直线和圆的三种位置关系知识点
直线与圆的位置关系

直线与圆、圆与圆的位置关系【知识梳理】1.点与圆的位置关系: 有三种:点在圆外,点在圆上,点在圆内.设圆的半径为r ,点到圆心的距离为d ,则点在圆外⇔d >r .点在圆上⇔d=r .点在圆内⇔d <r .2.直线和圆的位置关系有三种:相交、相切、相离.设圆的半径为r ,圆心到直线的距离为d ,则直线与圆相交⇔d <r ,直线与圆相切⇔d=r ,直线与圆相离⇔d >r3.圆与圆的位置关系(1)同一平面内两圆的位置关系:①相离:如果两个圆没有公共点,那么就说这两个圆相离.②若两个圆心重合,半径不同观两圆是同心圆.③相切:如果两个圆只有一个公共点,那么就说这两个圆相切.④相交:如果两个圆有两个公共点,那么就说这两个圆相交.(2)圆心距:两圆圆心的距离叫圆心距.(3)设两圆的圆心距为d ,两圆的半径分别为R 和r ,则①两圆外离⇔d >R+r ;有4条公切线;②两圆外切⇔d=R +r ;有3条公切线;③两圆相交⇔R -r <d <R+r (R >r )有2条公切线;④两圆内切⇔d=R -r (R >r )有1条公切线;⑤两圆内含⇔d <R —r (R >r )有0条公切线.(注意:两圆内含时,如果d 为0,则两圆为同心圆)4.切线的性质和判定(1)切线的定义:直线和圆有唯一公共点门直线和圆相切时,这条直线叫做圆的切线.(2)切线的性质:圆的切线垂直于过切点的直径.(3)切线的判定:经过直径的一端,并且垂直于这条直径的直线是圆的切线.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )例题2图A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;• 当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,P A 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交P A 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是 例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15 B. 30 C. 45 D.604. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移个单位长. OD C B Ax y M B A O C l B A 例题3图 例题8图 例题9图 •A B P C EF •O 例题10图 第3题图 第4题图 第5题图 第6题图OO2O16. 如图,⊙O为△ABC的内切圆,∠C=90,AO的延长线交BC于点D,AC=4,DC =1,,则⊙O的半径等于()A.45B.54C.43D.657.⊙O的半径为6,⊙O的一条弦AB长63,以3为半径⊙O的同心圆与直线AB的位置关系是( ) A.相离 B.相交 C.相切 D.不能确定8.如图,在ABC△中,12023AB AC A BC=∠==,°,,A⊙与BC相切于点D,且交AB AC、于M N、两点,则图中阴影部分的面积是(保留π).9.如图,B是线段AC上的一点,且AB:AC=2:5,分别以AB、AC为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b的圆形纸板上挖去直径分别为a和b的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm.则大圆的半径是______cm.12.如图,直线AB切⊙O于C点,D是⊙O上一点,∠EDC=30º,弦EF∥AB,连结OC交EF于H点,连结CF,且CF=2,则HE的长为_________.13. 如图,PA、PB是⊙O的两条切线,切点分别为A、B,若直径AC=12cm,∠P=60°.求弦AB的长.中考题型一、选择题1.(2009年·宁德中考)如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA = 30°,则OB的长为()A.43 B.4 C.23 D.2(第1题图)(第2题图)2.(2009年·潍坊中考)已知圆O的半径为R,AB是圆O的直径,D是AB延长线上一点,DC是圆O的切线,C是切点,连结AC,若∠CAB=30°,则BD的长为()A.2R B.3R C.R D.32RBPAOC第8题图第9题图第11题图第10题图第12题图第13题图3.(2009年·襄樊中考)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C,若∠A=25°则∠D 等于( )A .40°B .50°C .60° D.70°(第3题图) (第4题图)4.(2009年湖南省邵阳市)如图AB 是⊙O 的直径,AC 是⊙O 的切线,,A 为切点,连结BC 交圆0于点D,连结AD,若∠ABC =450,则下列结论正确的是( ) A.AD =21BC B.AD =21AC C.AC >AB D.AD >DC二、填空题5.(2009年·綦江县中考)如图,AB 与⊙O 相切于点B ,AO 的延长线交O ⊙于点C ,连结BC ,若34A ∠=°,则C ∠= .(第5题图) (第6题图)6.(2009年·庆阳市中考)如图直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.三、解答题7.(2009桂林百色)如图,△ABC 内接于半圆,AB 是直径,过A 点作直线MN ,若∠MAC=∠ABC .(1)求证:MN 是半圆的切线; (2)设D 是弧AC 的中点,连结BD 交AC 于G ,过D 作DE⊥AB 于E ,交AC 于F .求证:FD =FG .(3)若△DFG 的面积为4.5,且DG =3,GC =4,试求△BCG 的面积.课后练习题一、填空题:1、在直角坐标系中,以点(1,2)为圆心,1为半径的圆必与y轴,与x轴2、直线m上一点P与O点的距离是3,⊙O的半径是3,则直线m与⊙O的位置关系是3、R T⊿ABC中,∠C=90°,AC=4cm,BC=3cm,则以2.4cm为半径的⊙C与直线AB的位置关系是4、如图1,AB为⊙O的直径,CD切⊙O于D,且∠A=30°,⊙O半径为2cm,则CD=5、如图2,AB切⊙O于C,点D在⊙O上,∠EDC=30°,弦EF∥AB,CF=2,则EF=6、如图3,以O为圆心的两个同心圆中,大圆半径为13cm,小圆半径为5cm,且大圆的弦AB切小圆于P,则AB=7、如图4,直线AB与CD相交于点O,∠AOC=30°,点P在射线OA上,且OP=6cm,以P为圆心,1cm为半径的⊙P以1cm/s的速度沿射线PB方向运动。
直线与圆的位置关系讲义

九年级数学时间: 学生:第讲直线与圆的位置关系【知识点】1直线和圆的位置关系有三种:, 。
2设r为O O的半径,d为圆心O到直线l的距离, d r, 则直线l与O O相交。
d r,则直线l与O O相切d r,则直线l与O O相离。
3圆的切线的性质:圆的切线垂直于_________________ 的半径。
4圆的切线的判定定理:经过直径的一端,并且____________ 这条直径的直线是圆的切线。
5圆的切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
6.三角形的内切圆:(1)定义:与三角形三边都相切的圆称为三角形的内切圆。
(2)_________________________________ 内切圆的作法;______ .(3)_________________________ 内心的性质:内心是 _______ 的交点,内心到的距离相等,内心与三角形顶点的连线________ 这个内角。
【课前自测】1. (2011?成都)已知O O的面积为9n cm2,若点0到直线I的距离为n cm则直线l与。
O的位置关系是()A、相交B、相切 C 、相离D无法确定2.如图,从O O外一点A引圆的切线AB切点为B,连接AO并延长交圆于点C,连接BC若/ A= 26°,则/ ACB的度数为▲.3.已知O O的半径为5,圆心O到直线AB的距离为2,则O O上有且只有_______________ 到直线AB的距离为3.4.如图,已知AB是O O的一条直径,延长AB至C点,使得AC= 3BQ 个占I 八、、CD与O O相切,切点为D.若CD= d,则线段BC的长度等于5.如图23, PA与O O相切,切点为A, PO交O O于点C,点B是优弧CBA上一点,若 / ABC=32,则/ P的度数为【例题讲解】例1.如图,AB是O O的直径,点D在AB的延长线上,DC切O O于点C,若/ A=25°, 则/ D 等于A. 20°B.30°C.40°D.50°例2已知BD是O O的直径,OAL OB,M是劣弧AB上的一点,过M作O O的切线MP交OA的延长线于点P, MD交OA于点N。
直线和圆有哪几种位置关系

直线和圆有哪几种位置关系?
答:直线和圆有三种位置关系.它们是直线和圆相交;直线和圆相切;直线和圆相离.
直线和圆的三种位置关系是这样定义的:
(1)直线和圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.
(2)直线和圆有唯一个公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.
(3)直线和圆没有公共点时,叫做直线和圆相离.
根据定义,容易看出:
如果⊙O的半径为r,圆心O到直线l的距离为d,那么
直线和圆的位置关系可以用它们交点的个数来区分,也可以用圆心到直线的距离与半径的大小来区分,它们是一致的.
直线和圆的位置关系,可用下表表示.
例1 已知⊙O的半径为11厘米,当直线MN与⊙O的位置是相离、相切、相交时,O点到直线MN的距离分别如何?
解⊙O的半径r=11厘米,所以有:
当直线MN与⊙O相离时,圆心O到直线MN的距离d大于半径11厘米.当直线MN与⊙O相切时,圆心O到直线MN的距离d等于11厘米.
当直线MN与⊙O相交时,圆心O到直线MN的距离d小于11厘米.
例2 已知Rt△ABC的斜边AB=6厘米,直角边AC=3厘米.圆心为C,半径分别为2厘米、4厘米的两个圆与AB有怎样的位置关系?半径多长时,AB 与圆相切?
解:过C作CD⊥AB,垂足为D(如图).
在直角△ABC中,有
根据三角形的面积公式,有
CD·AB=AC·BC.
当⊙C的半径为2厘米时,⊙C与AB相离;
当⊙C的半径为4厘米时,⊙C与AB相交;
由以上两例可以看出:直线和圆的位置关系是由公共点的个数确定的,可以由圆心到直线的距离与圆的半径的关系来决定.。
圆圆的位置关系知识点总结

圆圆的位置关系知识点总结圆的位置关系是几何学中一个重要的概念,涉及到圆与直线、圆与圆之间的相对位置关系。
下面是关于圆的位置关系的知识点总结。
一、圆与直线的位置关系:1.外切:当直线与圆相切于圆的一点时,我们称这条直线与圆外切。
2.内切:当直线与圆只在圆的内部与圆相切时,我们称这条直线与圆内切。
3.交于两点:当直线与圆相交并有两个交点时,我们称这条直线与圆相交于两点。
4.不相交:当直线与圆没有交点时,我们称这条直线与圆不相交。
二、圆与圆的位置关系:1.相切:当两个圆相切于圆的一点时,我们称这两个圆相切。
2.相交:当两个圆有交点时,我们称这两个圆相交。
3.重合:当两个圆的圆心和半径完全相同时,我们称这两个圆重合。
4.内含:当一个圆完全在另一个圆内部时,我们称这个圆在另一个圆内含。
5.相离:当两个圆没有交点,且一个圆的外部不与另一个圆的内部相交时,我们称这两个圆相离。
三、判别圆与直线的位置关系的方法:1.利用距离:计算直线上一点到圆心的距离,根据距离与圆的半径的大小关系来判断圆与直线的位置关系。
-当直线上一点到圆心的距离等于圆的半径时,这条直线与圆相切。
-当直线上一点到圆心的距离大于圆的半径时,这条直线与圆相交。
-当直线上一点到圆心的距离小于圆的半径时,这条直线与圆不相交。
2.利用方程:通过圆的方程和直线的方程来求解相交的点,根据求解得到的交点的数量来判断圆与直线的位置关系。
四、判别圆与圆的位置关系的方法:1.利用距离:计算两个圆心之间的距离,根据距离与两个圆的半径之和、之差的大小关系来判断圆与圆的位置关系。
-当两个圆心之间的距离等于两个圆的半径之和时,这两个圆相交。
-当两个圆心之间的距离大于两个圆的半径之和时,这两个圆相离。
-当两个圆心之间的距离等于两个圆的半径之差的绝对值时,一个圆完全包含在另一个圆内即一个圆内含于另一个圆。
-当两个圆心之间的距离大于两个圆的半径之差的绝对值,但小于两个圆的半径之和时这两个圆相交于两个交点。
高考数学直线与圆归纳总结

高考数学直线与圆归纳总结直线与圆是高中数学中重要的几何概念。
在高考数学中,直线与圆的相关知识点常常出现,并且在解决几何问题时扮演着重要的角色。
下面将对高考数学中涉及直线与圆的知识进行归纳总结。
一、直线与圆的位置关系1. 直线和圆可能有三种位置关系:相离、相切和相交。
a. 如果直线和圆没有交点,则称直线和圆相离。
b. 如果直线与圆有且仅有一个交点,则称直线与圆相切。
c. 如果直线与圆有两个交点,则称直线与圆相交。
2. 判断直线与圆的位置关系的方法:a. 判断直线与圆相离:计算直线到圆心的距离是否大于圆的半径。
b. 判断直线与圆相切:计算直线到圆心的距离等于圆的半径。
c. 判断直线与圆相交:计算直线到圆心的距离小于圆的半径。
二、直线与圆的方程1. 直线的一般方程:Ax + By + C = 0。
直线的一般方程表示直线上的所有点 (x, y),满足方程左侧等式。
2. 圆的标准方程:(x - a)^2 + (y - b)^2 = r^2。
圆的标准方程表示平面上距离圆心 (a, b) 距离为半径 r 的点 (x, y)。
3. 直线与圆的方程应用:a. 直线与圆的相交问题可以通过联立直线和圆的方程求解。
b. 直线与圆的相切问题可以通过判断直线方程是否与圆方程有且仅有一个交点来确定。
三、直线与圆的性质1. 切线与半径的关系:切线与半径的夹角是直角,即切线垂直于半径。
2. 切线的性质:a. 切点:切线与圆的交点称为切点。
b. 切线长度:切点到圆心的距离等于半径的长度。
c. 外切线:若直线与圆内切于一点,则这条直线称为外切线。
d. 内切线:若直线切圆于两个相交点,则这条直线称为内切线。
3. 弦的性质:弦是圆上的两个点之间的线段。
弦的性质有:a. 弦长:弦长等于圆心到弦的距离的两倍。
b. 直径:直径是通过圆心的弦。
直径等于半径的两倍。
四、圆的位置关系1. 同心圆:具有共同圆心的多个圆称为同心圆。
2. 内切圆与外接圆:如果一个圆与另一个圆有且仅有一个切点,则这两个圆称为内切圆与外接圆。
直线与圆的位置关系

直线与圆的位置关系一、直线与圆的位置关系位置关系有三种:相交、相切、相离.判断直线与圆的位置关系常见的有两种方法:(1)代数法:将直线方程与圆的方程联立成方程组,利用消元法消去一个元后,得到关于另一个元的一元二次方程,求出其∆的值,然后比较判别式∆与0的大小关系.若0∆<,则直线与圆相离;若0∆=,则直线与圆相切;若0∆>,则直线与圆相交.(2)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系:d r <⇔相交,d r =⇔相切,d r >⇔相离.二、计算直线被圆截得的弦长的常用方法(1)几何方法:运用弦心距、弦长的一半及半径构成的直角三角形计算.(2)代数方法:运用韦达定理及弦长公式2221(1)[()4]A B A B A B AB k x x k x x x x =+-=++-三、圆与圆的位置关系的判定设2222221111122222:()()(0),:()()(0)C x a y b r r C x a y b r r -+-=>-+-=>,则有:12121C C r r C >+⇔与2C 外离;12121C C r r C =+⇔与2C 外切;1212121r r C C r r C -<<+⇔与2C 相交;1212121()C C r r r r C =-≠⇔与2C 内切;12121C C r r C <-⇔与2C 内含; 四、圆的切线方程问题(1)已知22222222123:,:()(),:0,O x y r O x a y b r O x y Dx Ey F +=-+-=++++=则以00(,)M x y 为切点的1O 的切线方程200;xx yy r +=2O 的切线方程200()()()(),x a x a y b y b r --+--=3O 切线方程0000()()022D x xE y y xx yyF ++++++= (2)已知圆的222x y r +=的切线斜率为k ,则圆的切线方程为21y kx r k =±+(3)已知切线过圆外一点11(,)P x y ,可设切线方程为11(),y y k x x -=-利用相切条件确定斜率k ,此时必有两条切线,不能漏掉斜率不存在的那一条切线.(4)切线长公式:从圆外一点00(,)P x y 引圆222()()x a y b r -+-=的切线,则P 到切点的切线段长为22200()()d x x y y r =-+--;从圆外一点00(,)P x y 引圆220x y Dx Ey F ++++=的切线,则P 到切点的切线段长为220000d x y Dx Ey F =++++五、圆系方程(1)同心圆系2220000()(),,x x y y r x y -+-=为常数,r 为参数.(2)圆心共线且半径相等圆系22200()(),x x y y r -+-=r 为常数,圆心00(,)x y 在直线0ax by c ++=上移动.(3)过两已知圆22(,)0(1,2)i i i i f x y x y D x E y F i =++++==的交点的圆系方程为2222111222()0x y D x E y F x y D x E y F λ+++++++++=即12(,)(,)0(1)f x y f x y λλ+=≠-.当1λ=-时,方程变为121212()()0,D D x E E y F F -+-+-=表示过两圆的交点的直线(当两圆是同心圆时,此直线不存在),当两圆相交时,此直线为公共弦所在直线;当两圆相切时,此直线为两圆的公切线;当两圆相离时,此直线为与两圆连心垂直的直线.(4)过直线与圆交点的圆系方程:直线:0l Ax By C ++=与圆22:0C x y Dx Ey F ++++=相交,则方程22()0x y Dx Ey F Ax By C λ+++++++=表示过直线l 与圆C 的两个交点的圆系方程.题型一、直线与圆相交【例1】 直线10x y -+=与圆()2211x y ++=的位置关系是_________.【例2】 圆222430x x y y +++-=上到直线10x y ++=的距离为2的点共有_________个.【例3】 判断直线210x y -+=和圆2222410x y mx my m +--+-=的位置关系,结论为( )A .相交但直线不过圆心B .相交且直线过圆心C .相交或相切D .相交、相切或相离 【例4】 自点()64P -,向圆2220x y +=引割线,所得弦长为62,则这条割线所在直线的方程是 .【例5】 直线023=+-y x 被圆224x y +=截得的弦长为_______.【例6】 若圆2244100x y x y +---=上至少有三个不同点到直线l :y kx =的距离为22,则k 的取值范围是_________.【例7】 圆22(2)(3)4x y -++=上与直线20x y -+=距离最远的点的坐标是_________.【例8】 若直线l 与圆22(1)4x y ++=相交于A ,B 两点,且线段AB 的中点坐标是(1,2)-,则直线l的方程为 .题型二、直线与圆相切【例9】 若直线30ax by +-=与圆22410x y x ++-=切于点(12)P -,,则ab 的积为_________. 【例10】 过点()4,4引圆()()22134x y -+-=的切线,则切线长是_________.【例11】 动圆C 经过点)0,1(F ,并且与直线1-=x 相切,若动圆C 与直线122++=x y 总有公共点,则圆C 的面积( )A .有最大值8πB .有最小值2πC .有最小值3πD .有最小值4π【例12】 求过点(24)A ,向圆224x y +=所引的切线方程为 .【例13】 已知圆的方程为22220x y ax y a ++++=,一定点为(1,1)A --,要使过定点A 作圆的切线有两条,则a 的取值范围是_________.【例14】 过点(2,4)A --且与直线l :3260x y +-=相切于点(8,6)B 的圆的方程为 .【例15】 过直线2x =上一点M 向圆()()22511x y ++-=作切线,则M 到切点的最小距离为_______.【例16】 已知P 是直线3480x y ++=上的动点,PA 、PB 是圆:C 222210x y x y +--+=的两条切线,,A B 是切点,那么四边形PACB 面积的最小值为_______,此时P 点的坐标为_______. 【例17】 已知圆224O x y +=:,过点(2,4)P 与圆O 相切的两条切线为,PA PB ,其中A B 、为切点,求直线AB 的方程.题型三、综合问题【例18】 直线3y kx =+与圆()()22324x y -+-=相交于M ,N 两点,若23MN ≥,则k 的取值范围是_________.【例19】 圆224x y +=被直线3230x y +-=截得的劣弧所对的圆心角的大小为_________.【例20】 过点()2,0P 与圆22230x y y ++-=相交的所有直线中,被圆截得的弦最长时的直线方程是_________.【例21】 若直线220(,0)ax by a b -+=>始终平分圆222410x y x y ++-+=的周长,则11a b+的最小值为____________.【例22】 若过定点(10)M -,且斜率为k 的直线与圆22450x x y ++-=在第一象限内的部分有交点,则k 的取值范围是____________. 【例23】 若过定点(1,0)M -且斜率为k 的直线与圆22450x x y ++-=在第一象限内的部分有交点,则k 的取值范围是_________.【例24】 直线经过点332P ⎛⎫-- ⎪⎝⎭,被圆2225x y +=截得的弦长为8,则此弦所在直线方程为____________.课后练习【题1】 圆2244100x y x y +---=上的点到直线140x y +-=的最大距离与最小距离的差是_________.【题2】 直线2x =被圆224x a y -+=()所截得的弦长等于23,则a 的为_________.【题3】 如果直线l 将圆22240x y x y +--=平分,且不通过第四象限,那么直线l 的斜率的取值范围是________.【题4】 经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则弦AB 所在直线方程为____________.【题5】 过点(1,2)P 的直线将圆22450x y x +--=分成两个弓形,当这两个弓形面积之差最大时,这条直线的方程为____________.【题6】 过点(1,2)的直线l 将圆22(2)4x y -+=分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k =_________.【题7】 已知圆22:(1)(2)25C x y -+-=,直线:(21)(1)740()l m x m y m m +++--=∈R .(1)证明直线l 与圆相交;(2)求直线l 被圆C 截得的弦长最小时,求直线l 的方程.【题8】 已知圆22:2440C x y x y +-+-=,问最否存在斜率为1的直线l ,使l 被圆C 截得的弦AB 为直径的圆过原点,若存在,写出直线方程;若不存在,说明理由.。
圆和直线的位置关系公式
圆和直线的位置关系公式圆和直线的位置关系公式是数学中最重要的公式之一,用于计算圆和直线之间的位置关系。
圆和直线的关系可以用几何图形来表示,它们的位置关系可以用几何学方法来表达,这就是圆和直线的位置关系公式。
一、圆和直线的位置关系圆和直线之间的位置关系可以分为三种:相交、相切和内切。
1. 相交:圆和直线的位置关系,当圆和直线的位置关系是相交时,圆和直线有两个公共点,这两个点就是它们的交点。
2. 相切:当圆和直线的位置关系是相切时,它们有一个公共点,这个点就是它们的切点。
3. 内切:当圆和直线的位置关系是内切时,它们有一个公共点,这个点就是它们的内切点。
二、圆和直线的位置关系公式既然已经了解了圆和直线之间的位置关系,那么下面就要介绍圆和直线的位置关系公式。
1. 相交的位置关系公式:(x-a)^2 + (y-b)^2 = r^22. 相切的位置关系公式:(x-a)^2 + (y-b)^2 = r^23. 内切的位置关系公式:(x-a)^2 + (y-b)^2 = r^2上面的公式中,a,b是圆心的坐标,r是圆的半径。
三、应用圆和直线的位置关系公式不仅可以用来计算圆和直线之间的位置关系,还可以用来计算圆的面积和周长、求解三角形等。
1. 求圆的面积根据面积公式:面积=πr^2,可以算出圆的面积。
2. 求圆的周长根据周长公式:周长=2πr,可以算出圆的周长。
3. 求解三角形根据圆和直线的位置关系公式,可以求出三角形的三条边长,然后根据三角形的定理,可以求出三角形的其他属性。
四、总结从上面的介绍可以看出,圆和直线的位置关系公式是一个非常重要的公式,它可以用来计算圆和直线之间的位置关系,也可以用来计算圆的面积和周长,还可以用来求解三角形等。
因此,圆和直线的位置关系公式在几何学中具有重要的意义,是学习数学的重要基础。
【高中数学】高中数学知识点:直线与圆的位置关系
【高中数学】高中数学知识点:直线与圆的位置关系直线与圆的位置关系:由直线与圆的公共点的个数,得出结论以下直线和圆的三种边线关系:(1)相交:直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线。
(2)切线:直线和圆存有唯一公共点时,叫作直线和圆切线,这时直线叫作圆的切线,唯一的公共点叫作切点。
(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
其图像如下:直线和圆的位置关系的性质:(1)直线l和⊙o平行d<r(2)直线l和⊙o切线d=r;(3)直线l和⊙o嗟乎d>r。
直线与圆边线关系的认定方法:(1)代数法:判断直线ax+by+c=0和圆x2+y2+dx+ey+f=0的位置关系,可由面世mx2+nx+p=0,利用判别式△展开推论.△>0则直线与圆相交;△=0则直线与圆切线;△<0则直线与圆相离.(2)几何法:未知直线ax+by+c=0和圆,圆心到直线的距离d<r则直线和圆平行;d=r则直线和圆相切;d>r则直线和圆嗟乎.特别提醒:(1)上述两种方法,以利用圆心至直线的距离展开认定较为简便,而判别式法也适用于于直线与椭圆、双曲线、抛物线边线关系的推论.(2)直线与圆相交,应抓住半径、弦心距、半弦长组成的直角三角形,可使解法简单.直线与圆边线关系的认定方法列表如下:直线与圆相交的弦长公式:(1)几何法:如图所示,直线l与圆c平行于a、b两点,线段ab的长即为l与圆平行的弦长。
设弦心距为d,半径为r,弦为ab,则有|ab|=(2)代数法:直线l与圆处设直线l的斜率为k,则有当直线ab的倾斜角为直角,即为斜率不存有时,|ab|=。
直线与圆的位置关系及性质和判定
直线与圆的位置关系及性质和判定
直线与圆是在平面几何中常见的两种基本图形,它们的位置关系及性质有很多种,下面我们来一一介绍。
1. 直线与圆的位置关系有三种情况:
(1)直线与圆相交;
(3)直线与圆内含。
2. 直线与圆的位置关系具有对称性质,即交换直线和圆的位置仍然成立,特别地,直线可以看成是以半径为无限大的圆。
3. 直线与圆的位置关系决定了它们之间的交点数目,以及交点的性质。
(1)交点数目:一条直线与一个圆最多有两个交点,最少有一个交点,如果切线重合,则只有一个交点。
(2)交点的位置:
① 两交点的连线经过圆心;
② 被交点的角度相等,且互为补角;
③ 两条切线垂直于径,且互相垂直;
④ 两条切线在点处的切线垂直于过该点的直径。
(3)判定方法:
① 如果直线与圆的方程可通过联立求解得到交点,则两者相交;
③ 如果扫描线经过圆时出现奇数个交点,则该直线与圆相交(扫描线法)。
① 交点在切线上;
① 确定圆心和半径,然后根据切线的判定条件求出切点;
② 针对某一求交点的定点,使各定点到圆心的距离相等,然后根据勾股定理求出交点。
(1)交点数目:一条直线与一个圆内含时,无交点。
① 切线内含于圆;
(3)判定方法:只需要判断过直线的所有圆的半径与直线的距离之差是否有大于零的情况即可。
总结:
在解决直线与圆的位置关系问题时,需要熟练掌握判定条件和数学技巧,才能快速判断它们的位置关系,从而有效地解决问题。
同时,本文的介绍也只是直线与圆位置关系的一些基本性质,实际问题中还可能存在更加复杂的情况和解决方法。
直线和圆的位置关系知识点归纳整理
直线和圆的位置关系知识点归纳整理直线和圆的位置知识点直线和圆有三种位置关系1.交点:当一条直线和一个圆有两个公共点时,称为直线和圆的交点。
此时直线称为圆的割线,公共点称为交点。
2.相切:当直线与圆有唯一的公共点时,称为直线与圆相切,然后直线称为圆相切。
3.分离:当一条直线和一个圆没有共同点时,称为直线和圆分离。
直线与圆的三种位置关系的判定与性质(1)数量法:通过比较圆心O到直线距离d与圆半径的大小关系来判定。
如果⊙O的半径为r,圆心O到直线l的距离为d,则有:直线l与⊙O相交d<r;直线l与⊙O相切d=r;直线l与⊙O相离d>r;(2)共点法:通过确定一条直线和一个圆的共点数来确定。
直线l与⊙O相交d<r2个公共点;直线l与⊙O相切d=r有唯一公共点;直线l与⊙O相离d>r无公共点。
切线知识点切线的定义:在平面中,与圆只有一个公共交点的直线称为圆的切线。
切线的判定定理:通过半径外端并垂直于该半径的直线为圆的切线。
切线的性质定理:圆的切线垂直于通过切点的半径。
切线长度:圆的切线上的点与切点之间的线段通过圆外一点的长度,称为该点到圆的切线长度。
切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.如图,PA,PB是⊙O的两条切线,B切点分别为A,B,则PA=PB,∠OPA=∠OPB.判断直线与圆位置关系的方法1、代数法:联立线性方程和圆方程,解方程,方程无解,直线与圆分离,方程有一组解,直线与圆相切,方程有两组解,直线与圆相交。
2、几何法:求出圆心到直线的距离d,半径为r。
d>r,则直线与圆相离,d=r,则直线与圆相切,d<r,则直线与圆相交。
如何判断直线和圆的位置关系平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1、由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②相切:
一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:
一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.
(2)判断直线xx的位置关系:
设⊙O的半径为r,圆心O到直线l的距离为d.
①直线l和⊙O相交⇔d<r
②直线l和⊙O相切⇔d=r
③直线l和⊙O相离⇔d>r.
(2)
(1)切线的性质
①圆的切线垂直于经过切点的半径.
②经过圆心且垂直于切线的直线必经过切点.
③经过切点且垂直于切线的直线必经过圆心.
(2)切线的性质可总结如下:
如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:
①直线过圆心;②直线过切点;③直线与圆的切线垂直.
(3)切线性质的运用
由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:
见切点,xx半径,见垂直.
(3)
(1)切线的判定定理:
经过半径的外端且垂直于这条半径的直线是圆的切线.
(2)在应用判定定理时注意:
①切线必须满足两个条件:
a、经过半径的外端;
b、垂直于这条半径,否则就不是圆的切线.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.
(4)
(1)xx的有关概念:
与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.
(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.
(3)三角形内心的性质:
三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.
(5)(1)圆与圆的五种位置关系:
①外离;②外切;③相交;④内切;⑤内含.
如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.
(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:
①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;
③两圆相交⇔R-r<d<R+r(R≥r);
④两圆内切⇔d=R-r(R>r);
⑤两圆内含⇔d<R-r(R>r).。