像上下平移 个单位,左右平移 个单位而得到的。当 时向上平移;当 时向下平移;当 时向左平移;当 时向右平移。(上加下减,左加右减)
⑧利用待定系数法求 的解析式
当a<0时,在对称轴左侧(或x< ),x↑y↑;
在对称轴右侧(或x> ),x↑y↓;
在对称轴右侧(或x>0),x↑y↑;
此时,二次函数有最低点,即二次函数y=ax 有最小值,当x=0时,y最小值=0;
当a<0时,在对称轴左侧(或x<0),x↑y↑;
在对称轴右侧(或x>0),x↑y↓;
此时,二次函数有最高点,即二次函数y=ax 有最大值,当x=0时,y最大值=0;
⑥采用五点法画y=ax 的图像
也可以是两组对应值,当x=a时,y=b. 当x=c时,y=d.
六、y=a(x-h) +k (a≠0)的图像和性质:
①它的图像是一条顶点在任意位置的抛物线。
②顶点(h,k),对称轴是直线x=h。
③a的符号确定抛物线的开口方向。
a>0,开口向上;a<0,开口向下;
④︳a︳的值确定抛物线开口大小。

初中二次函数知识点总结

初中二次函数知识点总结

初中二次函数知识点总结初中二次函数知识点总结:二次函数(Quadratic Function)属于初中代数的重要内容,它是由形如y=ax²+bx+c(a≠0)的代数式所确定的函数。

以下是二次函数的相关知识点的总结。

一、二次函数的图像特征1. 平移:二次函数的图像可以平移,平移的方向与平移的量有关。

2. 对称轴:二次函数的图像关于一个虚轴(称作对称轴)对称。

3. 顶点:对于二次函数y=ax²+bx+c,顶点的横坐标为-x=Δ/b/2a,纵坐标为y⏊-Δ/4a。

4. 开口方向:二次函数的开口方向由a的符号所决定,当a>0时,开口向上;当a<0时,开口向下。

5. 最值:若二次函数的开口方向向上,则该二次函数存在最小值;若二次函数的开口方向向下,则该二次函数存在最大值。

二、二次函数的性质1. 零点:二次函数y=ax²+bx+c的零点,即方程ax²+bx+c=0的解。

2. 应用:二次函数的图像特征常用于解决实际问题,如计算机、物理、化学等领域。

三、二次函数与一次函数的关系1. 一次函数即二次函数的特例:当a=0时,二次函数就变成了一次函数。

2. 交点:二次函数与一次函数可能有1个、2个或无交点。

若两个函数有交点,则这些交点即为方程组的解。

四、解二次方程1. 根的个数:一元二次方程ax²+bx+c=0的根的个数与二次函数y=ax²+bx+c与x轴的交点个数一样(考虑重根)。

2. 用公式解方程:一元二次方程的根可以用求根公式x=(-b±√(b²-4ac))/(2a)来求解。

五、平方完成与配方法1. 平方完成:将一元二次方程变形为一个平方前项和一个常数的和可以极大地简化求解过程。

2. 配方法:适用于解决一元二次方程中某些特殊情况下的解法。

六、二次函数的应用1. 最优化问题:通过对二次函数的相关知识的应用,可以解决最优化问题,求得最值点,并求出最优解。

二次函数的图像和性质总结

二次函数的图像和性质总结

二次函数的图像和性质总结二次函数的图像和性质二次函数的图像与性质可以通过解析式、a的取值、开口方向、函数值的增减、顶点坐标、对称轴和图像与y轴的交点来确定。

当a>0时,二次函数的开口向上;顶点坐标在对称轴上方;在对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大。

图像与y轴的交点坐标为(0.c)。

当a<0时,二次函数的开口向下;顶点坐标在对称轴下方;在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小。

图像与y轴的交点坐标为(0.c)。

抛物线的平移法则可以通过把抛物线y=ax^2平移k个单位或h个单位得到y=ax^2+k或y=a(x+h)^2的图像。

当k>0时,向上平移;当k0时,向左平移;当h<0时,向右平移。

二次函数的最值公式:当a>0时,函数有最小值,最小值为y=4ac-b^2/4a;当a<0时,函数有最大值,最大值为y=4ac-b^2/4a。

与y轴的交点坐标为(0.c)。

抛物线的开口大小由a决定,a越大开口越小。

二次函数与一元二次方程的关系:二次函数y=ax^2+bx+c 的图像与一元二次方程ax^2+bx+c=0的解有关,即二次函数的顶点坐标和最值问题可以通过一元二次方程的解来求得。

当a>0时,函数有最小值,最小值为y=4ac-b^2/4a,对应一元二次方程的两根。

当a<0时,函数有最大值,最大值为y=4ac-b^2/4a,对应一元二次方程的两根。

当$\Delta>0$时,二次函数与x轴有两个交点;当$\Delta=0$时,二次函数与x轴有一个交点;当$\Delta<0$时,二次函数与x轴没有交点。

当$\Delta\geq0$时,二次函数与x 轴有交点。

(此定理的逆定理也成立。

)7.二次函数的三种常用形式:1) 一般式:$y=ax^2+bx+c$2) 顶点式:$y=a(x-h)^2+k$3) 两根式:$y=a(x-x_1)(x-x_2)$8.一元二次方程的解法:通过求解方程$ax^2+bx+c=0$中的根来解决问题。

二次函数的图像和性质总结

二次函数的图像和性质总结

二次函数的图像和性质1.二次函数的图像与性质:解析式a 的取值开口方向函数值的增减顶点坐标对称轴图像与y轴的交点y = ax2当a0时;开口向上;在对称轴的左侧y随x的增大而减小,在对称轴的右侧 y 随 x 的增大而增大。

当a0时;开口向下;在对称轴的左侧y随 x 的增大而增大,在对称轴的右侧 y 随 x 的增大而减小。

(0,0)x=0(0,0)y = ax2+ k(0,c)x =0 (0,k)y = a( x + h)2(- h,0)x = - h(0,ah2)y=a(x+h)2+k(- h,k)x = - h(0,ah2+ k)y = ax2+bx+c b 4ac - b2 (- , )2a4a b x=-2a(0,c)2.抛物线的平移法则:(1)抛物线y = ax2+ k的图像是由抛物线y = ax2的图像平移k个单位而得到的。

当k 0时向上平移;当k0时向下平移。

(2)抛物线y = a(x + h)2的图像是由抛物线y = ax2的图像平移h个单位而得到的。

当h0时向左平移;当h0时向右平移。

(3)抛物线的y = a(x + h)2+ k图像是由抛物线y = ax2的图像上下平移k个单位,左右平移h个单位而得到的。

当k0时向上平移;当k0时向下平移;当h0时向左平移;当h0 时向右平移。

3.二次函数的最值公式:形如y =ax + bx + c的二次函数。

当a0时,图像有最低点,函数有最小值4ac-b24ac-b2y最小值=4a;当a0时,图像有最高点,函数有最大值,y最大值=4a;4.抛物线y =ax + bx + c与y轴的交点坐标是(0,c)5.抛物线的开口大小是由a决定的,a越大开口越小。

6.二次函数y =ax + bx + c的最值问题:(1)自变量的取值范围是一切实数时求最值的方法有配方法、公式法、判别式法。

(2)自变量的取值范围不是一切实数:b 自变量的取值范围不是一切实数时,应当抓住对称轴x = -2a ,把他与取值范围相比较,再进行求最值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数图像与性质总

Document number:NOCG-YUNOO-BUYTT-UU986-1986UT
二次函数的图像与性质
一、二次函数的基本形式
1.二次函数基本形式:2
=的性质:
y ax
2.2
=+的性质:
y ax c
上加下减。

Array 3.()2
=-的性质:
y a x h
左加右减。

4.()2
y a x h k =-+的性质:
二、二次函数图象的平移 1.平移步骤:
方法一:⑴将抛物线解析式转化成顶点式()2
y a x h k =-+,确定其顶点坐标
()h k ,;
⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:
【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位
2.平移规律
在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:
⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成
m c bx ax y +++=2(或m c bx ax y -++=2)
⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成
c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)
三、二次函数()2
y a x h k =-+与2y ax bx c =++的比较
从解析式上看,()2
y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后
者通过配方可以得到前者,即2
2424b ac b y a x a a -⎛
⎫=++ ⎪⎝⎭
,其中
2
424b ac b h k a a
-=-=
,. 四、二次函数2y ax bx c =++图象的画法
五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般
我们选取的五点为:顶点、与y 轴的交点()0c ,
、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴
对称的点).
画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.
五、二次函数2y ax bx c =++的性质
1.当0a >时,抛物线开口向上,对称轴为2b
x a
=-
,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭
,. 当2b x a <-
时,y 随x 的增大而减小;当2b
x a
>-时,y 随x 的增大而增大;当2b
x a
=-时,y 有最小值244ac b a -.
2.当0a <时,抛物线开口向下,对称轴为2b
x a
=-
,顶点坐标为2424b ac b a
a ⎛⎫-- ⎪⎝⎭,.当2
b x a <-
时,y 随x 的增大而增大;当2b
x a >-时,y 随x 的增大而减小;当2b
x a
=-时,y 有最大值244ac b a -.
六、二次函数解析式的表示方法
1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);
2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);
3.两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).
注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次
函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.
七、二次函数的图象与各项系数之间的关系
1.二次项系数a
二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.
⑴当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;
⑵当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.
总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,
a 的大小决定开口的大小.
2.一次项系数b
在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴在0a >的前提下,
当0b >时,02b
a
-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b
a
-=,即抛物线的对称轴就是y 轴; 当0b <时,02b
a
-
>,即抛物线对称轴在y 轴的右侧. ⑵在0a <的前提下,结论刚好与上述相反,即 当0b >时,02b
a
->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b
a
-=,即抛物线的对称轴就是y 轴; 当0b <时,02b
a
-
<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.
ab 的符号的判定:对称轴a
b
x 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3.常数项c
⑴当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;
⑵当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;
⑶当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.
总结起来,c 决定了抛物线与y 轴交点的位置.
总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:
根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:
1.已知抛物线上三点的坐标,一般选用一般式;
2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
3.已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;
4.已知抛物线上纵坐标相同的两点,常选用顶点式.
八、二次函数图象的对称
二次函数图象的对称一般有四种情况,可以用一般式或顶点式表达 1.关于x 轴对称
2
y ax bx c
=++关于x轴对称后,得到的解析式是2
y ax bx c
=---;
()2
y a x h k
=-+关于x轴对称后,得到的解析式是()2
y a x h k
=---;
2.关于y轴对称
2
y ax bx c
=++关于y轴对称后,得到的解析式是2
y ax bx c
=-+;
()2
y a x h k
=-+关于y轴对称后,得到的解析式是()2
y a x h k
=++;
3.关于原点对称
2
y ax bx c
=++关于原点对称后,得到的解析式是2
y ax bx c
=-+-;
()2
y a x h k
=-+关于原点对称后,得到的解析式是()2
y a x h k
=-+-;4.关于顶点对称(即:抛物线绕顶点旋转180°)
2
y ax bx c
=++关于顶点对称后,得到的解析式是
2
2
2
b
y ax bx c
a
=--+-;
()2
y a x h k
=-+关于顶点对称后,得到的解析式是()2
y a x h k
=--+.。

相关文档
最新文档