《新编语文课程与教学论》讲义(第一章)

《新编语文课程与教学论》讲义(第一章)
《新编语文课程与教学论》讲义(第一章)

第一章语文课程的哲学思考

第一节语言与文化:“背景”与“领域”

一、语言与文化的关系

(一)列维·斯特劳斯的归纳

1.语言作为文化的一个结果

2.语言作为文化的一个部分

3.语言作为文化的一个条件

(二)本杰明·沃尔夫的假设

1.语言是文化的“背景”

2.语言决定人们的思维,语言提供人们认识世界、思考问题的“陈规(既定规则)” 3.语言是一切文化类型生长和发展的“共有知识背景”

二、语言是人们认识世界的中介

知识是人们对客观世界的认识。但是人们并不是直接面对客观世界,而是通过语言这种中介。使用同一种语言的人,就拥有同一种关于这个世界的知识系统,这种语言成为人们从事任何文化活动的“共有知识。这种背景性质的共有知识隐藏在人们的意识深处,甚至不为人们所察觉(例如:research研究、perfect完美)。

三、结论

语言是文化的“条件”或“背景”,人类所有的文化活动都是在语言提供的平台与基础上展开的,都是隐蔽地受到语言本身的制约的(“语言世界观”)。

第二节审美文化:文学作为一个文化领域

文学与语言的关系:语言属于背景性质范畴,文学属于这个背景下的一个文化领域。

文化即人的活动的产物。根据人的活动类型,可以将文化大致划分为三类:科学、哲学、文学。

一、科学

科学是人与自然关系的产物,其最高目的是认识自然,基本取向是主观向客观靠拢,途径是最大限度逼近自然本身,因此语言的背景作用相对最弱;

二、哲学

哲学是研究人的,而人按照自己的尺度创建了语言。因此,语言成为了哲学研究的对象,同时,语言还为哲学研究活动提供了一种先在的思维方式。与科学相比,哲学与语言的关系进了一步;

三、文学

文学的本质是人与现实的审美关系,这是文学与哲学、科学的最大不同(一株树在科学家、商人和文学家眼中具有截然不同的价值);

但这里所谓的“现实”是通过语言的折射获得的。因此,人与现实的审美关系在相当程度上转化成人与语言的审美关系(唐诗翻译成外语之后就缺少了一份韵味)。因此,语言对文学的背景作用最强。

总之,语言既是科学的“背景”、哲学的“背景”,也是文学的“背景”。科学、哲学、文学等等,都是在语言的“背景”下展开的不同领域的文化活动。语言与它们的关系,是“背景”与“领域”的关系。

第三节课程论的选择:分立与组合

一、在现代学校教育体系以及课程体系中,语言与文学关系的处理方式

首先分立语言与文学,然后在分立的基础上组合为一门课程,就是在保留“语文课”这样的外壳的前提下,重组语文课的内容要素,即语文课=语言课+文学课(这样的观点相当于把语言和文学当作语文课的两大内容要素)。

二、语文课的内容和结构

(一)文学课:其教学目标定位在审美教育上。

1.文学阅读教学;2.文学写作教学

(二)语言课:即母语教育,主要内容包括:

1.汉语语用知识;2.文章教学

高等数学讲义(一)

高等数学基础 高等数学基础课程的学习内容微积分学,它是创建于十七世纪的一门数学学科,创始人是英国数学家牛顿(Newton )和德国数学家莱布尼茨(Leibniz )。用著名学者的话来形容“微积分、或者数学分析,是人类思维的伟大成果之一。它处于自然科学与人文科学之间的地位,使它成为高等教育的一种特别有效的工具”。“微积分的创立,与其说是数学史上,不如说是人类历史上的一件大事。时至今日,它对工程技术的重要性就像望远镜之于天文学,显微镜之于生物学一样。 第1讲 函数 1.2 函数 要知道什么是函数,需要先了解几个相关的概念。 一、常量与变量 先看几个例子: 圆的面积公式 2πr S = 自由活体的下落距离 202 1gt t v s + = 在上述讨论的问题中,g v ,,π0是常量,t s r S ,,,是变量。变量可以视为实属集合(不止一个元素)。 二、函数的定义 定义1.1 设D 是一个非空数集。如果有一个对应规则f ,使得对每一D x ∈,都能对应于唯一的一个数y ,则此对应规则f 称为定义在集合D 上的一个函数,并把数x 与对应的数y 之间的对应关系记为 )(x f y = 并称x 为该函数的自变量,y 为函数值或因变量,D 为定义域。 实数集合 },)(;{D x x f y y Z ∈== 称为函数f 的值域。 看看下面几个例子中哪些是函数: }6,3,1{=X f

}9,8,6,2{=Y f 是函数,且 2)1(=f ,8)3(=f ,6)6(=f 定义域}6,3,1{=D ,值域}8,6,2{=Z ,一般地Y Z ?。 }7,6,3,1{=X }9,8,6,2{=Y f 不是函数。 }6,3,1{=X }9,8,6,2{=Y f 是函数,且 2)1(=f ,8)3(=f ,8)6(=f 定义域}6,3,1{=D ,值域}8,2{=Z 。 }6,3,1{=X }9,8,6,2{=Y f 不是函数。 由函数定义可以得出,函数的对应规则和定义域是确定函数的两个要素,用解析法表示的函数的对应规则就是由表达式确定的,而定义域就是使表达式有意义的所有x 轴上的点。 例1 求函数x y -=1的定义域。 解 在实数范围内要使等式有意义,有 01≥-x 即 f f f

计算方法的课后答案

《计算方法》习题答案 第一章 数值计算中的误差 1.什么是计算方法?(狭义解释) 答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。 2.一个实际问题利用计算机解决所采取的五个步骤是什么? 答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(5 3 -+-=x x x x P 在3-=x 处的值,并编程获得解。 解:400)(2 3 4 5 -+?+-?+=x x x x x x P ,从而 所以,多项式4)(5 3 -+-=x x x x P 在3-=x 处的值223)3(-=-P 。 5.叙述误差的种类及来源。 答:误差的种类及来源有如下四个方面: (1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。 (2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。 (3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。 (4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。这样引起的误差称为舍入误差。 6.掌握绝对误差(限)和相对误差(限)的定义公式。 答:设* x 是某个量的精确值,x 是其近似值,则称差x x e -=* 为近似值x 的绝对误差(简称误差)。若存在一个正数ε使ε≤-=x x e * ,称这个数ε为近似值x 的绝对误差限(简称误差限或精度)。 把绝对误差e 与精确值* x 之比* **x x x x e e r -==称为近似值x 的相对误差,称

高等数学 简明二阶微分方程讲义

高等数学简明二阶微分方程讲义 作者:齐睿添 ————微分方程的理论帮助了很多工程学,物理学中实际 问题的解决 讨论0. 欧拉公式 欧拉公式在二阶线性齐次常系数方程通解的推导和其非齐次方程的自由项为三角函数时的求解过程中有重要的应用. 讨论1. 二阶常系数线性齐次微分方程 实际问题1. 如图,在水平光滑平面上有一物体在弹簧和阻尼器的牵拉下往复运动.阻力f的大小与物体运动速率成正比,阻力f的方向与速度方向相反(f=-cv).

物体的位置随时间如何变化? 设位置函数x=x(t) 已知: F弹=-kx,f=-cv 故由牛顿第二定律: 合力=-kx-cv=ma 即a+(c/m)v+(k/m)x=0 得到微分方程: 记 得到形如下式的方程(*) 这便是一个二阶常系数线性齐次微分方程. 其通解如下表所示: 特征方程

(上表的具体推导与证明详见教材P174-177) 可以发现其通解形式是符合物块运动的直观直觉的. 1)如果阻力很大,弹簧弹性弱,那么物块晃动两下很快就会停止. 这种情况下,列出方程的通解应是表中第一条或者第二条. 例如:取m=1kg, k=3, c=4, 一开始物块位置在+0.5m处, 给予它一个初速度-5 m/s. 我们依照数学习惯将时间(自变量)记为x, 将位置(因变量)记为y. 那么方程为: . 特征方程为,有两个不相等实根 通解为 把初值条件带入 求得 故该例的解为 图像

2)如果阻力很小,弹簧的弹性很强,那么物块将反复往返震荡,幅度随时间越来越小.这种情况下方程通解应是上表第三条. 例如: 取m=1kg,c=3,k=4,一开始物块位置在+0.5m处, 给予它一个初速度-5 m/s. 即为 带入初值条件 C_1=1/2, C_2=-17根号7/14 图像为

高等数学讲义长期班(汪诚义)第八章138162

心之所向,所向披靡 第八章 无穷级数(数学一和数学三) 引言:所谓无穷级数就是无穷多项相加,它与有限项相加有本质不同,历史上曾经对一个无穷级数问题引起争论。例如: ΛΛ+-++-+-+1)1(1111n 历史上曾有三种不同看法,得出三种不同的“和” 第一种 0)11()11()11(=+-++-+-ΛΛ 第二种 1)11()11()11(1=-------ΛΛ 第三种 设S n =+-++-+-+ΛΛ1 )1(1111 则[]S =+-+--Λ11111 ,1S S =- ,12=S 2 1= S 这种争论说明对无穷多项相加,缺乏一种正确的认识。 1) 什么是无穷多项相加?如何考虑? 2) 无穷多项相加,是否一定有“和”? 3) 无穷多项相加,什么情形有结合律,什么情形有交换律等性质。因此对无穷级数的基本概 念和性质需要作详细的讨论。 § 8.1 常数项级数 (甲) 内容要点 一、基本概念与性质 1. 基本概念 无穷多个数ΛΛ,,,,,321n u u u u 依次相加所得到的表达式ΛΛ+++++=∑∞ =n n n u u u u u 3211 称 为数项级数(简称级数)。 ∑===n k k n u S 1 123n u u u u ++++L (Λ,3,2,1=n )称为级数的前n 项的部分和,

{}),3,2,1(Λ=n S n 称为部分和数列。 S u S ,,u S ,S n n n n n n ==∑∑∞ =∞ =∞ →1 1 )(lim 记以且其和为是收敛的则称级数存在若 n n S ∞ →lim 若不存在,则称级数∑∞ =1 n n u 是发散的,发散级数没有和的概念。 (注:在某些特殊含义下可以考虑发散级数的和,但在基础课和考研的考试大纲中不作这种要求。) 2. 基本性质 (1) 如果 ∑∑∑∑∑∞=∞ =∞=∞ =∞=++1 1 1 1 1 )(,n n n n n n n n n n n v b u a ,bv au ,b ,a v u 且等于收敛则为常数皆收敛和 (2) 在级数中增加或减少或变更有限项则级数的收敛性不变。 (3) 收敛级数具有结合律,也即对级数的项任意加括号所得到的新级数仍收敛,而且其和不 变。发散级数不具有结合律,引言中的级数可见是发散的,所以不同加括号后得到级数的情形就不同。 (4) 级数 ∑∞ =1 n n u 收敛的必要条件是 0lim =∞ →n n u (注:引言中提到的级数 ∑∞ =+-1 1 ,) 1(n n 具有∞→n lim ()不存在1 1+-n ,因此收敛级数的必要条件不满 足, ∑∞ =1 n () 1 1+-n 发散。调和级数 ∑ ∞ =1 n n 1满足∞→n lim 但,01=n ∑∞ =1n n 1却是发散的,所以满足收敛级数的必要条件∞ →n lim 0=n u ,而 ∑ ∞ =1 n n u 收敛性尚不能确定。) 3.两类重要的级数 (1)等比级数(几何级数) ∑∞ =0 n n ar ()0≠a 当1

(完整word版)高等数学辅导讲义

第一部分函数极限连续

历年试题分类统计及考点分布 本部分常见的题型 1.求分段函数的复合函数。 2.求数列极限和函数极限。 3.讨论函数连续性,并判断间断点类型。 4.确定方程在给定区间上有无实根。

一、 求分段函数的复合函数 例1 (1988, 5分) 设2 (),[()]1x f x e f x x ?==-且()0x ?≥,求()x ?及其定义域。 解: 由2 ()x f x e =知2 ()[()]1x f x e x ??==-,又()0x ?≥, 则()0x x ?=≤. 例2 (1990, 3分) 设函数1,1 ()0,1 x f x x ?≤?=?>??,则[()]f f x =1. 练习题: (1)设 1,1, ()0,1,(),1,1, x x f x x g x e x ??求[()]f g x 和[()]g f x , 并作出这 两个函数的图形。 (2) 设 20,0,0,0, ()(), ,0,,0, x x f x g x x x x x ≤≤??==??>->??求 [()],[()],[()],[()]f f x g g x f g x g f x . 二、 求数列的极限 方法一 利用收敛数列的常用性质 一般而言,收敛数列有以下四种常用的性质。 性质1(极限的唯一性) 如果数列{}n x 收敛,那么它的极限唯一。 性质2(收敛数列的有界性)如果数列{}n x 收敛,那么数列{}n x 一定有界。 性质3(收敛数列的保号性) 如果lim n n x a →∞ =,且0a >(或0a <),那么存在 0n N +∈,使得当0n n >时,都有0n x >(或0n x <). 性质4(数列极限的四则运算法则) 如果,,lim lim n n n n x a y b →∞ →∞ ==那么 (1)()lim n n n x y a b →∞ ±=±; (2)lim n n n x y a b →∞ ?=?; (3)当0()n y n N +≠∈且0b ≠时,lim n n n x a y b →∞ =.

第一性原理计算方法讲义

第一性原理计算方法讲 义 标准化管理部编码-[99968T-6889628-J68568-1689N]

第一性原理计算方法 引言 前面讲述的有限元和有限差分等数值计算方法中,求解的过程中需要知道一些物理参量,如温度场方程中的热传导系数和浓度场方程中的扩散系数等,这些参量随着材料的不同而改变,需要通过实验或经验来确定,所以这些方法也叫做经验或者半经验方法。而第一性原理计算方法只需要知道几个基本的物理参量如电子质量、电子的电量、原子的质量、原子的核电荷数、布朗克常数、波尔半径等,而不需要知道那些经验或半经验的参数。第一性原理计算方法的理论基础是量子力学,即对体系薛定额方程的求解。 量子力学是反映微观粒子运动规律的理论。量子力学的出现,使得人们对于物质微观结构的认识日益深入。原则上,量子力学完全可以解释原子之间是如何相互作用从而构成固体的。量子力学在物理、化学、材料、生物以及许多现代技术中得到了广泛的应用。以量子力学为基础而发展起来的固体物理学,使人们搞清了“为什么物质有半导体、导体、绝缘体的区别”等一系列基本问题,引发了通讯技术和计算机技术的重大变革。目前,结合高速发展的计算机技术建立起来的计算材料科学已经在材料设计、物性研究方面发挥着越来越重要的作用。 但是固体是具有~1023数量级粒子的多粒子系统,具体应用量子理论时会导致物理方程过于复杂以至于无法求解,所以将量子理论应用于固体系统必须采用一些近似和简化。绝热近似(Born-Oppenheimei近似)将电子的运动和原子核的运动分开,从而将多粒子系统简化为多电子系统。Hartree-Fock近似将多电子问题简化为仅与以单电子波函数(分子轨道)为基本变量的单粒子问题。但是其中波函数的行列式表示使得求解需要非常大的计算量;对于研究分子体系,他可以作为一个很好的出发点,但是不适于研究固态体系。1964年,Hohenberg和Kohn提出了严格的密度泛函理论(Density Functional Theory, DFT)。它建立在非均匀电子气理论基础之上,以粒子数密度()r 作为基本变量。1965年,Kohn和Sham提出Kohn-Sham方程将复杂的多电子问题及其对应的薛定谔方程转化为相对简单的单电子问题及单电子Kohn-Sham方程。将精确的密度泛函理论应用到实际,需要对电子间的交换关联作用进行近似。局域密度近似(LDA)、广义梯度近似(GGA)等的提出,以及以密度泛函理论为基础的计算方法(赝

经典的考研数学辅导书比较

考研数学辅导书比较,一个比较经典的帖子,重温一下。 1.李永乐考研数学复习全书 题型很全面,内容很充实(线代和概率很不错,微积分稍逊)难度要高于真题,所谓的简单是命题的风格 很常规,没有什么剑走偏锋让人一下傻眼的题,考研真题不正是这样的吗? 做熟练(我不知道怎么叫做透哈)120以上真不难,135以上就要看临场发挥。 --------------------------------------------------------------------------------------------------------------------------------------------------------- 2.陈文灯考研数学复习指南 个别题其实已经很陈旧了,难度也有被夸大的嫌疑。很大一部分也是注重基础的题只是不像全书加以强调 和总结,微积分部分题型归纳很好,个别题有难度(真不多),但有助于锻炼思维。线代和概率内容显单 薄。 PS:无穷级数,积分,不等式证明,泰勒公式,中值定理等是精华,做过思路会很清晰。传说,考高分要 做指南,我想,是因为指南在你有一定基础之后,能对你的思维有一个提炼吧。 --------------------------------------------------------------------------------------------------------------------------------------------------------- 3.蔡燧林考研数学标准全书 微积分部分例题精华,讲解很深入,给人醍醐灌顶的感觉。所谓精华就是不会边边角角都涉及到的意思, 所以还是要做点非精华的练习(比如全书??^_^) 线代一般,概率一般,纸张一般,印刷一般。 ps :章后练习很多,但一定要做,那个也是精华。 --------------------------------------------------------------------------------------------------------------------------------------------------------- 4.水木艾迪微积分通用讲义 配合水木的视频,很好的哈。把解题中的疑难提出来,然后列举例题加以解决分析。章前的知识点讲解也 很好,选题很也典型。总之,比全书微积分要好,值得一读。 PS:多元微分,一元微积分非常好。 --------------------------------------------------------------------------------------------------------------------------------------------------------- 5.赵达夫高等数学辅导讲义 体例不好,一堆知识点,一堆练习,一堆解答。章后练习选题还是很好的,不一定很难,但非常典型。但 PS:只靠这一本书是不够的。是不是叫不给力? --------------------------------------------------------------------------------------------------------------------------------------------------------- 6.黄庆怀高等数学辅导教材 同学们骂我书托吧,我做了这么多书,最想推荐的就是这本了。 体例好,内容全,例题典型,归纳完整,练习题保质保量。唯一稍差是讲解不够(全书和标

高中物理竞赛辅导讲义_微积分初步

微积分初步 一、微积分的基本概念 1、极限 极限指无限趋近于一个固定的数值 两个常见的极限公式 0sin lim 1x x x →= *1lim 11x x x →∞??+= ??? 2、导数 当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限叫做导数。 0'lim x dy y y dx x ?→?==? 导数含义,简单来说就是y 随x 变化的变化率。 导数的几何意义是该点切线的斜率。 3、原函数和导函数 对原函数上每点都求出导数,作为新函数的函数值,这个新的函数就是导函数。 00()()'()lim lim x x y y x x y x y x x x ?→?→?+?-==?? 4、微分和积分 由原函数求导函数:微分 由导函数求原函数:积分 微分和积分互为逆运算。 例1、根据导函数的定义,推导下列函数的导函数 (1)2y x = (2) (0)n y x n =≠ (3)sin y x = 二、微分 1、基本的求导公式 (1)()'0 ()C C =为常数 (2)()1' (0)n n x nx n -=≠ (3)()'x x e e = *(4)()'ln x x a a a = (5)()1ln 'x x = *(6)()1log 'ln a x x a =

(7)()sin 'cos x x = (8)()cos 'sin x x =- (9)()21tan 'cos x x = (10)()21cot 'sin x x = **(11)() arcsin 'x = **(12)()arccos 'x = **(13)()21arctan '1x x =+ **(14)()2 1arccot '1x x =-+ 2、函数四则运算的求导法则 设u =u (x ),v =v (x ) (1)()'''u v u v ±=± (2)()'''uv u v uv =+ (3)2'''u u v uv v v -??= ??? 例2、求y=tan x 的导数 3、复合函数求导 对于函数y =f (x ),可以用复合函数的观点看成y =f [g (x)],即y=f (u ),u =g (x ) 'dy dy du y dx du dx == 即:'''u x y y u = 例3、求28(12)y x =+的导数 例4、求ln tan y x =的导数 三、积分 1、基本的不定积分公式 下列各式中C 为积分常数 (1) ()kdx kx C k =+?为常数 (2)1 (1)1n n x x dx C n n +=+≠-+?

高数辅导讲义(4)

第三章 一元函数积分学 §3.1 不定积分 甲 内容要点 一.基本概念与性质 1.原函数与不定积分的概念 设函数()x f 和()x F 在区间I 上有定义,若()()x f x F ='在区间I 上成立,则称()x F 为()x f 在区间 I 上的原函数,()x f 在区间I 中的全体原函数称为()x f 在区间I 的不定积分,记以()?dx x f 。其中?称 为积分号,x 称为积分变量,()x f 称为被积函数,()dx x f 称为被积表达式。 2.不定积分的性质 设 ()()C x F dx x f +=?,其中()x F 为()x f 的一个原函数,C 为任意常数。 则(1)()()C x F dx x F +='? 或 ()()? +=C x F x dF (2) ()[]()x f dx x f ='? 或 ()[]()dx x f dx x f d =? (3)()()? ? =dx x f k dx x kf (4) ()()[]()()???±=±dx x g dx x f dx x g x f 3.原函数的存在性 设()x f 在区间I 上连续,则()x f 在区间I 上原函数一定存在,但初等函数的原函数不一定是初等函数。例如() ?dx x 2sin ,() ?dx x 2 cos , ?dx x x sin ,?dx x x cos ,?x dx ln ,dx e x ?-2 等。被积函数有原函数, 但不能用初等函数表示,故这些不定积分均称为积不出来。

二.基本积分公式 1.C x dx x ++= ?+1 1 ααα (),实常数1-≠α 2. ?+=C x dx x ln 1 3.?+=C a a dx a x x ln 1 ()1,0≠>a a C e dx e x x +=? 4.? +=C x xdx sin cos 5.? +-=C x xdx cos sin 6.C x dx x xdx +== ??tan cos 1 sec 22 7.C x dx x xdx +-==??cot sin 1csc 2 2 8.C x xdx x +=? sec sec tan 9.C x xdx x +-=? csc csc cot 10.C x xdx +-=? cos ln tan 11.C x xdx +=? sin ln cot 12.C x x xdx ++=? tan sec ln sec 13.C x x xdx +-=? cot csc ln csc 14. ? +=-C a x x a dx arcsin 2 2 ()0>a 15. C a x a x a dx +=+?arctan 122 ()0>a 16. C x a x a a x a dx +-+=-?ln 2122 ()0>a 17. C a x x a x dx +±+=±? 222 2ln () 0>a

计算方法作业第一章

习题二 1. 用二分法求方程0134=+-x x 在区间【0.3,0.4】内的根,要求误差不超过2102 1-?。 3.方程0123=--x x 在1.5附近有根,把方程写成4种不同的等价形式,并建立相应的迭代公式。 (1)231x x +=,32 11n n x x +=+ (2)211x x + =,=+1n x 211n x + (3)1 1 2 -= x x ,=+1n x 1 1-n x

(4)132-=x x ,= +1n x 13-n x 4.用迭代法求02.05 =--x x 的正根,要求准确到小数点后第5位 解:迭代公式:512.0+=+x x n 7.用迭代-加速公式求方程x e x -=在x=0.5附近的根,要求准确到小数点后第4位 解:迭代公式:x n e x -+=1,n n x q q x q x ---= +1111 8用埃特金加速法求方程13 -=x x 在区间【1,1.5】内的根,要求准确到小数点后第4位 解:迭代公式:13 1-=+x x n ,13 12-=++n n x x ,n n n n n n n x x x x x x x +--= ++-++122 1 212

9.用牛顿法求方程0133=--x x 在20=x 附近的根,要求准确到小数点后第3位 解:迭代公式:3 31 32 31 ----=+n n n n n x x x x x 11.分别用单点和双点弦截法求方程013 =--x x 在【1,1.5】内的根,要求 51102 1 ||-+?≤ -n n x x 解:单点:)111() 111()1(1 13 1--------- =+n n n n x x x x 双点:)1() 1()1(3 13 1311--------- =---+n n n n n n n n n n x x x x x x x x x x

高等数学讲义第八章

第八章 无穷级数 常数项级数 一、基本概念与性质 1. 基本概念 无穷多个数Λ Λ,,,,,321n u u u u 依次相加所得到的表达式 ΛΛ+++++=∑∞ =n n n u u u u u 3211 称为数项级数(简称级数)。 ∑===n k k n u S 1 123n u u u u ++++L (Λ,3,2,1=n )称为级数的前n 项的部分和, {}),3,2,1(Λ=n S n 称为部分和数列。 S u S ,,u S ,S n n n n n n ==∑∑∞ =∞ =∞ →1 1 )(lim 记以且其和为是收敛的则称级数存在若 n n S ∞ →lim 若不存在,则称级数∑∞ =1 n n u 是发散的,发散级数没有和的概念。 (注:在某些特殊含义下可以考虑发散级数的和,但在基础课和考研的考试大纲中不作这种要求。) 2. 基本性质 (1) 如果 ∑∑∑∑∑∞=∞ =∞=∞ =∞=++1 1 1 1 1 )(,n n n n n n n n n n n v b u a ,bv au ,b ,a v u 且等于收敛则为常数皆收敛和 (2) 在级数中增加或减少或变更有限项则级数的收敛性不变。 (3) 收敛级数具有结合律,也即对级数的项任意加括号所得到的新级数仍收敛, 而且其和不变。发散级数不具有结合律,引言中的级数可见是发散的,所以不同加括号后得到级数的情形就不同。 (4) 级数∑∞ =1n n u 收敛的必要条件是0lim =∞ →n n u (注:引言中提到的级数∑∞ =+-1 1,)1(n n 具有∞ →n lim ()不存在1 1+-n ,因此收敛级数的必要条 件不满足,∑ ∞ =1 n () 1 1+-n 发散。调和级数∑ ∞ =1 n n 1满足∞→n lim 但,01=n ∑∞ =1n n 1却是发散 的,所以满足收敛级数的必要条件∞ →n lim 0=n u ,而∑∞ =1 n n u 收敛性尚不能确定。) 3.两类重要的级数 (1)等比级数(几何级数) ∑∞ =0 n n ar ()0≠a

第一性原理计算方法讲义

第一性原理计算方法 引言 前面讲述的有限元和有限差分等数值计算方法中,求解的过程中需要知道一些物理参量,如温度场方程中的热传导系数和浓度场方程中的扩散系数等,这些参量随着材料的不同而改变,需要通过实验或经验来确定,所以这些方法也叫做经验或者半经验方法。而第一性原理计算方法只需要知道几个基本的物理参量如电子质量、电子的电量、原子的质量、原子的核电荷数、布朗克常数、波尔半径等,而不需要知道那些经验或半经验的参数。第一性原理计算方法的理论基础是量子力学,即对体系薛定额方程的求解。 量子力学是反映微观粒子运动规律的理论。量子力学的出现,使得人们对于物质微观结构的认识日益深入。原则上,量子力学完全可以解释原子之间是如何相互作用从而构成固体的。量子力学在物理、化学、材料、生物以及许多现代技术中得到了广泛的应用。以量子力学为基础而发展起来的固体物理学,使人们搞清了“为什么物质有半导体、导体、绝缘体的区别”等一系列基本问题,引发了通讯技术和计算机技术的重大变革。目前,结合高速发展的计算机技术建立起来的计算材料科学已经在材料设计、物性研究方面发挥着越来越重要的作用。 但是固体是具有?1023数量级粒子的多粒子系统,具体应用量子理论时会导致物理方程过于复杂以至于无法求解,所以将量子理论应用于固体系统必须采用一些近似和简化。绝热近似(Born-Oppenheimei 近似)将电子的运动和原子核的运动分开,从而将多粒子系统简化为多电子系统。Hartree-Fock 近似将多电子问题简化为仅与以单电子波函数(分子轨道)为基本变量的单粒子问题。但是其中波函数的行列式表示使得求解需要非常大的计算量;对于研究分子体系,他可以作为一个很好的出发点,但是不适于研究固态体系。1964年,Hohenberg和Kohn提出了严格的 密度泛函理论(Density Functional Theory, DFT )。它建立在非均匀电子气理论基础之上,以粒子数密度(『)作为基本变量。1965年,Kohn和Sham提出Kohn-Sham方程将复杂的多电子问题及其对应的薛定谔方程转化为相对简单的单电子问题及单电子Kohn-Sham方程。将精确的密度泛函理 论应用到实际,需要对电子间的交换关联作用进行近似。局域密度近似(LDA、广义梯度近似(GGA 等的提出,以及以密度泛函理论为基础的计算方法(赝势方法、全电子线形缀加平面波方法(FLAPW)等、的提出,使得密度泛函理论在化学和固体物理中的电子结构计算取得了广泛的应用,从而使得固体材料的研究取得长足的进步。 第一性原理计算方法的应用 1、体系的能量

(完整word版)高等数学辅导讲义.doc

第一部分函数极限连续 函数、极限、 连续 函数极限连续 函数概念函数的四种反函数与复初等函数数列极限函数极限连续概念间断点分类初等函数的连闭区间上连续特征合函数续性函数的性质 函数的有界数列极限的函数极限的第一类间断有界性与最大性定义定义点值最小值定理函数的单调收敛数列的函数极限的可去间断点零点定理性性质性质 函数的奇偶极限的唯一函数极限的跳跃间断点 性性唯一性 函数的周期收敛数列的函数极限的第二类间断 性有界性局部有界性点 收敛数列的函数极限的 保号性局部保号性 数列极限四函数极限与数 则运算法则列极限的关系 极限存在准函数极限四 则则运算法则 夹逼准则两个重要极 限 单调有界准无穷小的比 则较 高阶无穷小 低阶无穷小 同阶无穷小 等价无穷小

历年试题分类统计及考点分布 考点复合函数极限四则两个重要单调有界无穷小的合计 运算法则极限准则阶 年份 1987 1988 5 3 8 1989 1990 3 3 6 1991 5 3 8 1992 3 3 1993 5 3 8 1994 3 3 1995 3 3 1996 3 6 3 12 1997 3 3 1998 1999 2000 5 5 2001 2002 2003 4 4 8 2004 4 4 2005 2006 12 3 15 2007 4 4 2008 4 4 2009 4 4 2010 4 4 2011 10 10 20 合计8 18 37 32 27 本部分常见的题型 1.求分段函数的复合函数。 2.求数列极限和函数极限。 3.讨论函数连续性,并判断间断点类型。 4.确定方程在给定区间上有无实根。

计算方法讲义:六 函数逼近

第六章 函数逼近 用简单的函数近似代替复杂函数,是计算数学中最基本的方法之一。近似又 称为逼近,被逼近的函数与逼近函数之差)()()(x p x f x R -=称为逼近的误差或余项。 简单函数:仅用加、减、乘、除。多项式是简单函数。插值也可 以理解为一种逼近形式。用 Taylor 展开: 10)1(00) (000)()! 1()()(!)())(()()(++-++-+ -'+=n n n n x x n f x x n x f x x x f x f x f ξ 的部分和逼近f (x )也是一种逼近方法,其特点是:x 越接近于x 0,误差就越小。如何在给定精度下求出计算量最小的近似式,这就是函数逼近要解决的问题。逼近的度量标准有:一致逼近和平方逼近。 6.1 函数内积 本节介绍几个基本定义:权函数、内积、正交、正交函数系。 定义1 设ρ (x )定义在有限或无限区间[a , b ]上,若具有下列性质:(1) ρ (3) 对非负的连续函数g (x ),若?=b a dx x x g 0)()(ρ,则在(a , b )上g (x ) ≡ 0,称ρ (x )为[a , b ]上的权函数。 常用权函数有:2 11)(],1,1[x x -= -ρ; x e x -=∞)(],,0[ρ;2 )(],,[x e x -=∞+-∞ρ;1)(],1,1[=-x ρ等。 定义2 设f (x ),g (x ) ∈ C [a , b ],ρ (x )是[a , b ]上的权函数,则称 ?=b a dx x g x f x g f )()()(),(ρ为f (x )与g (x )在[a , b ]上以ρ (x )为权函数的内积。 内积有如下性质:(1) (f , f )≥0,且(f , f )=0 ? f = 0;(2) (f , g ) = (g , f );

[整理]考研数学高数定积分公开课讲义(汤家凤)

课程配套讲义说明1、配套课程名称2013年考研数学高数中值定理及定积分公开课(汤家凤) 2、课程内容 此课程为2013年考研数学高数部分的公开课,主要讲授定积分部分。 3、主讲师资 汤家凤——主讲高等数学、线性代数。 著名考研辅导专家,南京大学博士,南京工业大学教授,江苏省大学生数学竞赛优秀指导教师。凭借多年从事考研阅卷工作的经验,通过自己的归纳总结,在课堂上为学生列举大量以往考过的经典例子。深入浅出,融会贯通,让学生真正掌握正确的解题方法。 4、讲义: 6页(电子版) 文都网校 2011年5月27日

公开课二:定积分理论 一、实际应用背景 1、运动问题—设物体运动速度为)(t v v =,求],[b a t ∈上物体走过的路程。 (1)取b t t t a n =<<<= 10,],[],[],[],[12110n n t t t t t t b a -???= , 其中)1(1n i t t t i i i ≤≤-=?-; (2)任取)1](,[1n i x x i i i ≤≤∈-ξ,i n i i t f S ?≈ ∑=)(1ξ; (3)取}{max 1i n i x ?=≤≤λ,则i n i i x f S ?=∑=→)(lim 1 ξλ 2、曲边梯形的面积—设曲线)(0)(:b x a x f y L ≤≤≥=,由b x a x L ==,,及x 轴围成的区域称为曲边梯形,求其面积。 (1)取b x x x a n =<<<= 10,],[],[],[],[12110n n x x x x x x b a -???= , 其中)1(1n i x x x i i i ≤≤-=?-; (2)任取)1](,[1n i x x i i i ≤≤∈-ξ,i n i i x f A ?≈ ∑=)(1ξ; (3)取}{max 1i n i x ?=≤≤λ,则i n i i x f A ?=∑=→)(lim 1 ξλ。 二、定积分理论 (一)定积分的定义—设)(x f 为],[b a 上的有界函数, (1)取b x x x a n =<<<= 10,],[],[],[],[12110n n x x x x x x b a -???= , 其中)1(1n i x x x i i i ≤≤-=?-; (2)任取)1](,[1n i x x i i i ≤≤∈-ξ,作 i n i i x f ?∑=)(1 ξ; (3)取}{m a x 1i n i x ?=≤≤λ, 若i n i i x f ?∑=→)(lim 1 ξλ存在,称)(x f 在],[b a 上可积,极限称为) (x f 在],[b a 上的定积分,记 ? b a dx x f )(,即?b a dx x f )(i n i i x f ?=∑=→)(lim 1 ξλ。

三年级数学巧算加减法综合讲义

专题分析: 加减巧算主要是运用“凑整”的方法,把接近整十、整百、整千的数看做所接近的数进行简算。凑整之后,对于原数与整十、整百、整千……相差的数,要根据“多加要减去,少加要加上,多减要加上,少减要减去”的原则进行处理。另外,可结合加法交换律、结合律及减法性质凑整,从而达到简算目的。 在进行加减运算时,为了又快又准确,除了要熟练地掌握计算法则外,还需要掌握一些巧算方法。加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千......的数,再将各组的结果求和。这种“化零为整”的思想是加减法巧算的基础。加法具有以下两个运算律: (1)加法交换律:两个数相加,交换加数的位置,它们的和不变。即a+b=b+a 一般地,多个数相加,任意改变相加的次序,其和不变。 (2)加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个相加,再与第一个数相加,它们的和不变。即a+b+c=(a+b)+c=a+(b+c) 借数凑整法:直观上凑整不明显的可以“借数”凑整。 (1)在加、减法混合运算中,去括号时,如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“—”号,那么去掉括号后,括号内的数的运算符号“+”变为“—”,变为“+”。例如, (2)在加减法混合运算中,添括号时,如果添加的括号前面是“+”号,那么括号内的数的原运算符号不变;如果添加的括号前面“—”号,那么括号内的数的原运算符号“+”变为“—”,“—”变为“+” 在进行加减运算时,为了又快又准确地算出结果,除了要熟练地掌握运算法则外,还需要掌握一些常用运算方法和技巧。 ?在速算与巧算中常用的三大基本思想: 1.凑整(目标:整十整百整千...) 2.分拆(分拆后能够凑成整十整百整千...) 3.组合(合理分组再组合 ) 加法交换律:两个数相加,交换加数的位置,它们的和不变。即 a+b=b+a。一般地,多个数相加,任意改变相加的次序,其和不变。 加法结合律:几个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。即a+b+c = (a+b)+c = a+(b+c),

数值计算方法第一章

第一章 绪 论 本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题. §1.1 引 言 计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。 由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括 (1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法; (3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等 从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关. 计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差. 我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断, 从而产生截断误差. 如 +++=! 21 !111e 的计算是无穷过程,当用 ! 1 !21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了 截断误差e e n -.

高等数学讲义

第一章 函数、极限、连续 §1.1 函数 一、有关四种性质(奇偶性、单调性、周期性、有界性) 1. 0 () (0)()2() ()a a a f x a f x dx f x dx f x ->?? =???? ?当为奇函数当为偶函数 口诀(1):奇偶函数常遇到;对称性质不可忘。 2. 在(a,b )内,若()0f x '>,则()f x 单调增加 若()0f x '<,则()f x 单调减少 口诀(2):单调增加与减少;先算导数正与负 例1 求1 51 [()ln(.x x I x x e e x dx --= +-+? 解 1()x x f x e e -=-是奇函数, ∵112()(),()ln(x x f x e e f x f x x --=-=-=+是奇 函数, ∵ 222()ln(ln f x x -=-+ = 2ln1ln(()x f x =-=- 因此()ln(x x x e e x --是奇函数。 于是1 1 6 61 2027 I x dx x dx -= +== ? ?。 例2 设()()F x f x '=,则下列结论正确的是 (A)若()f x 为奇函数,则()F x 为偶函数。 (B)若()f x 为偶函数,则()F x 为奇函数。 (C)若()f x 为周期函数,则()F x 为周期函数。 (D)若()f x 为单调函数,则()F x 为单调函数。 解 (B)不成立,反例3 2 (),()13 x f x x F x ==+ (C)不成立,反例()cos 1,()sin f x x F x x x =+=+ (D)不成立,反例2 ()2,()(,)f x x F x x ==-∞+∞在内 (A)成立。 证明 0 ()(0)(),x F x F f t dt f =+ ? 为奇函数,

考研数学之高等数学讲义第一章(考点知识点+概念定理总结)

高等数学讲义 目录 第一章函数、极限、连续 (1) 第二章一元函数微分学 (24) 第三章一元函数积分学 (49) 第四章常微分方程 (70) 第五章向量代数与空间解析几何 (82) 第六章多元函数微分学 (92) 第七章多元函数积分学 (107) 第八章无穷级数(数一和数三) (129)

第一章 函数、极限、连续 §1.1 函数 (甲) 内容要点 一、函数的概念 1.函数的定义 2.分段函数 3.反函数 4.隐函数 二、基本初等函数的概念、性质和图象 三、复合函数与初等函数 四、考研数学中常出现的非初等函数 1.用极限表示的函数 (1) )(lim x f y n n ∞→= (2) ),(lim x t f y x t →= 2.用变上、下限积分表示的函数 (1) ?= x a dt t f y )( 其中)(t f 连续,则)(x f dx dy = (2) ?= )()(21)(x x dt t f y ?? 其中)(),(21x x ??可导,)(t f 连续, 则2211[()]()[()]()dy f x x f x x dx ????''=- 五、函数的几种性质 1. 有界性:设函数)(x f y =在X 内有定义,若存在正数M ,使X x ∈都有M x f ≤)(,则称)(x f 在X 上是有界的。 2. 奇偶性:设区间X 关于原点对称,若对X x ∈,都有)()(x f x f -=-,则称)(x f 在X 上是奇函数。 若对X x ∈,都有()()f x f x -=,则称)(x f 在X 上是偶函数,奇函数的图象关于原点对称;偶函数图象关于y 轴对称。 3. 单调性:设)(x f 在X 上有定义,若对任意X x X x ∈∈21,,21x x <都有)()(21x f x f < )]()([21x f x f >则称)(x f 在X 上是单调增加的[单调减少的];若对任意1x X ∈,2,x X ∈12x x <都有1212()()[()()]f x f x f x f x ≤≥,则称)(x f 在X 上是单调不减[单调不增] (注意:有些书上把这里单调增加称为严格单调增加;把这里单调不减称为单调增加。)

相关文档
最新文档