矿井瓦斯防治考试总结

矿井瓦斯防治考试总结
矿井瓦斯防治考试总结

1、瓦斯的定义、广义和狭义瓦斯的概念

广义的矿井瓦斯是指井下以甲烷为主的有毒、有害气体的总称;

狭义的矿井瓦斯是指甲烷;

2、瓦斯在煤层中的赋存状态

甲烷在煤中呈两种状态存在:

在渗透空间的甲烷主要呈自由气态,称为游离瓦斯。这种状态的瓦斯以自由气体状态存在于煤层孔隙或围岩的孔洞之中,其分子可自由运动,呈现出压力并服从自有气体定律。游离瓦斯量的多少与贮存空间的容积和瓦斯压力成正比,与瓦斯温度成反比;

另一种在微孔内主要呈吸附状态存在于微孔表面上和在煤的粒子内部占据着煤分子结构的空穴或煤分子之间的空间(后两者中的瓦斯可称为固溶体,包括在吸附态中)。在300~1200m采深、中等变质煤中,游离瓦斯仅占5~12%,其余为吸附瓦斯。

3、吸附常数a,b值的定义、意义以及煤的吸附性能影响因素

在等温情况下,吸附量与瓦斯压力的关系曲线为:

式中,a——吸附常数,表示在给定温度下,单位质量固体的表面饱和吸附气体时,吸附的气体体积,m3/t,一般为15~55m3/t;

b——吸附常数,MPa-1;

p——吸附平衡时的瓦斯压力,MPa。

在瓦斯压力低时,分母中的bp相对于1可忽略不计,此时x与p成正比;

在压力很高时,分母中的1相对于bp可忽略不计,此时x≈a,吸附达到了饱和。

吸附性能的影响因素:

每克煤吸附的气体量叫做吸附量,与气体的性质、固体表面性质、温度、压力及煤中水分有关。

①瓦斯压力的影响:在给定温度下,吸附瓦斯含量与瓦斯压力的关系呈双曲线变化;

②温度的影响:温度每升高1℃,吸附瓦斯的能力降低约8%;

③瓦斯性质的影响:对于指定的煤,在给定的温度与瓦斯压力下,CO2的吸附量比CH4高,而CH4的吸附量又比N2高;

④煤化变质程度的影响:煤的煤化程度反映其比表面积大小与化学组成,一般讲从挥发分为20%~26%的煤到无

烟煤,吸附量呈快速地增加;

⑤煤中水分的影响:水分的增加使煤的吸附能力降低。

4、煤层瓦斯压力的定义及压力梯度

煤层瓦斯压力是煤层孔隙内气体分子自由热运动撞击所产生的作用力,它在某一点上各向大小相等,方向与孔隙壁垂直。它是测定煤层瓦斯含量、瓦斯涌出速率及瓦斯动力现象的一个最重要参数。

在甲烷带内,煤层的瓦斯压力随深度的增加而增加,多数煤层呈线性增加,但瓦斯压力梯度随地质条件而异,相同深度的同一煤层具有大体相同的瓦斯压力,可以按下式预测深部煤层的瓦斯压力:

式中,p——甲烷带内深度为H(m)煤层瓦斯压力,MPa;

P’——甲烷带内深度为H’(m)已知的煤层瓦斯压力,MPa;

C——瓦斯压力梯度,MPa/m,一般变化范围为0.01±0.005。

5、煤层瓦斯压力的测定原理及如何加快瓦斯压力的平衡

①原理

煤层瓦斯压力的测量,通常是从围岩巷道向煤层打一孔径为50~75mm的钻孔,钻孔中放置测压管,将孔封闭后用压力表直接测定孔内气体的压力。

其原理是:用钻头钻进煤层,形成一个体积较小压力降低的封闭气室,当周围煤层中的瓦斯在压力差的作用下,向封闭气室这个狭小空间渗流时,封闭气室的瓦斯压力逐渐接近煤层的原始瓦斯压力,由连接气室上的压力表可以读取稳定后的煤层瓦斯压力。

②加快瓦斯压力平衡

加大打孔直径,增大煤孔瓦斯渗流移动;快速地封堵岩石裂隙;可靠、快速的密封方式;封孔装置能够自由控制封孔深度。

6、瓦斯的垂向分带及产生的原因

当煤层具有露头或在冲积层之下有含煤盆地时,在煤层内存在两个不同方向的气体运移,即煤层生成的瓦斯由深部向上运移;而地面空气、表土中的生物化学反应生成的气体向煤层深部渗透扩散,从而使赋存在煤层内的瓦斯表现出垂向分带特征。

煤层瓦斯的带状分布是煤层瓦斯含量及蜕变矿井瓦斯涌出量预测的基础,也是搞好瓦斯管理的依据。

煤层瓦斯沿垂向一般可分为两个带:瓦斯风化带、甲烷带。

7、煤的孔隙特征

为研究瓦斯的赋存与流动,煤中的孔隙分为:

微微孔——其直径<10-6mm;微孔——其直径<10-6~10-5mm;小孔——其直径=10-5~10-4mm;中孔——其直径=10-4~10-3mm;大孔——其直径=10-3~10-1mm;可见孔及裂隙——其直径>10-1mm,它决定了煤的宏观(硬和中硬煤)破坏面。

一般,把小孔以下孔隙之和称为吸附容积;小孔至可见孔的孔隙体积之和称为渗透容积;把吸附容积与渗透容积之和称为总孔隙体积,煤的总孔隙体积占相应煤的体积的百分比称为煤的孔隙率,以%表示。

煤是孔隙体,其中含有大量的表面积,微微孔和微孔孔隙体积还不到微微孔至中孔孔隙体积的55%,而其孔隙表面积却占整个表面积的97%以上。微孔发育的煤,尽管其孔隙率可能不高,可是却有相当可观的表面积。随着挥发分的减小即煤化程度的增加,煤的比表面积大大增加。

影响煤孔隙率大小的主要原因:

①孔隙率与煤化程度的关系

从长焰煤开始,随着煤化程度的加深(挥发分减小)煤的总孔隙体积逐渐减小,到焦、瘦煤的时候达到最低值,而后随煤化程度的加深,总孔隙体积又逐渐增加,至无烟煤时达到最大值。然而,煤中的微孔体积随着煤化程度加深而增长。

②孔隙率与煤的破坏程度的关系

大孔决定于强烈的地质构造破坏煤的破坏面,因此煤的破坏越严重,其渗透容积越高,即孔隙率越大。

③孔隙率与地应力的关系

压性的地应力(压应力)可使渗透容积缩小,压应力越高,渗透容积缩小越多,即孔隙率减小越多;

张性的地应力(张应力)可使裂隙张开,使渗透容积增大,张应力越高,渗透容积增长越多,即孔隙率增加越多;

卸压(地应力减小)作用可使煤(岩)的渗透容积增大,即孔隙率增高;

增压(地应力增高)作用可使煤(岩)受到压缩,渗透容积减小,即孔隙率降低。

试验表明,地应力并不减小煤的吸附体积,或减少的不多(因大孔及可见孔的表面积减少),因此地应力对煤

的吸附性影响很小。

8、煤层瓦斯含量的计算

①煤的游离瓦斯含量

式中,X y——煤的游离瓦斯含量,m3/t;

V——单位质量煤的孔隙容积,m3/t;

p——煤层瓦斯压力,MPa;

T0,p0——标况下的绝对温度(273K)与绝对压力(0.101325MPa);

T——瓦斯的绝对温度,K(T=273+t,t为瓦斯的摄氏温度,℃)

ξ——瓦斯压缩系数,其中甲烷系数见表。

②煤的吸附瓦斯含量

式中,t0——实验室测定煤的吸附常数时的试验温度,℃;

t——煤层温度,℃;

n——经验系数;

p——煤层瓦斯压力,

a,b——煤的吸附常数;

A,W——煤中灰分和水分,%;

X x——煤的吸附瓦斯含量,m3/t。

③煤的瓦斯含量

9、瓦斯的基本性质

甲烷是无色、无味、无嗅、可以燃烧或爆炸的气体。它对人呼吸的影响同氮相似,可使人窒息。当甲烷浓度为43%时,空气中相应的氧浓度即降到12%,人感到呼吸非常短促;当甲烷浓度在空气中达57%时,相应的氧浓度被冲淡到9%,人即刻处于昏迷状态,有死亡危险。

甲烷分子直径0.41nm,其扩散速度是空气的1.34倍,它会很快地扩散到巷道空间。甲烷的密度为0.716kg/m3(标准状况下),为空气密度的0.554倍。甲烷的化学性质不活泼,微溶于水,在101.3kPa条件下,当温度20℃时100L 水可溶于3.31L;0℃时可溶解5.56L甲烷。

甲烷在巷道断面内的分布取决于该巷有无瓦斯涌出源。在自然条件下,由于甲烷在空气中表现强扩散性,所以它一经与空气均匀混合,就不会因其比重较空气轻而上浮、聚积,所以当无瓦斯涌出时,巷道断面内甲烷的浓度是均匀分布的,当有瓦斯涌出时,甲烷浓度则呈不均匀分布。在有瓦斯涌出的侧壁附近甲烷的浓度高,有时见到在巷道顶板、冒落区顶部积存瓦斯,这并不是由于甲烷的密度比空气小,而是说明这里的顶部有瓦斯(源)在涌出。

1、煤层瓦斯流场的分类、定义及如何区分

①定义

煤层内瓦斯流动空间的范围称为流场。在流场内,瓦斯呈现流动,可用流向、流速与压力来描述。

②分类

1)按流向分类

(1)单向流场

只有一个方向有流速,其它两个方向流速为零。如薄及中厚煤层中的煤巷周围煤壁内的瓦斯流动。

(2)径向流场

在x、y、z三维空间内,在两个方向有分速度,第三个方向的分速度为零。并且其等瓦斯压力线平行煤壁呈近似同心圆形。例如石门、竖井、钻孔垂直穿透煤层时的流场。

(3)球向流场

在x、y、z三维空间内,在三个方向都有分速度,并且其等压力线近似为球面。例如钻孔或石门刚进入煤层时以及采落的煤块从其中涌出瓦斯的流动都属于这一类。

2)按稳定性分类

按流场在时间上有无变化,可分为稳定和非稳定两类。稳定流场中任何一点的流速、流向和瓦斯压力不随时间而变化,非稳定流场则相反。严格说来,煤层暴露初期的瓦斯流场都是非稳定流场(因为瓦斯源来自于流场煤体本身所含的瓦斯),其煤体瓦斯含量或瓦斯压力随时间而变化。

③区分

按流向分类,在方向上变化;按稳定性分类,在时间上变化。

2、相对瓦斯涌出量和绝对瓦斯涌出量的概念

瓦斯涌出量是指在矿井建设和生产过程中从煤与岩石内涌出的瓦斯量。其表达方法有两种:

绝对瓦斯涌出量——是指在单位时间内涌出的瓦斯量,单位为m3/min或m3/d;

相对瓦斯涌出量——是指平均日产一吨煤同期所涌出的瓦斯量,单位是(m3/d)/t/d)也就是m3/t。

两者的关系是:

式中,——相对瓦斯(CH4)涌出量,m3/t;

A——日产煤量,t/d;

——绝对瓦斯涌出量,m3/d。

绝对绝对瓦斯涌出量反映了一定空间的瓦斯涌出速度;相对瓦斯涌出量能反映出单位煤体涌出瓦斯的强度。

3、矿井瓦斯等级划分的方法及标准

绝对瓦斯涌出量反映了一定空间的瓦斯涌出速度;相对瓦斯涌出量能反映出单位煤体涌出瓦斯的强度。

《煤矿安全规程》规定:“在一个矿井中,只要有一个煤(岩)层发现过瓦斯,该矿井即规定为瓦斯矿井,并依照矿井瓦斯等级的工作制度进行管理。”矿井在采掘过程中,只要发生过一次煤与瓦斯突出,该矿井即定为突出矿井,发生突出的煤层即定为突出煤层。

矿井瓦斯等级,根据矿井相对瓦斯涌出量、矿井绝对瓦斯涌出量和瓦斯涌出形式划分为:

①瓦斯矿井

矿井相对瓦斯涌出量小于或等于10m3/t且矿井绝对瓦斯涌出量小于或等于40m3/min;

②高瓦斯矿井

矿井相对瓦斯涌出量大于10m3/t或矿井绝对瓦斯涌出量大于40m3/min;

③煤(岩)与瓦斯(二氧化碳)突出矿井。

4、矿井瓦斯平衡

矿井瓦斯平衡是指各种瓦斯来源在矿井瓦斯涌出总量总所占的百分比,它取决于自然因素与开采技术因素。当这些因素变化不大时,它保持相对稳定的数值。矿井瓦斯平衡决定着矿井风量分配和日常治理瓦斯工作的方向和重点。

1)矿井瓦斯平衡的分类

针对瓦斯来源不同有如下分类:

①按水平、翼、采区进行平衡,它是风量分配的依据之一;

②按采区、回采区、老空区进行平衡,它是矿井日常治理瓦斯工作的基础;

③按开采煤层、邻近层进行平衡,它是采煤工作面治理瓦斯工作的基础。

2)影响矿井(或采区)瓦斯平衡的主要因素

①矿井不同生产时期,平衡表不同

建井和投产初期,瓦斯主要来源于掘进;矿产生产中期,瓦斯主要来源于回采区;矿井生产后期,老空区瓦斯所占比例大。

②采深不同,平衡表不同

随着深度的增加,不仅瓦斯涌出量增大,由于来自开采煤层围岩的瓦斯涌出增高,采空区的瓦斯威胁越严重。

③地质条件不同,平衡表不同

单一煤层矿井以本层瓦斯涌出为主要来源,开采煤层群矿井以邻近瓦斯涌出为主要来源。

5、矿井瓦斯涌出的影响因素

①自然因素

1)煤层和围岩的瓦斯含量。

它是影响瓦斯涌出量大小的决定性因素,煤层的瓦斯含量越高,其相对瓦斯涌出量也越大。瓦斯涌出量不仅包括来自于采出煤炭所涌出的瓦斯,而且还包括矿井内一切煤层岩层涌出的瓦斯,所以相对涌出量比开采层的瓦斯含量大。

2)地面大气压力变化

地面大气压力下降,瓦斯涌出增加的是工作面后部采空区与老采区,而掘进巷道与掘进区几乎不受影响。每个矿井应掌握本矿瓦斯涌出量随大气压力变化的规律,以防瓦斯事故的发生。美国1910~1960年间,有一半的瓦斯爆炸事故发生在大气压力急剧下降时。

②开采技术因素

1)开采深度

在瓦斯风化带内开采的矿井,相对瓦斯涌出量与深度无关;在甲烷带内开采的矿井,随着开采深度的增加,相对瓦斯涌出量增高。值得注意的是,在深部开采时,邻近层与围岩所涌出的量比开采层增加得快,因此,深部开采矿井更应注意邻近层与围岩瓦斯涌出。

2)开采顺序与回采方法

首先开采的煤层(或分层),其相对瓦斯涌出量增大,而后开采的煤层(或分层),其涌出量减少。回收率低的回采方法,相对瓦斯涌出量增大。陷落式顶板管理方法比充填式造成更大范围的围岩破坏与卸压,邻近层瓦斯涌出的分量增大。

3)回采速度与产量

当回采速度不高时,绝对瓦斯涌出量与回采速度或产量成正比,即相对瓦斯涌出量保持常数。当回采速度较高时,相对瓦斯涌出量有所降低,绝对瓦斯涌出量随回采速度的增加也增高,但量值低于线性增量。

4)落煤工艺与老顶来压步距

采用浅截深的连续落煤工艺和缩短老顶来压步距能显著减少瓦斯涌出不均匀系数。与平均瓦斯涌出量相比,风镐落煤瓦斯涌出增大1.1~1.3倍,放炮为1.4~2.0倍,采煤机采煤时为1.3~1.6倍,水枪落煤为2~4倍。

5)通风压力与采区封闭质量

通风压力与采空区密闭质量都对老采区的瓦斯涌出有一定影响。通风压力小,采空区密闭质量好,可减小老采区瓦斯涌出不均匀系数及涌出量。

6)采场通风系统

区段进、回风巷是在煤体内的通风系统绝对瓦斯涌出量小,而进、回风巷在采空区内时,绝对瓦斯涌出量较大。

1、爆炸的原因及爆炸界限

①原因

煤矿中瓦斯的主要成分是甲烷,瓦斯爆炸是指甲烷爆炸。瓦斯爆炸是瓦斯和空气混合后,在一定的条件下遇高温热源发生的剧烈连锁反应,并伴有高温高压的现象。在瓦斯爆炸过程中,火焰从火源占据的空间不断地传播到爆炸性混合气体所在的整个空间。

瓦斯爆炸的总反应方程式为:

②爆炸界限:5%~16%。

2、最猛烈的爆炸浓度的计算

当瓦斯与氧气的化学反应进行得比较缓慢,没有明显响声时,就是燃烧;如果化学反应进行最完全、最充分,生成的热量也最多,这时的爆炸力量强,威力最大。那么,这时的瓦斯浓度计算结果如下:按体积计算,矿井空气中的氧气占20.96%,剩余的79.04%为氮气和其他惰性气体。因此,如果瓦斯爆炸过程使用了空气中1个体积的氧气,就相当于另有79.04/20.96=3.77个体积的氮气和其他惰性气体也进入到爆炸环境,尽管在整个爆炸过程中这些气体没有参与反应。因此,进入到爆炸环境的空气就可看做1+3.77=4.77个体积。也就是说,如果有1个体积的氧气参加化学反应,就需要有4.77个体积的空气进入到爆炸环境。由于1个体积的瓦斯需要2个体积的氧气才能进行最充分、最完全的化学反应,也就需要2*4.77=9.54个体积的空气伴随1个体积的甲烷进行反应。所以,此时在这一空间瓦斯的浓度为:

如果按《煤矿安全规程》规定,井下空气中的氧气含量不能低于20%计算,要使1个体积的瓦斯充分、完全反应,必须具有10个体积的空气(氧气含量为20%),其瓦斯浓度为:

3、链式反应的原理特点及其应用

①原理

化学反应式仅表示一系列复杂化学反应的最终结果,链式反应理论却能够对甲烷爆炸的实际反应过程与机理作出解释。链式反应理论认为甲烷爆炸是反应物分子首先离解成一些自由基(链起始),自由基具有很大的化学活性,能成为反应连续进行的活化中心,经过一系列链锁反应步骤后完成整个反应。如果在连锁反应过程中链分支反应增多,自由基数目成倍增长,反应链的数目增加,反应速度将迅速增加,短时间内将释放出大量的能量,将使反应加速到爆炸速度。

②特点

1)链式反应可以分为直链反应与支链反应两大类。下图给出了非链反应、直链反应和支链反应的反应速率随反应时间的变化关系,从中可以看到曲线(d)有显著特点,就是支链反应初期有一个感应期τf,其反应速率W很小,而后迅猛加速,以至可以出现爆炸现象。

2)链式反应产生链载体困难,故反应开始时进行迟缓,常存在感应期。

3)链载体活泼,若加入添加物使之产生或消灭链载体(即加入引发剂或阻化剂)会严重影响链式反应的速率,也就是说,链式反应对添加物是敏感的。

4)链载体的产生与消亡对器壁的材质、尺寸和形状等也很敏感。

5)“惰性”添加物也对链载体的产生与消亡起促进或延缓作用,故链式反应对“惰性”添加物也敏感。

③应用

如在含甲烷的空气中加入惰性的、吸热降温的物质,或能够同自由基结合形成分子的物质,就能起到链终止的效果,使含甲烷气体不爆炸或爆炸威力降低。

如,在含甲烷的空气中加入4.2%的一溴三氟甲烷CF3Br就能防止甲烷爆炸。

4、瓦斯爆炸传播的过程和致命因素

①根据爆炸传播速度将瓦斯爆炸分为3类

爆燃——传播速度为每秒数十厘米至数米;

爆炸——传播速度为每秒数十米至数百米;

爆轰——传播速度超过声速,可达每秒数千米。

②传播过程

甲烷与空气混合物可简称为烷空气体。假如在可爆炸甲烷浓度的烷空气体中出现了点火源,则此气体就会在火源点被点燃形成最初火焰(称这一点为爆源)。在大气压条件下,该火焰厚度非常薄,仅0.1~0.01mm,它是一个燃烧带,并在烷空气体中传播。

当燃烧波在开始移动5~10倍巷道宽度距离后,便开始明显加速,燃烧开始所产生的已燃气体产物的比体积(m3/kg)为未燃空气体的5~15倍。这些已燃气体相当于一个燃气活塞,通过已燃气体产物所产生的膨胀形成压缩波,给予火焰前面未燃气体一个沿巷道向下游的速度。由于每个处在前面的压缩波必然能稍微加热未燃烷空气体,因此传播速度增加,这样随后的这些波就追上最初的波,形成更大的压缩波。

这种预热又使火焰速度进一步增大,于是也就加速了未燃烷空气体,更进一步提高在未燃气体中产生湍流的成都,这样就得到了一个更大的火焰速度、更大的压缩波和更大的未燃气体加速度,因此就可以形成激波,该激波足够强以致依靠本身的压缩温度就能点燃烷空气体形成爆轰。

③致命因素

1)火焰锋面

火焰锋面是瓦斯爆炸时沿巷道运动的化学反应带和燃烧热的气体总称。其传播速度可在较大的范围内变化,从每秒数米到爆轰的传播速度2500m/s。火焰锋面好象沿巷道运动的活塞一样,把含甲烷空气体收集起来并点燃。这

种活塞的长度从火焰锋面最慢传播时的几十厘米到爆轰时的几十米。火焰锋面通过时,可使人的衣服被扯下,造成大面积皮肤的深度烧伤、呼吸器官甚至食道和胃的粘膜烫伤;烧坏电气设备与电缆,当电缆有电时可能引起二次性的电气火灾;引燃井巷的可燃物,造成火灾。

2)冲击波

在正向冲击波传播时,其波峰的压力可从数十kPa到2MPa的范围内变化;当正向冲击波叠加和反回时,可形成高达10MPa的压力。冲击波的传播速度高于音速。如果爆炸减弱,则冲击波就转变为声波。

正向和反向冲击波通过时会引起人体的创伤,在大多数情况下,这些创伤具有综合和多样的特征,如创伤和烧伤综合,给急救造成困难,需要细心护理。冲击波还会移动、翻倒和破坏电气设备、机械设备,甚至可能发生二次性着火,破坏支架、堵塞巷道,引起冒顶,破坏通风设施与通风系统,这不仅会扩大灾情,而且会使抢险救灾、救人困难化复杂化。

3)井巷大气成分的变化

矿井瓦斯爆炸后的分析表明:O2=6~10%,N2=82~88%,CO2=8~4%,CO=4~2%。瓦斯爆炸时矿井大气中氧浓度下降,产生有毒有害气体。甲烷浓度愈靠近爆炸上限时,爆炸后的残余氧浓度就愈低。在最佳的甲烷浓度时,可能发生完全燃烧的情况,这时生成CO2与H2O最多。高浓度CO2(>5%)的作用犹如有毒气体,它溶于血液内能造成死亡性中毒,高浓度热水蒸气可能造成内脏器官的烫伤。在甲烷爆炸上限浓度时以及有煤尘参与爆炸时,还能释放出大量的剧毒物CO;当浓度达0.5%时仅几分钟人员即有死亡危险。释放出来的可燃性气体(CO,H2,CH4 )可以达到爆炸界限,发生二次爆炸。

火焰锋面(爆燃与爆炸)的传播范围较小,一般为数十米到数百米,只在极少的情况下达到几千米。冲击波(爆轰)的传播范围就大得多,一般为几千米,有时甚至波及到地面。爆炸产物的波及范围与通风系统,通风风量以及爆炸时对通风系统破坏情况等有关,爆炸产物的运动,在冲击波消失和火焰锋面停止后继续随风流进行,因此甲烷和煤尘爆炸的最大危险性在于矿井大气成分的改变,它在大多数情况下造成严重的后果。瓦斯爆炸后,70%的伤亡是由爆炸产物造成的。

5、三专两闭锁

“三专”指:专用变压器、专用开关、专用电缆;

“两闭锁”指:风电闭锁、瓦斯电闭锁。

其功能是:只有在局部通风机正常供风、掘进巷道内的瓦斯浓度不超过规定限值时,方能向巷道内机电设备供电;当局部通风机停转时,自动切断所控机电设备的电源;当瓦斯浓度超过规定限值时,系统能自动切断瓦斯传感器控制范围内的电源,而局部通风机便自行闭锁,重新恢复通风时,要人工复电,先送风,当瓦斯浓度降到安全容许值以下时才能送电。从而提高了局部通风机连续运转供风的安全可靠性。

6、简述瓦斯爆炸发生的条件

①甲烷的浓度处于爆炸界线范围之内,5%~16%;

②氧气浓度不低于12%;

③具有超过最小点燃能量(0.28mJ)、高于甲烷最低点燃温度(650℃~750℃)且时间长于感应期的点火源。

7、混合爆炸性气体爆炸界线的计算

式中,N、N1、N2……N n——分别是混合气体的和及其中各个可燃气体组分的爆炸上限、下限浓度,%;

C1、C2…… C n——分别是各可燃气体组分占可燃气体总和的百分比(按体积计,%);

C l+C2+ …… +C n=100%。

该法则适用于烃类与CO等混合气体,但氢除外。使用该法则计算混合气体爆炸界限的缺点是必须预先知道混合物中各可燃组分的浓度。

1、突出矿井、突出煤层

突出矿井:指在矿井的开拓、生产范围内有突出煤层的矿井。

突出煤层:指在矿井井田范围内发生过突出的煤层或者经鉴定有突出危险的煤层。

2、煤与瓦斯突出、压出、倾出的特点与区别

①突出特点

1)抛出的固体物具有明显的气体搬运特征;

2)突出物中含有大量的极细的粉;

3)突出的孔洞具有一些特殊的形状;

4)突出过程中伴随有大量的瓦斯涌出。

②压出特点

1)压出固体物堆积在原来位置的对面,移动距离小,煤堆积坡度一般小于自然安息角;

2)压出的煤呈大小不同的碎块,杂乱无章,有时煤整体位移,向外鼓出;

3)压出时有大量瓦斯涌出,有时从压裂裂缝喷出瓦斯,但极少见到瓦斯逆流现象;

4)压出孔洞呈楔形、缝形或袋形,口大腔小。

③倾出特点

1)倾出的煤堆积在原来位置的下方;

2)倾出的煤呈大小不同的碎块,杂乱无章;

3)倾出时伴随大量瓦斯涌出,但一般无瓦斯逆流现象;

4)一般有规则的孔洞,呈舌形、袋形,孔洞轴线沿煤层倾斜方向伸延,深度数米至数十米。

④区别

突出是指煤与瓦斯在一个很短的时间内突然地连续地自煤壁暴露面抛向巷道空间所引起的动力现象,压出是煤炭自煤壁冲入巷道,伴随着涌出大量瓦斯。倾出是结构松软、饱含瓦斯、内聚力小的煤,突然破坏,失去平衡,在重力的作用下垮落。

3、两个“四位一体”区域综合防突措施

①区域综合防突措施

区域突出危险性预测;区域防突措施;区域措施效果检验;区域验证。

②局部综合防突措施

工作面突出危险性预测;工作面防突措施;工作面措施效果检验;安全防护措施。

4、横三带竖三带产生的原因和定义

III-垮落带II-裂隙带I-弯曲下沉带

A—煤壁支撑区B—离层区C—重新压实区。

产生原因:

根据煤层顶板上覆岩层的运动特征,上覆岩层下沉失稳,从开切眼开始,随着工作面推进,离层裂隙不断增大,采空区中部离层裂隙最发育;采空区中部离层裂隙趋于压实,离层率下降,而采空区两侧离层裂隙仍能保持;最终形成采动裂隙发育区。

5、煤层透气系数的物理意义

是在1m3煤体的两侧,瓦斯压力平方差为1MPa2时,通过lm长度的煤体,在lm2煤面上每日流过的瓦斯量相当于该煤层的渗透率为0.025毫达西。煤的孔隙——裂隙系统对地应力的作用非常敏感,当压应力增高时,煤的透气系数下降,反之压应力减少(卸压)时,煤的透气系数则增大。

6、矿井瓦斯抽放分类

按空间对象分,有开采层、邻近层、采空区和围岩抽放;

按是否卸压分,有未卸压和卸压抽放;

按时间分,有采前预抽、边掘边抽、边采边抽和采后抽放。

7、矿井有效抽采半径的定义和影响因素

①定义

指在规定的排放时间内,在该半径范围内的瓦斯压力或瓦斯含量降到安全容许值。

②影响因素

抽放时间、煤层透气系数

8、煤层透气系数的物理意义

是在1m3煤体的两侧,瓦斯压力平方差为1MPa2时,通过lm长度的煤体,在lm2煤面上每日流过的瓦斯量相当于该煤层的渗透率为0.025毫达西。煤的孔隙——裂隙系统对地应力的作用非常敏感,当压应力增高时,煤的透气系数下降,反之压应力减少(卸压)时,煤的透气性系数则增大。

煤矿瓦斯治理论文煤矿瓦斯论文:煤矿瓦斯灾害防治技术探讨

煤矿瓦斯治理论文煤矿瓦斯论文: 煤矿瓦斯灾害防治技术探讨 摘要:在分析目前煤矿瓦斯治理存在问题的基础上,提出了利用井下水力压裂技术和地面采动井抽采与常规的井下瓦斯抽采技术相结合的综合瓦斯治理措施,分别阐述了煤矿井下水力压裂和地面采动井的原理和应用情况,实践表明:煤矿井下定向压裂增透消突成套技术可有效提高瓦斯抽采率,降低煤与瓦斯突出危险性,改善井下作业环境;地面采动井可“一井三用”,对抽放采动区域瓦斯效果较好。 关键词:煤矿;瓦斯;水力压裂;采动井 我国是世界第一大产煤国,煤炭在我国一次能源消费中约占70%左右,因而煤炭行业是关系我国国家经济命脉的重要基础产业。然而,煤炭行业又是我国安全生产形势最为严峻的行业之一,预防和控制煤矿重特大事故的发生,促进煤矿安全生产形势的根本好转已成为国家和政府层面上急需解决的重大问题,也是我国安全生产工作的核心任务。在所有煤矿灾害事故中,尤以瓦斯事故为重,其中主要以煤与瓦斯突出以及由瓦斯超限而造成的瓦斯爆炸为最主要的表现形式。近年来,虽然煤矿瓦斯防治工作已取得阶段性成效,但仍没有从根本上遏制重大瓦斯事故的发生,2008年全国共煤矿发生瓦斯事故182起,死亡778人,其中较大瓦斯事故63起,死亡290人;重特大瓦斯事故18起,死亡352人〔1〕。瓦斯灾害已成为制约高效集约化开采技术发展和安全生产的最重要因素,常规或单一的瓦斯灾害防治技术已不能满足煤矿高效安全生产的需要,强化瓦斯抽采才是防止瓦斯灾害事

故最有效的根本途径。针对我国煤层赋存条件复杂,瓦斯抽采率低的特点,提出利用井下水力压裂技术和地面采动井抽采与常规的井下瓦斯抽采相结合的综合瓦斯治理新思路,以供商榷。 1瓦斯灾害防治技术评析 1.1瓦斯治理存在的问题及解决思路 我国煤储层构造复杂,且煤层多强烈变形〔2〕,多数煤田煤体构造破碎严重,Ⅲ、Ⅳ类煤所占比例较重,煤质松软、坚固性系数偏小,煤层透气性低,渗透率一般在(0.001~0.1)×10-3μm范围内,瓦斯抽采效果不佳,造成瓦斯治理困难。而且随着采掘活动向纵深延伸,煤层瓦斯赋存以“三高一低”(高应力、高瓦斯压力、高瓦斯含量及低渗透性)为主要特征,常规的瓦斯抽采技术难以发挥作用,抽采率低下,抽采效果不明显,瓦斯事故仍时有发生,因此,采用强制增透的瓦斯治理和井上下联合抽采的综合治理措施势在必行。新版的《防治煤与瓦斯突出规定》第6条明确规定:“防突工作坚持区域防突措施先行、局部防突措施补充的原则。突出矿井采掘工作做到不掘突出头,不采突出面。未按要求采取区域综合防突措施的,严禁进行采掘活动。”目前,煤与瓦斯突出防治主要有开采保护层、水力压裂和钻孔抽采3种技术措施。根据规定,对具有保护层开采条件的煤层应优先开采保护层使煤层整体卸压、消突;但对于不具备保护层开采条件的、单一、低透气性煤层,在实施防突措施时,水力压裂与井下常规瓦斯抽采技术相结合就显的尤为重要了。

2017年度煤矿瓦斯防治计划

新化县桑梓镇金鸡山煤矿(2017年度) 瓦斯治理计划 煤矿通风安全技术科编制

审批表 会审人员职务会审人员职务会审人员职务会审意见 会审结论

金鸡山煤矿瓦斯防治 计划 为了加强“一通三防”安全管理,牢固树立“安全第一,预防为主”的指导思想和“安全就是效益,超限就是事故”的超前意识,确立瓦斯是煤矿安全生产中头号敌人的意识,切实把瓦斯安全管理工作作为我矿安全工作的重中之重来抓。全方位齐抓共管,多措并举,管理干部要有“瓦斯管理,责重如山”的高度认识和“瓦斯管理,人人有责”的安全意识,严格瓦斯管理制度,杜绝瓦斯事故,搞好瓦斯防治工作。结合我矿安全生产工作的实际,特制订2017年度瓦斯防治计划如下: 一、煤矿成立瓦斯防治技术领导组 组长:阳念华 副组长:吴代忠、黎定辉、刘新中 成员:祝圣耀、刘让平、康忠武、邹高贤 李传首、李志文、阳万光 通防科: 通风维护组: 刘解清、李水南、段富保 瓦斯检查组: 刘佑华、康利元、童楚华 井上监控值班人员:谢贺勋、康裕华、刘新中

井下监控维护工: 黎云辉、李松青、阳文光 领导小组下设办公室,阳念华兼任通防科科长。 二、指导思想 深入贯彻党的十八大精神,落实科学发展观,牢固树立“以人为本”、“安全发展”理念,以有效防范和遏制重特大瓦斯事故的发生为目标,坚持“安全第一、预防为主、综合治理”的安全生产方针,进一步加强领导、落实责任、增加投入、依靠科技、严格落实、强化管理,着力构建“通风可靠、监控有效、管理到位”的煤矿瓦斯综合治理工作体系,推动我煤矿瓦斯治理工作再上新水平。 三、工作目标 矿井全面开展瓦斯综合治理活动,强化瓦斯综合治理责任体系,硬化工作指标,优化生产系统,消除物的、人的不安全因素,从源头上遏制瓦斯事故的发生,以确保我矿安全生产。 四、瓦斯防治计划 1、杜绝瓦斯事故和人身伤亡事故的发生,杜绝井下瓦斯超限作业,瓦斯积聚现象。 2、建立完善的瓦斯防治系统,最大限度地消除瓦斯危害; 3、建立完善的瓦斯监测监控系统,确保监控有效。

煤矿瓦斯防治措施

**煤矿瓦斯防治措施 矿井瓦斯是以沼气CH4为主的有毒、有害气体的总称,一般指沼气,以下所称瓦斯均指沼气。瓦斯是一种无色、无味、无臭、无毒的气体,比空气轻,易聚集在巷道顶部或上山迎头,在条件适宜时有燃烧和爆炸性,在高浓度时能使人缺氧窒息。瓦斯灾害是煤矿“五大自然灾害”之首,危害程度最大,必须严格遵守“先抽后采、监测监控、以风定产”的瓦斯治理方针。为有效防治煤矿井下瓦斯灾害,特制定以下措施: 一、瓦斯检查 1、建立瓦斯检查制度,配备瓦斯检查员。瓦检验员要持证上岗,做到跟班巡回检查,不空班、漏检。 2、井下的一切工作地点和硐室都要纳入瓦斯检查范围。每一个采掘工作面瓦斯检查每班不少于3次,其它地点(含回风巷)每班至少检查1次。 3、放炮作业地点,在装药前、放炮前和放炮后要检查放炮地点20米以内的瓦斯,并不少于检查1次。 4、要对每一个用风地点的进风风流、回风风流和工作面的瓦斯进行检测,其数据要进行对比分析,以便确切掌握、监控井下瓦斯浓度。 5、瓦检员要认真填写每次瓦斯检测记录台帐和工作地点的瓦斯记录牌板。 6、瓦检员对甲烷传感器必须定期进行检校、瓦斯检测仪器要定期保养和送有资质部门校验,保证检测数据准确无误。

二、瓦斯监测 1、每个工作面必须配备1台便携式瓦斯报警器。 2、便携式瓦斯报警器要定期进行维护保养和校验。 3、井下作业人员应认真观察井下作业场所的瓦斯异常变化情况,如发现煤炮声、煤体松软和开裂、瓦斯浓度突然大幅度变化、温度变化等现象时,应立即撤离现场,查明原因,妥善处理。 三、瓦斯超限处理要求 1、采掘工作面进风风流中,氧气不得低于20%,瓦斯或二氧化碳不得超过0.5%;矿井总回风巷或一翼回风巷风流中瓦斯或二氧化碳不得超过0.75%。 2、采区回风巷、采掘工作面回风风流中瓦斯超过1.0%或二氧化碳超过 1.5%时,必须停止工作,撤出人员,并立即报告矿长和安全员,查明原因,采取措施进行处理。 3、采掘工作面以及放炮地点机电开关附近20米以内的瓦斯浓度达到 1.0%时,必须停止电钻打眼、放炮及其它工作,进行处理;待瓦斯浓度降至1.0%以下时,才能恢复工作。 4、当岩巷掘进遇到煤层、破碎带或煤层突然变化地段时,必须准确监测和检查瓦斯,如发现瓦斯大量增加或其它异常现象时,立即停止掘进、撤出人员进行处理。 5、采掘工作面的二氧化碳浓度达到1.5%时,必须停止工作,并立即报告安全员和矿长,查明原因,进行处理。 6、无论任何情况下,进入停风工作面作业之前,都必须先检查瓦斯和二氧化碳,只有瓦斯和二氧化碳浓度达到规定范围以下,才能进入作业。

矿井瓦斯防治论文之欧阳光明创编

矿井瓦斯爆炸的原因及防治措施 欧阳光明(2021.03.07) 学院;矿业学院 专业:采矿专业 班级:082 学号: 学生姓名: 指导教师: 2011年 12 月 15 日

矿井瓦斯爆炸的原因及防治措施 摘要:在众多煤矿事故中,瓦斯爆炸造成的危害最大,从每年的事故统计来看,绝大多数特大事故都是由于瓦斯爆炸引起的。而在我国目前国有重点煤矿大多数属于瓦斯矿井,其中高瓦斯矿井和突出矿井占全国矿井总数的44%。预防、控制瓦斯爆炸事故,是实现煤矿安全生产的关键。瓦斯防治是煤矿安全工作的重中之重,在提高每个干部职工对瓦斯的认识,特别是对瓦斯危害性的认识的同时,必须采取有利措施,有效防治煤矿重特大瓦斯事故的发生,以确保煤矿的安全生产。 关键词:瓦斯爆炸;提高认识;防治措施 1 什么是瓦斯爆炸 瓦斯爆炸是瓦斯在一定浓度范围内受激发而发生的剧烈化学反应,反应时产生大量的热和气体,主要是以CH4为主的瓦斯与空气的混合气体点燃后发生剧烈化学反应的结果。瓦斯爆炸是自由基链反应过程,它包括链引发、链传递、链分支和链终止等过程。如果混合气体各成分达到爆炸浓度范围,并且存在火源点,链反应过程就会被引发,链传递和连分支反应随之很快发生,反应速度急剧增加,反应放出的热量使气体温度迅速升高,体积剧烈膨胀,从而引起爆炸。 1.1瓦斯爆炸的危害 瓦斯爆炸是我国煤矿生产中最常见的灾害事故,不仅造成大量人员伤亡,而且严重摧毁井巷设施,中断生产,甚至引起煤尘爆炸、矿井火灾、井巷垮塌等二次事故。据统计,因瓦斯爆炸事故造成的死亡人数占全国煤矿事故死亡人数的80%,每年直接经济损失高达7.5亿元人民币。据不完全统计,仅2000年1-6月份全煤系统十人以上重特大事故三十六起,死亡561人,瓦斯事故三十三起,占总数的92%。因瓦斯、煤尘爆炸事故死亡511人,占全部死亡人数的91%!因此,瓦斯被称为煤矿事故的“头号杀手”。近几年来,随着开采深度的进一步加大和高强度机械化采掘和集约化生产,自然灾害的威胁更加突出。根据近几年的事故统计表明,煤矿瓦斯爆炸事故呈上升趋势,几乎每年都有死亡人数超过百人以上的事故发生,虽然瓦斯爆炸事故发生的几率小,但是一旦发生事故,所造成的损失和危害程度是十分严重的。不仅在我国,瓦斯爆炸事故长期以来也是世界其他主要产煤国的“头号杀手”,自1850年以来,英国发生的瓦斯爆炸事故共造成14742人死亡,其中1913年10月14日在森恩伊德煤矿发生的瓦斯爆炸事故造成了439名矿工死亡,是英国死亡人数最多的一次瓦斯爆炸事故。可见,瓦斯是矿井安全生产的最大威胁。分析瓦斯爆炸原因,制订防治对策,特别重要。

矿井火灾防治复习题及考试试题答案

矿井火灾防治 (本试卷共100分,时间90分钟) 一、填空题(每空2分,共30分) 1、根据引火源的不同,矿井火灾可分为火灾和火灾。 2、发生矿井火灾的原因、地点是多样的,但都必须具备三个条件,即:_______、_______和_______,俗称火灾三要素。 3、早期识别和预报煤炭自然发火的方法有:____________________、分析井下空气成分的变化、检测煤的温度进行自燃火灾的早期预测预报。 4、预防性灌浆方法可分为、随采随灌和三种。 5、按照煤氧复合作用学说,煤的自然发展过程一般分为三个阶段,即、、。 6、灌浆站是制取浆液的场所,其形式可分为、及三种。 7、1992年,《规程》执行说明规定煤自燃倾向性鉴定均采用。 8、阻化剂的阻化效果,通常用和来衡量。 9、输送浆液的压力有两种:一是利用浆液自重及浆液在地面入口与井下出口之间高差形成的静压力进行输送,叫做:二是当静压不能满足要求时,采用,其多采用PN型或PS型泥浆泵。 10、矿井防灭火常用的凝胶是以为基料,以碳酸氢铵为促凝剂。 二、判断题(每空2分,共20分) 1、从煤的自燃发火过程可见,煤自燃实质是其自身氧化速度加速的过程,其氧化速度之快,以致产生的热量来不及向外界放散,而导致了自燃。()

2、节理和裂隙不仅增大了煤与氧气的接触面积,同时也增加了漏风的通道。因此,节理和裂隙不发育的煤层更容易自然发火。() 3、井下一旦发生火灾,遇险人员应立即沿回风巷撤退。() 4、目前普遍认为煤炭自燃的原因时煤氧复合作用的结果。() 5、一般情况下,无烟煤的自燃倾向性要大于褐煤。() 6、预防性灌浆是将水、固体材料按适当的比例混合,支撑一定浓度的浆液,借助输将管路送往可能发生自燃的地区,以防止自燃火灾的发生。() 7、煤层的自燃发火期的长短基本保持不变。() 8、由于自燃会导致水分蒸发,形成露珠,所以当发现凝有水珠时,可以断定附近煤体已经自燃。() 9、研究发现,当采空区单位面积上的漏风量大于1.2m3/min时,就不会发生自燃火灾,所以,可以通过加大漏风来防治煤的自燃。() 10、阻化剂防火实际上只是进一步利用和扩大了水的防火作用。()三、名词解释(每空3分,共15分)燃烧 自然发火期 输浆倍线 因火灾 火灾系数 四、简答题(每空5分,共20分) 1、请简述煤炭自燃必备的条件。 2、煤炭自燃的发展过程大致可分为哪几个阶段,各阶段有何特征?

矿井瓦斯防治安全技术正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.矿井瓦斯防治安全技术正 式版

矿井瓦斯防治安全技术正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 矿井瓦斯是指从煤岩中释放出的气体的总称,主要成分是甲烷(CH4),其次为氮气和二氧化碳,还有烃类气体等。 瓦斯是一种无色、无味的气体。由于瓦斯的比重轻,容易聚集在巷道的上部。瓦斯的渗透性很强,封闭在采空区内的瓦斯能不断地渗透到矿内空气中,从而增加空气中的瓦斯浓度。空气中瓦斯浓度增加会相对降低空气中氧的含量。当瓦斯浓度达到40%时,因缺乏氧气会使人窒息死亡。 瓦斯具有燃烧性与爆炸性。瓦斯与空

气混合达到一定浓度后,遇火能燃烧或爆炸,对矿井威胁很大。井下瓦斯爆炸产生的高温、高压和大量有害气体,能形成破坏力很强的冲击波,不但伤害职工生命,而且会严重地摧毁矿井巷道和井下设备。有时,还可能引起煤尘爆炸和井下火灾,从而扩大灾害的危险程度。 矿井瓦斯在煤体及围岩中的存在状态有游离状态(也称自由状态)和吸附状态两种。 (一)瓦斯含量及涌出量 1.瓦斯含量及其影响因素 瓦斯含量是指单位体积或单位质量的煤体或围岩中所含有的瓦斯量,单位通常用m3/ m3、m3/t来表示。瓦斯含量是确

矿井瓦斯防治试题

矿井瓦斯防治、防灭火知识考试试题 姓名得分 一、填空题(每空2分,共30分) 1、瓦斯爆炸必须具备三个基本条件,缺一不可。 (1)瓦斯浓度:(2)高温火源:引爆火源温度为摄氏度(3)空气中氧气浓度不得低于。 2、是矿井防治通风安全重特大事故的第一责任人;对防治通风安全重特大事故负技术管理责任;矿其他对分管业务范围内的“一通三防”工作负管理责任。 3、采掘工作面瓦斯检查次数规定为:低瓦斯矿井每班检查次,其间隔时间小时,高瓦斯矿井每班检查次,其间隔时间小时,瓦斯检查时间间隔要均衡。 4、风筒出口距迎头距离为煤巷、半煤巷不大于 m、岩巷不大于 m。 5、凡是瓦斯超限,都必须在内按“四不放过“(超限原因没有查清不放 过,防范措施没有制定不放过,不放过, 不放过,不放过)的原则进行追查处理。 二、判断题(每题2.5分,共25分) 1、采煤工作面上隅角、采煤机附近、括板运输机机头、放煤口等地方容易积 存瓦斯。() 2、煤层中的瓦斯主要以游离状态和吸附状态存在。() 3、采、掘工作面必须实行全风压独立通风。() 4、瓦斯涌出既是由受采动影响的煤层、岩层以及由采落的煤、矸石向井下空间均匀地放出瓦斯的现象。() 5、采煤机必须设置机载式甲烷断电仪或便携式甲烷检测报警 仪。() 6、规程《井下火灾防治》知识:在灌浆区下部进行采掘前,必须查明灌浆区内的浆水积存情况。发现积存浆水,必须在采掘之前放出;在未放出前,可以在灌浆区下部进行采掘工作。() 7、规程《井下火灾防治》知识:采用阻化剂防灭火时,应遵守下列规定:选用的阻化剂材料不得污染井下空气和危害人体健康() 8、规程《井下火灾防治》知识:采用氮气防灭火时,必须遵守下列规定:(一)氮气源稳定可靠。(二)注入的氮气浓度不小于97%。(三)至少有1套专用的氮气输送管理系统及其附属安全设施。() 9、规程《井下火灾防治》知识:开采容易自燃和自燃的煤层。采用全部充填采煤法时,可以采用可燃物作充填材料,采空区和三角点必须充满。() 10、规程《井下火灾防治》知识:任何人发现井下火灾时,应视火灾性质、灾区通风和瓦斯情况,立即采取一切可能的方法直接灭火,控制火势,迅速报告矿调度室。() 三、选择填空题(每题3分,共计45分) 1、矿井相对瓦斯涌出量大于()或矿井绝对瓦斯涌出量大于()的矿井为高瓦斯矿井 A 10m3/t;40m3/min B 15m3/t;40m3/min C 15m3/t;60m3/min

矿井火灾防治论文

矿井火灾危害分析及其防治技术 摘要:矿井火灾是威胁煤矿安全生产、危害职工生命安全的五大灾害之一。通 过分析矿井火灾发生的基本要素、矿井火灾的分类和矿井火灾的危害等, 从外因火灾防治和自然发火防治两个方面提出了防治矿井火灾的技术途径。 关键词: 矿井; 火灾; 危害; 防治 矿井火灾又叫矿内火灾或井下火灾。是指发生在煤矿井下巷道、工作面、硐室、采空区等地点的火灾。能够波及和威胁井下安全的地面火灾, 也属矿井火灾。矿井火灾一旦发生, 轻则影响安全生产, 重则烧毁煤炭资源和物资设备, 造成人员伤亡, 甚至引发瓦斯、煤尘爆炸。发生在矿井井下或地面, 威胁到井下安全生产, 造成损失的非控制燃烧均为矿井火灾。如地面井口房、通风机房失火或井下 输送带着火、煤炭自燃等都是非控制燃烧。 1 我国煤矿矿井火灾防治现状 我国煤矿自燃发火非常严重, 有56%的煤矿存在自燃发火问题, 而我国统配和重点煤矿中具有自燃发火危险的矿井约占47%,矿井自燃发火又占总发火次数 的94%, 其中采空区自燃则占内因火灾的60%。这种火灾常造成工作面封闭、冻结大量的煤炭资源和昂贵的生产设备, 造成工作面、采区风流紊乱, 影响矿井正常的生产接续, 并造成人员伤亡。为了加强煤矿防灭火安全技术, 我国从50 年代起就在煤矿推广了黄泥灌浆防火技术, 60年代至70年代又研究出了阻化剂防火、均压通风、高倍数泡沫灭火等技术, 80年代至90年代则研究了矿井自燃发火预测系统、惰气防灭火、快速高效堵漏风、带式输送机火灾防治等技术, 并逐步形成适应普通采煤法和高产高效采煤法的综合防灭火技术。由于我国火灾基础理论研究起步晚, 防灭火关键设备和技术有待完善和配套, 有一批亟待解决的技术问题。因此, 矿井火灾防治工作仍然是矿井安全生产所面临的一项艰巨任务。 2 矿井火灾发生的基本要素 和所有的物质燃烧一样, 导致矿井火灾发生的三个基本要素为: 热源、可燃物和空气。

矿井通风安全试题库

矿井通风安全试题库

矿井通风安全试题库 一、填空题 1、矿井空气主要是由氮气、氧气和二氧化碳等气体组成的。 2、矿井通风的主要任务是:满足人的呼吸需要;稀释和排出有毒有害气体和矿尘等;调节矿井气候。 3、矿井空气氧气百分含量减少的原因有:爆破工作、井下火灾和爆炸、各种气体的混入以及人员的呼吸。 4、影响矿井空气温度的因素有:岩层温度、地面空气温度、氧化生热、水分蒸发、空气压缩与膨胀、地下水、通风强度、其他因素。 5、矿井空气中常见有害气体有一氧化碳、硫化氢、二氧化硫、二氧化氮和瓦斯(甲烷)等。 6、检定管检测矿井有害气体浓度的方式有两种,一种叫比色式;另一种叫比长式。 7、矿井气候是矿井空气的温度、湿度和风速的综合作用。 8、《规程》规定:灾采掘工作面的进风流中,氧气的浓度不得低于20%,二氧化碳浓度不得超过0.5%。 9、通常认为最适宜的井下空气温度是15-20℃,较适宜的相对湿度为50-60%。 10、一氧化碳是一种无色无味无臭的气体,微溶于水,相对空气的密度是0.97,不助燃但有燃烧爆炸性。一氧化碳极毒,能优先与人体的血色素起反应使人体缺氧,

角联,不同的联接形式具有不同的通风特性和安全效果。 19、风速在井巷断面上的分布是不均匀的。一般说来,在巷道的轴心部分风速最大,而靠近巷道壁风速最小,通常所说的风速都是指平均风速。 20、井巷中的风速常用风表测定。我国煤矿测风员通常使用侧身法测风,其方法是:测风员背向巷壁,手持风表在断面上按一定线路均匀移动。 21、井巷风流中任一断面上的空气压力,按其呈现形式不同可分为静压、动压和位压。 22、矿井通风阻力包括摩擦阻力和局部阻力。用以克服通风阻力的通风动力包括机械风压和自然风压。 23、在井巷风流中,两端面之间的总压力差是促使空气流动的根本原因。 24、矿用通风机按结构和工作原理不同可分为轴流式和离心式两种;按服务范围不同可分为主要通风机、辅助通风机和局部通风机。 25、局部通风机的通风方式有压入式、抽出式和混合式三种。 26、根据测算基准不同,空气压力可分为高温、高压和冲击波。 27、矿井通风压力就是进风井与回风井之间的总压力,它是由机械风压和自然风压造成的。

矿井瓦斯防治论文

矿井瓦斯爆炸的原因及防治措施 摘要:在众多煤矿事故中,瓦斯爆炸造成的危害最大,从每年的事故统计来看,绝大多数特大事故都是由于瓦斯爆炸引起的。预防、控制瓦斯爆炸事故,是实现煤矿安全生产的关键。瓦斯防治是煤矿安全工作的重中之重,在提高每个干部职工对瓦斯的认识,特别是对瓦斯危害性的认识的同时,必须采取有利措施,有效防治煤矿重特大瓦斯事故的发生,以确保煤矿的安全生产。 关键词:瓦斯爆炸;提高认识;防治措施1、什么是瓦斯爆炸 瓦斯爆炸是瓦斯在一定浓度范围内受激发而发生的剧烈化学反应,反应时产生大量的热和气体,主要是以CH4为主的瓦斯与空气的混合气体点燃后发生剧烈化学反应的结果。 1.1瓦斯爆炸的危害 1

瓦斯爆炸是我国煤矿生产中最常见的灾害事故,不仅造成大量人员伤亡,而且严重摧毁井巷设施,中断生产,甚至引起煤尘爆炸、矿井火灾、井巷垮塌等二次事故。 1.2瓦斯爆炸的条件 矿井瓦斯爆炸必须满足下面三个条件:瓦斯浓度;一定的引火温度;氧气的浓度。 1.3 瓦斯爆炸的原因 瓦斯爆炸的主要直接原因就是瓦斯积聚及火源两个因素。但是导致这两个直接原因的是种种如:通风设计不合理、管理不当、管理制度不完善,安全投入少、安全意识不到位等等客观原因。 1.3.1 瓦斯积聚 瓦斯积聚的原因是多方面的,主要有: (1)对通风系统管理不严格,局部通风机随意停风造成瓦斯积聚。 (2)通风系统不合理造成瓦斯积聚。 2

(3)在没有形成全负压通风的情况下,强行生产,不合理串联、角联造成巷道无风、微风,形成瓦斯积聚。 (4)巷道贯通,新旧工作面接替时,通风系统不能及时调整导致部分巷道瓦斯积聚。 (5)瓦斯检查员脱岗,不按规定检查瓦斯,使瓦斯积聚不能及时处理,积聚范围扩大造成瓦斯爆炸。 1.3.2 引爆火源 产生火源的因素主要是违章操作产生引爆火源。在引爆火源中出现最多的是放炮火源,其次是电气火花、摩擦火花和电焊火花;还有煤炭自燃产生的火花。 1.3.3 间接原因 (1)个别矿山现场管理混乱,干部违章指挥,违章作业。 (2)“安全第一”的思想意识不强,尤其是技术管理和执行规章不严格,对一些隐患存在侥 3

煤矿矿井通风安全管理瓦斯防治技术-安全管理论文-管理论文

煤矿矿井通风安全管理瓦斯防治技术-安全管理论文-管理论文 ——文章均为WORD文档,下载后可直接编辑使用亦可打印—— 摘要:想要保障矿井安全管控效果,采矿公司需要科学的制定通风安全管控标准,逐步的优化安全管控标准,并且创建良好的效果管控方式,应用众多科学的管控技术,保证管控工作的落实效果,提升矿井通风的安全性,进而提升矿井公司的经济收益。基于此,本文对煤矿矿井通风安全管理及瓦斯防治技术进行了探讨,以供参考。 关键词:煤矿矿井通风;安全管理;瓦斯防治技术;研究 引言

随着我国经济的快速发展,资源的消耗速度明显的加快了很多,因此煤矿开采的进度也提高了很多,为了获得更加油质的煤矿,需要对矿井进行不断的加深。而煤矿开采的深度不断增加,煤层当中的瓦斯含量也分布的越来越多,给施工的安全带来的极大的影响。一旦由于施工疏忽导致了煤与瓦斯突出,会对施工人员的安全造成比较严重的危害,影响到煤矿的有序开采。 1矿井通风的技术及特征分析 矿井通风指的是矿井施工期间,采用对应的工艺措施能够把纯净的空气输送到煤矿内部,从而有效的稀释矿井内部瓦斯与粉尘的密度,降低矿井内部有害气体的浓度,进而改善开采环境。如今,矿井通风体系与监管系统仍旧在建设期间,囊括了传感、数据网络与声光警示等众多功能。针对煤矿中所有数据进行良好的监管,保证各项工作的开展拥有准确的数据基础,保证各项工作良好的开展,从而在一定程度上确保矿井施工的安全性。煤矿通风系统拥有下列显著特点:第一,实用性较高,必须能够保证煤矿内部具备充足的空气,良好的管控矿井内部空气浓度,进而保证施工人员能够正产的呼吸,从而提高矿井

施工的安全性。第二,煤矿通风必须拥有可变性,此性能是开展所有工作的基础,通过此功能能够良好的管控空气密度,进而减少有害气体的含量。 2煤矿矿井通风安全管理 2.1进一步建立健全矿井安全管理制度 矿井单位必须高度关注开采过程的安全性,针对有关的管理工作者展开责任与职权的分配。在平时工作期间,必须针对有关的工作者开展良好的考核与选拔。把人员调整与职权划分情况及时进行公示,从而加强矿井公司监管工作的开展。针对有关的工作者进行考评,待其能够满足工作标准后方可以展开工作,创建同时完善有关的安全管控标准。

矿井通风与安全试题库(含答案)

一、单项选择题 1、下列气体中不属于矿井空气的主要成分的是___B____。 A 氧气 B 二氧化碳 C 瓦斯 2、下列不属于一氧化碳性质的是___C____。 A 燃烧爆炸性 B 毒性 C 助燃性 3、矿井空气的主要组成成分有___A___。 A、N2、O2和CO2 B、N2、O2和CO C、N2、O2和CH4 4、下列气体中不属于矿井空气的主要有害气体的是B。 A 瓦斯 B 二氧化碳 C 一氧化碳 5、若下列气体集中在巷道的话,应在巷道底板附近检测的气体是B。 A 甲烷与二氧化碳 B二氧化碳与二氧化硫 C二氧化硫与氢气 D甲烷与氢气 6、下列三项中不属于矿井空气参数的是___C____。 A、密度 B、粘性 C、质量 7、两条风阻值相等的巷道,若按串联和并联2种不同的连接方式构成串联和并联网络,其总阻值相差C倍。 A 2 B 4 C 8& 8、巷道断面上各点风速是___D_____。 A轴心部位小,周壁大;B 上部大,下部小;C 一样大;D

轴心大,周壁小; 9、我国矿井主通风机的主要工作方法是___C____。 压入式 B、混合式 C、抽出式 10、掘进工作面局部通风通风机的最常用的工作方法是___A____。 压入式 B、混合式 C、抽出式 11、井巷任一断面相对某一基准面具有___A____三种压力。静压、动压和位压 B、静压、动压和势压 C、势压、动压和位压 12、《规程》规定,矿井至少要有___A____个安全出口。 A、2 B、3 C、 4 13、《规程》规定,采掘工作面空气的温度不得超过__A_____。 A、26℃ B、30℃ C、34℃ 14、皮托管中心孔感受的是测点的__C_____。 A、绝对静压 B、相对全压 C、绝对全压 15、通风压力与通风阻力的关系是___B_____。 A 通风压力大于通风阻力 B作用力于反作用力 C 通风阻力大于通风压力 16、井下风门有___A_____几种? A 普通风门,自动风门; B 普通风门,风量门,自动风门,反向风门;

河南省煤矿瓦斯防治三十二条

一是强力推进的重点工作措施。 ⒈推进突出煤层回采工作面实现顺序开采布置。突出煤层新采(盘)区回采工作面必须按照顺序开采方式布置,严禁跳采方式布置;现有生产的采(盘)区要修改设计,明确时间,有计划逐步过渡到顺序开采;对已经形成的开采应力集中“孤岛”工作面,因大构造、灾害区、开采边角区等可能形成开采应力集中“孤岛”工作面的,回采时要按规定制定并采取特殊安全措施。 ⒉推进穿层钻孔预抽煤巷条带瓦斯区域防突措施中,加大钻孔控制巷道两侧范围,倾斜、急倾斜煤层巷道上帮轮廓线外达到40m,下帮达到 20m;其他为巷道两侧轮廓线外达到各 30m。 ⒊建立瓦斯抽采专业化打钻队伍,提高打钻质量;推进建立第三方专业化打钻机制,实现打钻、验收、效果评价主辅分离和相互制约监督。 ⒋建立单孔瓦斯抽采浓度、抽采纯量的考核和分析机制,明确单孔瓦斯抽采浓度的最低标准,凡单孔瓦斯抽采浓度达不到要求的,必须分析原因并采取有效的处理措施。新封孔单孔预抽瓦斯浓度低于 30%的,必须改进封孔措施,提高封孔质量。在未进行区域消突达标之前,单孔预抽瓦斯浓度低于 5%的,必须采取重

新封孔、修孔、补打钻孔或水力冲孔等措施。 ⒌推进瓦斯抽采钻孔参数定期(不超过 10 天)测定并建立分析制度。 ⒍推进瓦斯抽采单元(200m 为一个单元)在线检测和定期分析制度,并作为瓦斯抽采达标的重要依据。 ⒎推进煤巷由消突到应抽尽抽转变,实现掘进速度正常化。 ⒏推进顶(底)板穿层钻孔抽采巷保持正常通风和维修,保证人员可以进入检查瓦斯抽采情况或实施补孔、修孔等作业。 ⒐建立矿、科区队领导区域校检、验证工作现场盯守监督管理机制,堵塞区域校检、验证不规范或假校检、假验证的漏洞。 ⒑加强对自救器使用的培训,并纳入企业检查和执法检查内容,改进自救器佩戴方式(独立佩戴),确保事故状态下能“拿得出、戴得上”。 二是需要加强研究解决的问题。 ⒈研究大直径钻孔(130mm)抽采瓦斯和全程下大直径筛管(50-70mm)抽采瓦斯工艺,研究钻孔直径与筛管直径适配关系以及筛管筛孔直径和密度标准。 ⒉研究防突设计中实际考察的瓦斯抽采半径与水力冲孔抽

《防治煤与瓦斯突出细则》考试题62道

《防治煤与瓦斯突出细则》考试题 62道 一、判断(25道) 1、现行煤矿安全规程、规范、标准、规定等有关突出防治的内容与《防突规定》不一致的,依照要求标准高、更为严格的规定执行。(×) 2、突出煤层,是指在矿井井田范围内发生过突出的煤层或者经鉴定有突出危险的煤层。(√) 3、突出矿井,是指在矿井的开拓、生产范围内有突出煤层的矿井。(√) 4、有突出矿井的煤矿企业主要负责人及突出矿井的总工程师是本单位防突工作的第一责任人。(×) 5、突出矿井发生突出的必须立即停产,并立即分析、查找突出原因。在强化实施综合防突措施消除突出隐患后,方可恢复生产。(√) 6、非突出矿井首次发生突出的必须立即进行突出危险性鉴定,突出危险性鉴定期间生产时必须采取安全防护措施。(×) 7、突出矿井必须建立满足防突工作要求的地面永久瓦斯抽采系统。(√) 8、突出矿井开采的非突出煤层和高瓦斯矿井的开采煤层,在延深达到或超过100m或开拓新采区时,必须测定瓦斯压力、瓦斯含量及其他与突出危险性相关的参数。(×) 9、突出煤层的采煤工作面尽可能采用刨煤机或浅截深采煤机采煤。(√) 10、有突出矿井的煤矿企业、突出矿井在编制年度、季度、月度生产建设计划时,必须一同编制年度、季度、月度防突措施计划,保

证抽、掘、采平衡。(√) 11、煤、半煤岩炮掘和炮采工作面,使用安全等级不低于三级的煤矿许用含水炸药(二氧化碳突出煤层除外)。(√) 12、煤层瓦斯风化带为无突出危险区域。(√) 13、钻孔孔口抽采负压不得小于13kPa。预抽瓦斯浓度低于25%时,应当采取改进封孔的措施,以提高封孔质量。(×) 14、在突出煤层中,专职瓦检员、爆破工必须固定在同一工作面工作。(×) 15、煤巷掘进和回采工作面应保留的最小预测超前距均为5m。(×) 16、突出煤层的每个煤巷掘进工作面和采煤工作面都应当编制工作面专项防突设计,报公司技术负责人批准。 (×) 17、在实施局部综合防突措施的煤巷掘进工作面和回采工作面,若预测指标为无突出危险,则只有当上一循环的预测指标也是无突出危险时,方可确定为无突出危险工作面。(√) 18、采用钻屑指标法预测煤巷掘进工作面突出危险性时,预测孔深为6~8m。(×) 19、测定钻孔瓦斯涌出初速度时,测量室的长度为1.0m。(√) 20、对采煤工作面的突出危险性预测,应沿采煤工作面每隔10~15m布置一个预测钻孔,深度5~10m。(√) 21、对预抽煤层瓦斯区域防突措施进行检验时,均应当首先分析、检查预抽区域内钻孔的分布等是否符合设计要求,不符合设计要求的,不予检验。(√) 22、预抽瓦斯和排放钻孔在揭穿煤层之前应当保持自然排放或抽采状态。(√)

矿井瓦斯防治论文

矿井瓦斯爆炸的原因及防 治措施 学院;矿业学院 专业:采矿专业 班级: 082 学号: 学生姓名: 指导教师: 2011年 12 月 15 日

矿井瓦斯爆炸的原因及防治措施 摘要:在众多煤矿事故中,瓦斯爆炸造成的危害最大,从每年的事故统计来看,绝大多数特大事故都是由于瓦斯爆炸引起的。而在我国目前国有重点煤矿大多数属于瓦斯矿井,其中高瓦斯矿井和突出矿井占全国矿井总数的44%。预防、控制瓦斯爆炸事故,是实现煤矿安全生产的关键。瓦斯防治是煤矿安全工作的重中之重,在提高每个干部职工对瓦斯的认识,特别是对瓦斯危害性的认识的同时,必须采取有利措施,有效防治煤矿重特大瓦斯事故的发生,以确保煤矿的安全生产。 关键词:瓦斯爆炸;提高认识;防治措施 1 什么是瓦斯爆炸 瓦斯爆炸是瓦斯在一定浓度范围内受激发而发生的剧烈化学反应,反应时产生大量的热和气体,主要是以CH4为主的瓦斯与空气的混合气体点燃后发生剧烈化学反应的结果。瓦斯爆炸是自由基链反应过程,它包括链引发、链传递、链分支和链终止等过程。如果混合气体各成分达到爆炸浓度范围,并且存在火源点,链反应过程就会被引发,链传递和连分支反应随之很快发生,反应速度急剧增加,反应放出的热量使气体温度迅速升高,体积剧烈膨胀,从而引起爆炸。 1.1瓦斯爆炸的危害 瓦斯爆炸是我国煤矿生产中最常见的灾害事故,不仅造成大量人员伤亡,而且严重摧毁井巷设施,中断生产,甚至引起煤尘爆炸、矿井火灾、井巷垮塌等二次事故。据统计,因瓦斯爆炸事故造成的死亡人数占全国煤矿事故死亡人数的80%,每年直接经济损失高达7.5亿元人民币。据不完全统计,仅2000年1-6月份全煤系统十人以上重特大事故三十六起,死亡561人,瓦斯事故三十三起,占总数的92%。因瓦斯、煤尘爆炸事故死亡511人,占全部死亡人数的91%!因此,瓦斯被称为煤矿事故的“头号杀手”。近几年来,随着开采深度的进一步加大和高强度机械化采掘和集约化生产,自然灾害的威胁更加突出。根据近几年的事故统计表明,煤矿瓦斯爆炸事故呈上升趋势,几乎每年都有死亡人数超过百人以上的事故发生,虽然瓦斯爆炸事故发生的几率小,但是一旦发生事故,所造成的损失和危害程度是十分严重的。不仅在我国,瓦斯爆炸事故长期以来也是世界其他主要产煤国的“头号杀手”,自1850年以来,英国发生的瓦斯爆炸事故共造成14742人死亡,其中1913年10月14日在森恩伊德煤矿发

2021版矿井瓦斯防治安全生产管理要求

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 2021版矿井瓦斯防治安全生产管 理要求

2021版矿井瓦斯防治安全生产管理要求导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 一、瓦斯的性质和危害 1、瓦斯的性质:瓦斯是一种五色、无味、无臭的气体,它几乎比空气轻一半,因此瓦斯容易积聚在巷道的上方,空顶处和掘进上山工作面中,瓦斯无毒,但有窒息性;瓦斯难溶于水,但扩散性与渗透性很强;瓦斯遇火能燃烧,能爆炸,但不能助燃。 2、瓦斯的危害:瓦斯是煤矿普通存在、危害最大的气体,全国的所有煤矿都是瓦斯矿井。瓦斯能使人窒息,特别是发生煤与斯突出时更易窒息。瓦斯燃烧、爆炸,造成大量人员伤亡,财产损失,社会影响极坏。瓦斯连续爆炸损失更大。 二、瓦斯爆炸的必要条件与防治措施: 1、瓦斯爆炸的必要条件: 瓦斯爆炸必须同时具备三个条件: ①瓦斯浓度达到5---16%; ②引爆火源温度在650-750℃。

矿井瓦斯防治措施

矿井瓦斯防治措施 瓦斯是煤炭开采过程中的伴生物,能够发生燃烧、爆炸、窒息等瓦斯事故,瓦斯事故的发生,一般都具有突发性强,危害性大的特点,为了杜绝瓦斯事故的发生,保障矿井的安全生产和职工的生命财产安全,特制定本措施,望各队组能够认真贯彻执行本措施。 一、矿井瓦斯防治目标 1.将高瓦斯矿井抽成瓦斯矿井。 2.杜绝井下任何地点瓦斯超限、瓦斯积聚。 3.保证采掘工作面的正常生产。 4.保证矿井无瓦斯超限事故的发生,实现全年瓦斯“0”超限的目标。 5.保障矿井的安全生产不出瓦斯事故。 6.在全体干部职工心中牢固树立“瓦斯超限就是事故”的安全理念。 二、建立健全正规、完善、科学合理的通风系统 1.矿井必须安装两套同等能力的主要通风机装置,其中1套作备用,备用通风机能在10min内开动。 2.主要通风机必须定期进行切换,并进行检修和维护。 3.主要通风机必须按规定进行风机性能测定,保证主要通风机处于良好的运行状态。

4.保证通风机在驼峰以下运行,确保矿井通风系统稳定可靠。 5.矿井必须具有完整独立,稳定可靠的通风系统,采区实行分区通风,工作面有独立的通风系统。 6.矿井没有不符合规定的串联通风、扩散通风、采空区通风等。 7.矿井通风设施的构筑质量必须符合《安全质量标准化》标准。 8.矿井通风设施必须保证完好,工作面、采区、主要风巷的调风设施必须安设合理、可靠。 9.矿井的总风量,采掘工作面、硐室、行人巷道、其他用风地点的风量、风速必须符合《规程》和相关标准规定,严禁超通风能力生产。 10.必须定期对矿井进行通风系统审查,及时解决矿井通风系统中出现的问题。 11.改变矿井通风系统、采区通风系统、工作面通风系统等地点的通风系统时、必须按规定制定相应的措施,并进行会审,最后贯彻落实。 三、加强局部通风管理 1.局部通风机所在的巷道必须保证风量充足,严禁出现循环风,局部通风机到巷道回风口此段距离巷道的风速不得低于0.25m/s。

矿井瓦斯防治措施.

山西煤炭运销集团 古交鑫峰煤业有限公司瓦斯防治专项措施 瓦斯防治是矿井的长期工作任务,是煤矿安全管理工作的重中之重,为了进一步将矿井瓦斯治理工作纳入规范化、制度化、常态化管理,预防瓦斯事故的发生,结合我矿实际,特制定本措施: 一、建立矿井瓦斯防治组织机构 1、成立矿井瓦斯防治领导组: 组长:焦贵生 副组长:总工:李祥昆生产矿长:闫春亮 安全矿长:李忠机电矿长:张长香 矿长助理:张庆生 成员:叶俊文丁小兵孙开同李建明 杨长全 2、领导组下设瓦斯防治办公室,办公室设在通风科,有通风科科长丁小兵兼任办公室主任,具体负责我矿瓦斯防治日常管理工作。 3、成立矿井瓦斯防治专业队伍,瓦斯防治专业队伍成员必须经有资质培训机构培训合格的专业人员担任,并做到持证上岗。 4、矿井瓦斯防机构专业人员负责矿井瓦斯的监测、检查、预测、预报、治理、防范及落实各项技术措施,整改各种隐患等瓦斯治理工作。 、矿井瓦斯涌出规律及危险性分析

1、瓦斯来源分析:经太原市煤炭工业局(并煤瓦发【2010】283号文件批复,我矿的瓦斯等级鉴定为低瓦斯矿井,工作面瓦斯来源主要为工作面采煤和工作面放炮落煤及巷道掘进时。整体来看,矿井正常生产落煤、巷道掘进时,矿井瓦斯涌出量有所加大,矿井产量是影响瓦斯涌出量的主要因素。 2、矿井瓦斯涌出规律及危险性分析: ①、工作面采用U型通风,采面上隅角的瓦斯浓度较其它地点为高,是容易积聚瓦斯的异常地点,为防治瓦斯的重点。 ②、回采工作面放顶放炮期间,工作面采空区顶部的瓦斯容易积存,因此工作面放顶煤期间必须加强通风管理,确保安全。 ③、采掘工作面过过断层、煤体裂隙发育等地质构造带时,瓦斯及其它有害气体浓度会明显增加,必须高度重视。 ④、采煤工作面放煤、放炮时采面瓦斯涌出量增加,对安全生产的威胁较大。 ⑤、采煤工作面的瓦斯涌出还受大气温度、气压等环境因素的影响,特别是换 季时,大气压力急剧下降,瓦斯涌出量会增加,要引起高度重视。 三、防治瓦斯重点区域: 回采工作面U型通风,因此回采工作面上隅角、巷道冒高点、密闭区域、掘进机械落煤部、停风、无风区、放炮落煤过程等是发生瓦斯积存的区域。 1回采工作面:采煤上隅角、采空区顶部、回风顺槽巷道。 2掘进工作面:主斜井、回风立井开拓掘进以及二期、三期工程各种行道机掘面、炮掘面。 四、瓦斯防治措施

矿井瓦斯防治论文讲解

煤矿瓦斯及其防治技术探讨 1、我国煤矿安全生产现状分析 我国95%的煤矿开采是地下作业。煤矿事故占工矿企业一次死亡10人以上特大事故的72.8%至89.6%(2002-2005年);煤矿企业一次死亡10人以上事故中,瓦斯事故占死亡人数的71%。煤矿所面临的重大灾害事故是相当严峻的,造成的损失是极其惨重的。由于煤矿事故多,死亡人数多,造成了我国煤矿的百万吨死亡率一直居高不下。特别是煤矿重大及特大瓦斯(煤尘)灾害事故的频发,不但造成国家财产和公民生命的巨大损失,而且严重影响了我国的国际声誉。 实际上,这些瓦斯事故的发生不是偶然的,它是以往煤矿生产过程中存在问题的集中暴露,涉及许多方面。既有自然因素、科技投入和研究的不足,也有人为因素以及国家的体制、管理、经济政策,社会的传统观念,煤矿企业的文化素质等。 2、瓦斯赋存及流动规律 2.1 瓦斯在煤层中的流动机理 瓦斯在煤层中的流动是一个十分复杂的运移过程,主要取决于煤层介质的孔隙结构和瓦斯在煤层中的赋存状态。煤是一种多孔的微裂隙发育的介质,微裂隙间含有孔隙和大部分与微裂隙相连的毛细管通路,而孔隙和毛细管通路的数目是变化的,它们之间或多或少 ,变化到几mm不等。 互有联系,其直径由几m 瓦斯在煤层中主要是以吸附和游离状态赋存在煤体中的,其中呈游离状态压缩在微裂隙和大孔隙中的较少,大部分为吸附在煤体中。根据煤体中的孔隙分布和煤层中的联系系统以及周世宁教授的研究表明:瓦斯在煤层中的流动主要是层流渗透运动和扩散运动,其中前者基本上服从Darcy渗透定律,且主要发生在煤体大孔和微裂隙中;后者则基本上服从Fick扩散定律,且主要发生在煤体微孔隙之中。因此,瓦斯在煤体中的运动可以认为是一个扩散渗透的过程。 2.2 煤的吸附理论及煤层瓦斯含量 2.2.1 瓦斯赋存状态 煤中瓦斯的赋存状态一般有吸附状态和游离状态两种。固体表面的吸附作用可以分为物理吸附和化学吸附2种类型,煤对瓦斯的吸附作用是物理吸附,是瓦斯分子和碳分子间相互吸引的结果,如图2-1所示。在被吸附的瓦斯中,通常以将进入煤体内部的瓦斯称为吸收瓦斯,把附着在煤体表面的瓦斯称为吸着瓦斯,吸收瓦斯和吸着瓦斯统称为吸附瓦斯。在煤层赋存的瓦斯量中,通常吸附瓦斯量占80%~90%,游离瓦斯量占10%~20%;在吸附瓦斯量中又以煤体表面吸着的瓦斯量占多数。

相关文档
最新文档