直线和圆的位置关系
直线与圆的位置关系—知识讲解

直线与圆的位置关系—知识讲解责编:常春芳【学习目标】1.理解并掌握直线与圆的三种位置关系;2.理解切线的判定定理和性质定理.【要点梳理】要点一、直线与圆的位置关系1.直线和圆的三种位置关系:(1) 相交:当直线与圆有两个公共点时,叫做直线与圆相交.(2) 相切:当直线与圆有唯一公共点时,叫做直线与圆相切.这条直线叫做圆的切线,公共点叫做切点.(3) 相离:当直线与圆没有公共点时,叫做直线与圆相离.2.直线与圆的位置关系的判定和性质.直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢?由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.一般地,直线与圆的位置关系有以下定理:如果⊙O的半径为r,圆心O到直线l的距离为d,那么,(1)d<r直线l与⊙O相交;(2)d=r直线l与⊙O相切;(3)d>r直线l与⊙O相离.要点诠释:这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.要点二、切线的判定定理和性质定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可. 2.切线的性质定理:经过切点的半径垂直于圆的切线.【典型例题】类型一、直线与圆的位置关系【高清ID号:356966 关联的位置名称(播放点名称):经典例题1-2】1.在Rt△ABC中,∠C=90°,AC=3厘米,BC=4厘米,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2厘米; (2)r=2.4厘米; (3)r=3厘米【答案与解析】解:过点C作CD⊥AB于D,在Rt△ABC中,∠C=90°, AC=3,BC=4,得AB=5,,∴AB·CD=AC·BC,∴AC BC34CD===2.4AB5∙⨯(cm),(1)当r=2cm时,CD>r,∴圆C与AB相离;(2)当r=2.4cm时,CD=r,∴圆C与AB相切;(3)当r=3cm时,CD<r,∴圆C与AB相交.【总结升华】欲判定⊙C与直线AB的关系,只需先求出圆心C到直线AB的距离CD的长,然后再与r比较即可.举一反三:【变式】已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的位置关系为()A. 相离B. 相切C. 相交D. 相交或相离【答案】B.类型二、切线的判定与性质2.如图所示,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,DB长为半径作⊙D.求证:AC是⊙D的切线.【思路点拨】作垂直,证半径.【答案与解析】证明:过D作DF⊥AC于F.∵∠B=90°,∴DB⊥AB.又AD平分∠BAC,∴ DF=BD=半径.∴ AC与⊙D相切.【总结升华】如果已知条件中不知道直线与圆有公共点,其证法是过圆心作直线的垂线段,再证明垂线段的长等于半径的长即可.3.(2016•三明)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.【思路点拨】(1)直线DE与圆O相切,理由如下:连接OD,由OD=OA,利用等边对等角得到一对角相等,等量代换得到∠ODE为直角,即可得证;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,在直角三角形OCE中,利用勾股定理列出关于x 的方程,求出方程的得到x的值,即可确定出DE的长.【答案与解析】解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.【总结升华】此题考查了直线与圆的位置关系,以及线段垂直平分线定理,熟练掌握直线与圆相切的性质是解本题的关键.4.如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AE=8,⊙O的半径为5,求DE的长.【思路点拨】(1)连接OD,证明OD∥AD即可;(2)作DF⊥AB于F,证明△EAD≌△FAD,将DE转化成DF来求.【答案与解析】解:(1)直线DE与⊙O相切.理由如下:连接OD.∵AD平分∠BAC,∴∠EAD=∠OAD.∵OA=OD,∴∠ODA=∠OAD.∴∠ODA=EAD.∴EA∥OD.∵DE⊥EA,∴DE⊥OD.又∵点D在⊙O上,∴直线DE与⊙O相切.(2)如上图,作DF⊥AB,垂足为F.∴∠DFA=∠DEA=90°.∵∠EAD=∠FAD,AD=AD,∴△EAD≌△FAD.∴AF=AE=8,DF=DE.∵OA=OD=5,∴OF=3.。
直线与圆的三种位置关系

(1)若直线AB与⊙C相离,则r的取值范围为
____________
(2)若直线AB与⊙C相切,
B
则r的取值为____________
4
(3)若直线AB与⊙C相交,
则r的取值范围为____________ C
5
D
3A
思维拓展:
如图直线l1与l2垂直,垂足为O,AM⊥l1于M,AN⊥l2于 N,AM=4,AN=3,以A为圆心,R为半径作⊙A根据下列
类似点和圆的位置关系,直线和圆的位置关系 是否也可以用数量关系来刻画呢?
A
B
A
类似点和圆的位置关系,直线和圆的位 置关系是否也可以用数量关系来刻画呢?ຫໍສະໝຸດ .Odr .A
.B
.O
d r .D
l
C
H 相离
l 相切
1、直线与圆相离 <=> d>r 2、直线与圆相切 <=> d=r 3、直线与圆相交 <=> d<r
C
A
D
B
练习、在Rt△ABC中,∠C=90°,AC=3cm, BC=4cm,以C为圆心,r为半径的圆与AB 有怎样的位置关系?为什么? (1)r=2cm;(2)r=2.4cm; (3)r=3cm.
B
4
D
C
3A
练习2:在△ABC中,AB=5㎝,CB=4㎝,AC=3㎝,
以点C为圆心,r为半径画⊙C,
条件,确定R的取值范围。
L1
M
A
L2
O
N
1)若⊙A与两直线无公共点,则R的取值范围为____; 2)若⊙A与两直线共有一个公共点,则R的取值为__; 3)若⊙A与两直线共有两个公共点,则R的取值范围为_; 4)若⊙A与两直线共有三个公共点,则R的取值为____; 5)若⊙A与两直线共有四个公共点,则R的取值范围为_。
直线和圆的位置关系

直线和圆的位置关系一直线和圆的位置关系是几何学中的经典问题之一。
直线和圆的相交情况可以分为三种情况:相离、相切和相交。
在本文中,我们将探讨这些情况,并讨论在给定条件下如何确定直线和圆之间的位置关系。
相离的情况是指直线和圆不相交,也不相切。
换句话说,直线没有交叉或触及圆。
当直线与圆没有公共点时,它们被认为是相离的。
这种情况是最简单的情况,因为直线上的任意一点到圆的距离都大于圆的半径。
因此,如果给定一个直线和一个圆,并且它们的半径和位置都已知,我们可以通过计算直线上的任意一点到圆的距离,来确定它们是否相离。
接下来是相切的情况。
当直线与圆相切时,直线刚好触及圆的一个点。
在几何学中,相切的定义是两个图形仅有一个公共点。
对于直线和圆的情况而言,这个点就是直线与圆的切点。
在相切的情况下,直线的斜率与直线上的切点与圆心的连线的斜率相等。
因此,我们可以通过计算直线上两个点的斜率,并比较其与圆心的斜率是否相等,来确定它们是否相切。
最后是相交的情况。
当直线与圆相交时,它们有两个公共点。
如果给定一个直线和一个圆,并且它们的半径和位置都已知,我们可以通过解方程组来确定直线与圆的交点。
一种常见的方法是使用二次方程,通过将直线的方程和圆的方程联立,然后求解二次方程来计算交点的坐标。
如果二次方程有实数解,那么直线与圆相交;如果二次方程没有实数解,那么直线和圆不相交。
当直线与圆相交时,它们的交点具有很多有趣的性质。
例如,交点的坐标可以用来计算直线与圆的切线方程、直线与圆之间的夹角等。
另外,当直线与圆相交时,我们还可以根据交点和圆心的相对位置来判断交点的位置关系。
如果交点在圆心的左侧,那么直线与圆在交点处是外切的;如果交点在圆心的右侧,那么直线与圆在交点处是内切的。
总结起来,直线和圆的位置关系可以通过计算直线上的任意一点到圆的距离来判断它们是否相离;可以通过比较直线上两个点的斜率与圆心的斜率是否相等来判断它们是否相切;可以通过解方程组来计算直线和圆的交点,并根据交点和圆心的相对位置来判断交点的位置关系。
直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系一、直线与圆的位置关系:1、直线与圆的位置关系有三种:如图所示. (1)直线与圆相交:有两个公共点; (2)直线与圆相切:有一个公共点; (3)直线与圆相离:没有公共点.2、直线与圆的位置关系的判定的两种方法:直线l 和圆C 的方程分别为:Ax+By+C=0,x 2+y 2+Dx+Ey+F=0. 1)代数法判断直线与圆的位置关系:由l 和C 的方程联立方程组220Ax By C x y Dx Ey F ++=⎧⎨++++=⎩, ①若方程有两个不相等的实数根(△>0),则直线与圆相交; ②若方程有两个相等的实数根(△=0),则直线与圆相切; ③若方程无实数根(△<0),则直线与圆相离.2)几何法判断直线与圆的位置关系:圆心C(a ,b)到直线的距离d=22||Aa Bb C A B+++与半径r 作比较①若d<r 时,直线l 和圆C 相交;②若d=r 时,直线l 和圆C 相切;③若d>r 时,直线l 和圆C 相离. 3、圆的切线的求法:(1)当点(x 0,y 0)在圆x 2+y 2=r 2上时,切线方程为x 0x+y 0y=r 2;(2)若点(x 0,y 0)在圆(x -a)2+(y -b)2=r 2上时,切线方程为(x 0-a)(x -a)+(y 0-b)(y -b)=r 2; (3)斜率为k 且与圆x 2+y 2=r 2相切的切线方程为21y kx k =±+;斜率为k 且与圆(x -a)2+(y -b)2=r 2相切的切线方程的求法:先设切线方程为y=kx+m ,然后变成一般 式kx -y+m=0,利用圆心到切线的距离等于半径来列出方程求m ;(4)点(x 0,y 0)在圆外面,则切线方程为y -y 0=k(x -x 0),再变成一般式,因为与圆相切,利用圆心到直线距离 等于半径,解出k ,注意若此方程只有一个实根,则还有一条斜率不存在的直线,务必要补上. 4、直线与圆相交的弦长公式1)平面几何法求弦长公式:如图所示,直线l 与圆相交于两点A 、B ,线段AB 的长 即为直线l 与圆相交的弦长.设弦心距为d ,圆的半径为r ,弦长为AB ,则有 222()2AB d r +=,即AB=222r d - . 2)解析法求弦长公式:如图所示,直线l 与圆相交于两点A(x 1,y 1),B(x 2,y 2),当直线AB 的倾斜角存在时,联 立方程组,消元得到一个关于x 的一元二次方程,求得x 1+x 2和x 1x 2.于是2121212||()4x x x x x x -=+-,这样就求得2121221||1||1||AB k x x y y k=+-=+-。
直线和圆的位置关系

直线和圆的位置关系 【基础知识】1、直线和圆的位置关系:(1)相交:直线与圆有两个公共点时,叫做直线和圆相交,这时,直线叫做圆的割线,这两个公共点叫做交点。
(2)相切:直线与圆有一个公共点时,叫做直线与圆想切这时直线叫做圆的切线,唯一的(1) 切线的性质:定理:圆的切线垂直于经过切点的半径。
(2) 推论1:经过圆心且垂直于切线的直径必过切点。
(3) 推论2:经过切点且垂直于切线的直线必过圆心。
3、切线的判定定理及判定方法(1)切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。
(2)切线的判定方法: ①与圆有唯一公共点的直线是圆的切线。
②到圆心的距离等于半径的直线是远的切线。
③经过半径外端并且垂直于这条半径的直线是圆的切线。
4、证明圆的切线的辅助线的方法:①连半径,证明垂直。
②做垂直,证半径。
例题1、如图,在三角形ABC 中,AD 是BC 边上的高,且AD=21BC ,E 、F 分别是AB 、AC 的中点,求证:以E 、F 为直径的的圆与BC 边相切。
【跟踪练习】1、已知:如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接DE,求证:DE与半圆O相切.2、如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O交CA于点E,点G是AD的中点.求证:GE是⊙O的切线;5、三角形的内切圆(1)内切圆:和三角形三边都相切的圆叫做三角形的内切圆。
内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心,这个三角形叫做圆的外接三角形。
三角形的内心到三边的距离相等。
例题2.如图,在△ABC中,AB=AC,内切圆O与边BC,AC,AB分别切于D,E,F.(1)求证:BF=CE;(2)若∠C=30°,AC的长.例题3、如图,⊙I切△ABC的边分别为D,E,F,∠B=70°,∠C=60°,M是 DEF上的动点(与D,E不重合),∠DMF的大小一定吗?若一定,求出∠DMF的大小;若不一定,请说明理由.【跟踪练习】1.图1,⊙O内切于△ABC,切点为D,E,F.已知∠B=50°,∠C=60°,•连结OE,OF,DE,DF,那么∠EDF等于()A.40°B.55°C.65°D.70°图1 图2 图32.如图2,⊙O是△ABC的内切圆,D,E,F是切点,∠A=50°,∠C=60°,•则∠DOE=()A.70°B.110°C.120°D.130°3.如图3,△ABC中,∠A=45°,I是内心,则∠BIC=()A.112.5°B.112°C.125°D.55°6、切线长定理及切线长概念(1)切线长的概念:在经过员外一点的圆的切线上,这点和切点之间的线段的长,叫做这点倒圆的切线长。
九年级数学直线与圆的位置关系

点和圆的位置关系有几种?
A B C
点到圆心的距离为d, 圆的半径为r,则: 点在圆外 点在圆上 点在圆内 d>r; d=r; d<r.
直线与圆的位置关系
(地平线)
● ● ●
O
● ●
O
O
a(地平线)
O
O
一、直线与圆的位置关系
(用公共点的个数来区分)
特点: 直线和圆没有公共点, 叫直线和圆相离 特点: 直线和圆有惟一的公共点, 叫做直线和圆相切。 C
C
x
A
图形 直线与圆的 位置关系
.O r d ┐ l
.o d r ┐ l .
A
. B
.O d r ┐ . lC
相离
0 d>r
相切
1 d=r
相交பைடு நூலகம்
2 d<r
公共点的个数
圆心到直线的距离 d 与半径 r 的关系
公共点的名称 直线名称
切点
切线
已知⊙O的半径r=7cm,直线l1 // l2, 且l1与⊙O相切,圆心O到l2的距离为9cm. 求l1与l2的距离m.
.A
.A
.B
这时的直线叫切线
惟一的公共点叫切点。 特点: 直线和圆有两个公共点, 叫做直线和圆相交。
a(地平线)
观察太阳落山的照片,在太阳落山的过程中,太阳与 地平线(直线a)经历了哪些位置关系的变化?
看图判断直线l与 ⊙O的位置关系
(1) (2)
· O · O
l
(3) l l
· O
相离
相交
相切
课堂练习:
2、已知⊙O的半径为5cm, 圆心O与直线AB的距 离为d, 根据条件填写d的范围: 1)若AB和⊙O相离, 则 d > 5cm ; ; 2)若AB和⊙O相切, 则 d = 5cm
直线和圆的位置关系

设⊙O的圆心O到直线的距离为d,半径为r,d, r是方程(m+9)x2-(m+6)x +1=0的两根,且直线与 ⊙O相切时,求m的值?
解:由题意可得 b2-4ac= [-(m+6)]2-4(m+9)=0 解得 m1= -8 m 2= 0 当m=-8时原方程 为x2+2x+1=0 x1=x2= -1 (不符合题意舍去) 当m=0时原方程 为9x2-6x+1=0 x1=x2= 1 3 ∴ m=0
高桥初中 刘方霞
点 与 圆 的 位 置 关 系
点P在圆内 点P在圆上 点P在圆外
d<r
P
d=r
O
P
d>r
r
·
P
A
想想:
思考: 把海平面看作一条直线,太阳看作一 个圆,由此你能得出直线与圆的位置 关系吗?
思考: 把海平面看作一条直线,太阳看作一 个圆,由此你能得出直线与圆的位置 关系吗?
直线和圆的位置关系有三种:
5
D
3
A
例: Rt△ABC,∠C=90°AC=3cm, 解:过C作CD⊥AB,垂足为D。 在Rt△ABC中, BC=4cm,以C为圆心,r为 2 = 2 2 2 半径的圆与AB有怎样的位置 AB= 关系?为什么? =5(cm) (1)r=2cm;(2)r=2.4cm 根据三角形面积公式有 (3)r=3cm。 CD· AB=AC· BC
l
(二).直线与圆的位置关系 (数量特征)
.Or
相离
d
B A
直线与圆的位置关系的性质与判定
H
l
r .D
1、直线与圆相离
d>r
相切
.O
直线和圆的位置关系

直线和圆的位置关系
直线和圆的位置关系有三种,具体如下:
1、相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;
2、相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,
3、相离:直线和圆没有公共点时,叫做直线和圆相离。
直线定义:直线是由无数个点构成,两端都没有端点、可以百向两端无限延伸、不可测量长度的一条线。
圆的定义:在一个平面内,围绕一个点并以一定长度为距离旋转一周所形成的封闭曲线叫做圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C D AC B C 342.4(c)m
C
B
AB 5
即圆心 C 到 AB 的距离 d = 2.4 cm.
(1) 当 r = 2 cm 时,有 d > r ,因此⊙C 和 AB 相离.
(2) 当 r = 2.4 cm 时, 有 d = r ,因此⊙C 和 AB 相切.
(3) 当 r = 3 cm 时, 有 d < r 精,选因课件此⊙C 和 AB 相交.
C 为圆心,r 为半径的圆与 AB 有怎样的关系?为什么?
(1)r = 2 cm ; (2) r = 2.4 cm ; (3) r = 3 cm .
解:过 C 作 CD⊥AB 于 D,在 Rt △ABC 中,
A
A B A2 C B2C 3 2 4 2 5
根据三角形面积公式有
D
CD ·AB = AC ·BC
精选课件
12
例1:在Rt△ABC中∠C= 90°,AC=3cm,BC=4cm,以C为圆心,
r为半径的圆与AB有怎样的关系?为什么?
(1) r=2cm
(2) r=2.4cm
(3) r=3cm
B
B
B
D
C
A
D
C
A
D
C
A
精选课件
13
例 在 Rt△ABC 中,∠C = 90°,AC = 3 cm , BC = 4 cm , 以
在实际应用中,常采用第二种方法判定。
精选课件
10
O
O
r ┐d
l
d
┐
l
直线与圆的位置关系判定方法:
直线和圆的位置关系 相交
公共点个数
2
圆心到直线距离 d 与半径 r 关系
公共点名称
d<r 交点
直线名称
精割选课线件
相切 1
d=r 切点 切线
O
d
┐
l
相离 0
d>r 无 无 11
三、练习与例题
1、已知圆的直径为13cm,设直线和圆心的距离为d :
1)若AB和⊙O相离, 则 d > 5cm ;
2)若AB和⊙O相切, 则 d = 5cm ;
3)若AB和⊙O相交,则 0cm≤ d < 5cm.
3.直线和圆有2个交点,则直线和圆__相__交_____;
直线和圆有1个交点,则直线和圆___相__切____;
直线和圆有没有交点,则直线和圆___相__离____;
r o
d l
r o
dl
r
od
l
(1)直线l 和⊙O相离 d>r (2)直线l 和⊙O相切 d=r (3)直线l 和⊙O相交 d<r
精选课件
9
总结:
判定直线 与圆的位置关系的方法有_两___种:
(1)根据定义,由__直__线___与__圆___的__公__共点 的个数来判断;
(2)根据性质,由__圆__心__到__直__线__的__距__离_ d与半径r 的关系来判断。
思考:一条直线和一个圆,如果有公共点能不能多于 两个呢?
精选课件
6
快速判断下列各图中直线与圆的位置关系
l
l
.O
.O1
.O2
.O
l
L
.
精选课件
7
1.直线外一点到这条直线 垂线段的长度叫点到直线 的距离。
.A
2、连结直线外一点与直线所
D
a
有点的线段中,最短的是_垂__线__段_?
精选课件
8
2、用圆心到直线的距离和圆半径的数量关系,来 揭示圆和直线的位置关系。
半径OA与直线L是不
.O
是一定垂直呢?
一定垂直
切线的性质定理:
L A
圆的切线垂直于过切点的半径
精选课件
18
切线长定理
A
如图:过⊙O外一点P
有两条直线PA、PB与 ⊙O相切.
O
P
在经过圆外一点的圆的切
线上,这点和切点间的线
段的长,叫做切线长.
B
切线长定理:从圆外一点引圆的两条切线,它们的 切线长相等,圆心和这一点的连线平分两条切线的 夹角. 平分切点所成的两弧;垂直平分切点所成的弦.
精选课件
1
一、复习提问
1、点和圆的位置关系有几种?
(1)d<r (2)d=r (3)d>r
点在圆内 点在圆上 点 在圆外
2、“大漠孤烟直,长河落日圆” 是唐朝诗人王 维的诗句,它描述了黄昏日落时分塞外特有的景 象。如果我们把太阳看成一个圆,地平线看成一 条直线,那你能根据直线与圆的公共点的个数想象 一下,直线和圆的位置关系有几种?
14
思考:
在⊙O中,经过半径OA的
外端点A作直线L⊥OA,
则圆心O到直线L的距离 是多少?__O__A__,直线L和
.O
⊙O有什么位置关系?
___相__切____.
L
A 经过半径的外端并且垂直于这条半径的直线是
圆的切线.
几何应用: ∵OA⊥L ∴精选L课是件 ⊙O的切线
15
圆O与直线l相切B,则过点A的直径A B与切线l有 怎样的位置关系? 垂直
B
O
A
l
精选课件
16
例1 直线AB经过⊙O上的点C,并且OA=OB,CA=CB,
求证:直线AB是⊙O的切线.
证明: 连接OC
∵OA=OB, CA=CB
∴△OAB是等腰三角形,OC 是底边AB上的中线
∴OC⊥AB
∴AB是⊙O的切线
精选课件
17
将上页思考中的问题
反过来,如果L是⊙O
的切线,切点为A,那么
这时直线叫做圆的切线. 唯一的公共点叫做切点.
(3)直线和圆没有公共点时,叫做直线和圆相离.
精选课件
5
1、直线与圆相离、相切、相交的定义。
相离
切点
切线
相切
交点
交点
割线
相交
直线和圆的位置关系是用直线和圆的公共点的个数 来定义的,即直线与圆没有公共点、只有一个公共点、 有两个公共点时分别叫做直线和圆相离、相切、相交。
精选课件
19
例1
已知,如图,PA、PB是⊙O的两条切线,A、B为切点. 直线 OP 交 ⊙O 于点 D、E,交 AB 于 C.
(1)写出图中所有的垂直关系;
(2)写出图中所有的全等三角形.
(3)如果 PA = 4 cm , PD = 2 cm , 求半径 OA 的长.
1)若d=4.5cm ,则直线与圆 相交 , 直线与圆有__2__个公共点. 2)若d=6.5cm ,则直线与圆_相__切___, 直线与圆有___1_个公共点.
3)若d= 8 cm ,则直线与圆_相__离___, 直线与圆有__0__个公共点. 2、已知⊙O的半径为5cm, 圆心O与直线AB的距离为d, 根据 条件填写d的范围:
精选课件
2
你发现这个自然现象反映出直线和圆的位置关系有哪几种?
a(地平线)
(3) (2) (1)
观察三幅太阳落山的照片,地平线与太阳的位置关 系是怎样的?
精选课件
3
ll
ll l
O
l
l lllll l
精选课件
4
直线和圆的位置关系
O
O
O
l
l
l
(1)直线和圆有两个公共点时,叫做直线和圆相交;
这时直线叫做圆的割线. (2)直线和圆有唯一公共点时,叫做直线和圆相切;