直线与圆的位置关系教案

合集下载

《直线与圆的位置关系》教案

《直线与圆的位置关系》教案

《直线与圆的位置关系》教案第一章:引言教学目标:1. 让学生了解直线与圆的位置关系的概念。

2. 引导学生通过观察和思考,探索直线与圆的位置关系。

教学内容:1. 直线与圆的定义。

2. 直线与圆的位置关系的分类。

教学步骤:1. 引入直线和圆的定义,让学生回顾相关概念。

2. 提问:直线和圆有什么关系?它们可以相交、相切还是相离?3. 引导学生观察和思考直线与圆的位置关系,让学生举例说明。

练习题目:a) 直线x=2与圆x^2+y^2=4b) 直线y=3与圆x^2+y^2=9c) 直线x+y=4与圆x^2+y^2=8第二章:直线与圆的相交教学目标:1. 让学生了解直线与圆相交的概念。

2. 引导学生通过观察和思考,探索直线与圆相交的性质。

教学内容:1. 直线与圆相交的定义。

2. 直线与圆相交的性质。

教学步骤:1. 引入直线与圆相交的概念,让学生了解相交的含义。

2. 提问:直线与圆相交时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相交的性质,让学生举例说明。

练习题目:a) 直线y=2x+3与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第三章:直线与圆的相切教学目标:1. 让学生了解直线与圆相切的概念。

2. 引导学生通过观察和思考,探索直线与圆相切的性质。

教学内容:1. 直线与圆相切的定义。

2. 直线与圆相切的性质。

教学步骤:1. 引入直线与圆相切的概念,让学生了解相切的含义。

2. 提问:直线与圆相切时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相切的性质,让学生举例说明。

练习题目:a) 直线y=3x+2与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第四章:直线与圆的相离教学目标:1. 让学生了解直线与圆相离的概念。

2. 引导学生通过观察和思考,探索直线与圆相离的性质。

直线与圆的位置关系》教学设计-优质教案

直线与圆的位置关系》教学设计-优质教案

2.5直线与圆的位置关系(1)教学目标1.经历探索直线与圆的位置关系的过程;2.理解直线与圆的三种位置关系——相交、相切、相离;3.能利用圆心到直线的距离d与圆的半径r之间的数量关系判别直线与圆的位置关系.教学重点用“圆心到直线的距离与圆半径之间的数量关系”来描述“直线与圆的位置关系”的方法.教学难点直线和圆相切:“直线和圆有唯一公共点”的含义.教学过程(教师)学生活动设计思路情境引入1.我们已经学习过点和圆的位置关系,请同学们回忆:(1)点和圆有哪几种位置关系?(2)怎样判定点和圆的位置关系?(数量关系——位置关系)2.观察三幅太阳升起的照片,地平线与太阳经历了哪些位置关系?通过这个自然现象,你猜想直线和圆的位置关系有哪几种?1.先让每个学生回忆思考,然后全班交流.2.引导学生将整个日出过程演示一下,从而猜想直线和圆的位置关系有哪几种?如果学生回答不完整,让其他同学补充说明,并带着疑问和兴趣探究今天的知识.通过学生熟悉的问题入手,既能复习旧知,同时也通过类比,激发学生的兴趣,导入新课.例题讲解例1 在△ABC中,∠A=45°,AC=4,以C为圆心,r为半径的圆与直线AB有怎样的位置关系?为什么?(1)r=2;(2)r=22;(3)r=3.1.先让学生独立思考,然后让学生板演,最后学生点评.(强调:过点C作AB的垂线.)知识点的综合运用,进一步培养学生分析问题的能力.例2 已知:如图示,∠AOB=300,M为OB上一点,以M为圆心,5cm长为半径作圆,若M在OB上运动,问:①当OM满足时,⊙M与OA相离?②当OM满足时,⊙M与OA相切?③当OM满足时,⊙M与OA相交?2.先让学生独立思考,然后让学生板演,最后学生点评.本题难度不大,主要是让学生学会如何判断直线与圆的位置关系,寻找d与r的大小关系.练一练1.已知⊙O的直径为10cm,点O到直线l的距离为d:(1)若直线l与⊙O相切,则d=____;(2)若d=4cm,则直线l与⊙O有学生先独立思考并完成,然后集体反馈.巩固所学知识.MBOA·_____个公共点;(3)若d=6cm,则直线l与⊙O的位置关系是________.2.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2cm;(2)r=2.4cm;(3)r=3cm.拓展提升在平面直角坐标系中有一点A(-3,-4),以点A为圆心,r长为半径时,思考:随着r的变化,⊙A与坐标轴交点的变化情况.学生先独立思考,然后自己完成,最后小组交流.拓展学生思维,渗透分类思想.总结1.这节课你有哪些收获和困惑?2.直线与圆的位置关系中的d与点和圆的位置关系中的d,两者有何区别与联系?各抒己见.培养学生归纳、口头表达能力.课后作业课本P65第1、2.独立完成.进一步复习巩固所学知识.。

直线与圆的位置关系 完整教案

直线与圆的位置关系 完整教案

4.2.1 直线与圆的位置关系一、教学目标:1、知识与技能:(1)理解直线与圆的位置关系的种类;(2)会利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;(3)会用点到直线的距离来判断直线与圆的位置关系.2、过程与方法:通过学习直线与圆的位置关系,掌握解决问题的方法――几何法、代数法。

3、情感态度与价值观:让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想.二、教学重、难点:重点:直线与圆的位置关系的几何图形及其判断方法.难点:用坐标法判断直线与圆的位置关系.三、教学方法与手段:1、教学方法:讲解法、讨论法、探究法、演示法2、教学手段:多媒体、几何画板四、教学过程:1、提出问题,情境导入教师利用多媒体展示如下问题:问题1:一个小岛的周围有环岛暗礁,暗礁分布在以小岛的中心为圆心,半径为30km的圆形区域,已知小岛中心位于轮船正西70km处,港口位于小岛中心正北40km处。

如果轮船沿直线返港,那么它是否会触礁危险?设计意图:让学生感受暗礁这个实际问题中所蕴含的直线与圆的位置关系,思考解决问题的方案。

通过实际问题引入,让学生体会生活中的数学,突出研究直线与圆的位置关系的重要意义。

师生活动:让学生进行讨论、交流,启发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课.师:你怎么判断轮船会不会触礁?利用初中所学的平面几何知识,你能解决这个问题吗?请同学们动手试一下。

生:暗礁所在的圆与轮船航线所在直线是否相交。

师:(板书标题)这个问题,其实可以归结为直线与圆的位置关系。

2、回顾旧知、揭示课题——直线与圆的位置关系问题2:在初中,我们学习过直线与圆的位置关系,即直线与圆相交,有两个公共点,直线与圆相切,有一个公共点;直线与圆相离,没有公共点。

设计意图:从已有的知识经验出发,建立新旧知识之间的联系,构建学生学习的最近发展区,不断加深对问题的理解。

师生活动:引导学生回忆义务教育阶段判断直线与圆的位置关系的思想过程,可以展示下面的表格,使问题直观形象。

直线与圆的位置关系(教案)

直线与圆的位置关系(教案)

4.2.1直线与圆的位置关系【三维目标】1.知识与技能(1)理解直线与圆的三种位置关系;能根据直线、圆的方程,判断直线与圆的位置关系;(2)能用直线和圆的方程解决一些简单的问题;2. 过程与方法(1)响应高考发展的趋势,培养学生自主探究,动手实践,并适应合作交流的学习方式;(2)强化学生用解析法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力;3. 情感态度与价值观(1)让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想;(2)加深对解析法解决几何问题的认识,激发学习热情,培养学生的创新意识和探索精神;【重点难点】1.重点:直线与圆的位置关系及其判断方法;2.难点:体会和理解解析法解决几何问题的数学思想;【教学准备】多媒体课件【教学设计】一.情境引入以生活中常见的具体实例(日出的过程)演示直线与圆的位置关系,并引导学生回忆初中阶段判断直线与圆的位置关系的思想过程.二.探索新知1.引出课题——直线与圆的位置关系问题1:通过情境引入中的动画演示提出问题,直线与圆的位置关系有几种?在平面几何中,我们怎样判断直线与圆的位置关系呢?如何定义?师生活动:展示出直线与圆的位置关系的图形和定义,用表格展示,使问题更直观形象.2在已有知识的基础上,通过一组题目,让学生分组展开活动:如何判断直线与圆的位置关系?能否利用直线与圆的方程判断它们之间的位置关系呢?<分组活动>1.请判断直线02=-+y x 与圆221x y +=的位置关系. 2.请判断直线01=-+y x 与圆221x y +=的位置关系. 3.请判断直线02=-+y x 与圆222x y +=的位置关系师生活动:以小组为单位进行讨论研究,教师巡视指导,讨论有结果的小组可以派代表回答。

问题2:这是利用圆心到直线的距离d 与半径r 的大小关系判别直线与圆的位置关系(称此法为“几何法”).请问用“几何法”的一般步骤如何?师生活动:比较d 与r 的大小,确定直线与圆的位置关系.分类情况如下:①当r d >时,直线l 与圆C 相离;②当r d =时,直线l 与圆C 相切;③当r d <时,直线l 与圆C 相交。

直线和圆的位置关系的数学教案

直线和圆的位置关系的数学教案

直线和圆的位置关系的数学教案一、教学目标:1. 让学生理解直线和圆的位置关系,并能运用其解决实际问题。

2. 让学生掌握判断直线和圆位置关系的方法,提高空间想象力。

3. 培养学生的逻辑思维能力和团队合作精神。

二、教学内容:1. 直线和圆的位置关系:相离、相切、相交。

2. 判断直线和圆位置关系的方法。

3. 实际问题中的应用。

三、教学重点与难点:1. 教学重点:直线和圆的位置关系,判断方法及实际应用。

2. 教学难点:直线和圆位置关系的判断,空间想象能力的培养。

四、教学方法:1. 采用问题驱动法,引导学生探究直线和圆的位置关系。

2. 利用多媒体辅助教学,直观展示直线和圆的位置关系。

3. 开展小组讨论,培养学生的团队合作精神。

五、教学过程:1. 导入新课:通过生活中的实例,引出直线和圆的位置关系。

2. 知识讲解:讲解直线和圆的相离、相切、相交三种位置关系,及判断方法。

3. 案例分析:分析实际问题,运用直线和圆的位置关系解决问题。

4. 课堂练习:布置练习题,巩固所学知识。

5. 小组讨论:探讨直线和圆位置关系在实际问题中的应用。

7. 课后作业:布置作业,巩固所学知识。

六、教学评估:1. 课堂练习题目的完成情况,以检验学生对直线和圆位置关系的理解和应用能力。

2. 小组讨论的参与度,观察学生是否能够主动思考和解决问题。

3. 课后作业的质量,评估学生对课堂所学知识的掌握程度。

4. 学生对拓展问题的回答,了解学生的思维拓展和创造性解决问题的能力。

七、教学反思:1. 学生是否能够清晰理解直线和圆的位置关系?2. 学生是否能够熟练运用判断方法解决实际问题?3. 教学方法和教学内容的安排是否适合学生的学习水平?4. 如何改进教学策略以提高学生的空间想象力和逻辑思维能力?八、教学资源:1. 多媒体教学课件,用于展示直线和圆的位置关系示意图。

2. 实际问题案例库,用于引导学生将理论知识应用于解决实际问题。

3. 练习题库,包括不同难度的题目,以满足不同学生的学习需求。

直线与圆的位置关系教案

直线与圆的位置关系教案

直线与圆的位置关系教案教学目标:1. 理解直线与圆的位置关系,掌握相关概念。

2. 学会利用直线与圆的位置关系解决实际问题。

3. 培养学生的空间想象能力和逻辑思维能力。

教学重点:1. 直线与圆的位置关系的判定。

2. 直线与圆的位置关系的应用。

教学难点:1. 理解并掌握直线与圆的位置关系的判定条件。

2. 解决实际问题时,如何正确运用直线与圆的位置关系。

教学准备:1. 教学课件或黑板。

2. 直线与圆的位置关系的相关例题和练习题。

教学过程:第一章:直线与圆的基本概念1.1 直线的定义及性质1.2 圆的定义及性质1.3 直线与圆的位置关系的基本概念第二章:直线与圆的位置关系的判定2.1 直线与圆相交的判定条件2.2 直线与圆相切的判定条件2.3 直线与圆相离的判定条件第三章:直线与圆的位置关系的应用3.1 求圆的方程3.2 求直线的方程3.3 求直线与圆的位置关系第四章:实际问题中的应用4.1 求点到直线的距离4.2 求点到圆心的距离4.3 求直线与圆的交点坐标第五章:综合练习5.1 判断直线与圆的位置关系5.2 求直线与圆的位置关系5.3 解决实际问题教学反思:通过本章的学习,学生应能掌握直线与圆的位置关系的基本概念,判定条件以及应用。

在教学过程中,应注意引导学生运用数学知识解决实际问题,培养学生的空间想象能力和逻辑思维能力。

通过练习题的训练,使学生巩固所学知识,提高解题能力。

第六章:直线与圆的位置关系的性质6.1 直线与圆相交的性质6.2 直线与圆相切的性质6.3 直线与圆相离的性质本章主要学习直线与圆的位置关系的性质。

学生将学习到在直线与圆相交、相切、相离的情况下,直线和圆的特定性质。

这些性质包括交点的数量、切点的位置、距离的关系等。

教学活动:通过图形和实例,让学生观察和总结直线与圆相交、相切、相离时的性质。

引导学生通过几何推理证明这些性质。

提供练习题,让学生应用这些性质解决具体问题。

教学评估:通过课堂讨论和练习题,评估学生对直线与圆位置关系性质的理解程度。

直线与圆的位置关系教案

直线与圆的位置关系教案

直线与圆的位置关系教案教学目标:1. 学习直线与圆的位置关系的概念;2. 掌握直线与圆外切、内切以及相交的判定方法;3. 能够解决与直线与圆的位置关系相关的问题。

教学准备:1. 教师准备:黑板、彩色粉笔、PPT等教具;2. 学生准备:课本、笔记本、铅笔等。

教学过程:Step 1: 引入1. 教师在黑板上画两条直线和一个圆,让学生观察并描述直线与圆的位置关系;2. 引导学生思考直线与圆的位置关系是否有规律可循。

Step 2: 外切关系1. 教师引导学生观察直线与圆相切的情况,并让学生描述相切的特征;2. 教师讲解外切的定义:当且仅当直线离圆的距离等于圆的半径时,直线与圆相外切;3. 教师给出一些例题,让学生判断直线与圆是否为外切关系,并解释判断过程。

Step 3: 内切关系1. 教师引导学生观察直线与圆相切的情况,并让学生描述相切的特征;2. 教师讲解内切的定义:当且仅当直线离圆的距离等于圆的半径,且直线通过圆心时,直线与圆相内切;3. 教师给出一些例题,让学生判断直线与圆是否为内切关系,并解释判断过程。

Step 4: 相交关系1. 教师引导学生观察直线与圆相交的情况,并让学生描述相交的特征;2. 教师讲解相交的定义:当直线与圆有公共点时,直线与圆相交;3. 教师给出一些例题,让学生判断直线与圆是否相交,并解释判断过程。

Step 5: 总结归纳1. 教师带领学生总结直线与圆的外切、内切和相交的判定方法;2. 教师提问,让学生复述直线与圆的位置关系。

Step 6: 练习巩固1. 教师提供一些练习题,让学生独立尝试解决;2. 学生互相交流解题思路,并互相讨论答案;3. 对答案并讲解解题思路。

Step 7: 拓展延伸1. 教师提出一些拓展问题,让学生尝试解决;2. 学生通过思考和讨论,寻找解题思路;3. 教师给予适当提示或解答。

Step 8: 总结反思1. 教师带领学生总结本节课的重点内容;2. 学生回顾所学,思考自己的不足之处,并提出问题;3. 教师提供帮助和解答,并鼓励学生在课后继续巩固和拓展相关知识。

直线和圆的位置关系教案

直线和圆的位置关系教案

直线和圆的位置关系教案教学目标:1.能够理解直线和圆的位置关系,并能够准确描述它们之间的相对位置。

2.能够运用几何知识,解决与直线和圆的位置关系相关的问题。

3.培养学生观察和归纳总结的能力,培养学生的几何思维。

教学重难点:1.直线和圆的位置关系。

2.解决与直线和圆的位置关系相关的问题。

教学准备:1.教师准备:教学课件、教学资料。

2.学生准备:几何工具。

教学过程:一、导入(5分钟)教师通过一个小游戏,让学生通过观察几何图形的关系,来引出直线和圆的位置关系。

教师可在黑板上绘制几个形状,要求学生观察并回答以下问题:1.画一个圆和一条直线,它们的位置关系是什么?2.如果直线与圆相交,交点有几个?3.如果直线与圆相切,它们的位置关系又是什么?4.如果直线与圆没有交点或相切,它们的位置关系呢?通过学生的回答,介绍直线和圆的位置关系。

二、讲解(10分钟)1.直线与圆相交的位置关系:教师通过教学课件,向学生展示直线与圆相交的不同情况,并讲解每种情况下的名称和特点。

-直线穿过圆的两个交点,这种情况称为“直线与圆相交”。

-直线经过圆的中心,这种情况称为“直线与圆相交于两个点”,交点分别为A、B。

-直线切圆,这种情况称为“直线与圆相切”。

2.直线与圆相切的位置关系:教师通过教学课件,向学生展示直线与圆相切的情况,并讲解。

-直线与圆相切于一个点,这种情况称为“直线与圆外切”。

-直线经过圆的中心,这种情况称为“直线与圆相切”。

-直线穿过圆,并且在圆的内部,这种情况称为“直线与圆内切”。

三、练习(35分钟)1.教师出示一些练习题,供学生进行个别练习。

学生可以用纸和笔列式解答,并标注出直线与圆的位置关系。

2.在练习过程中,教师根据学生的情况,进行辅导和指导,解答学生的疑惑。

四、归纳总结(10分钟)1.教师可以要求学生归纳总结直线与圆的位置关系,可以通过小组合作让学生共同完成。

2.教师带领学生一起进行讨论,让他们自己总结直线与圆的位置关系,并在黑板上进行记录。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课题】4.2.1直线与圆的位置关系
【教材】人民教育出版社(A版)高中数学必修2第126页至128页【课时安排】1个课时
【教学对象】高中一年级
【授课教师】
【教学重点】掌握直线和圆的几种位置关系,学会判定直线与圆的位置关系的两种方法:
(1)直线到圆心距离与圆半径的大小关系,写出判定直线与圆的位置关系。

(2)通过解直线与圆方程组成的方程,根据解的个数,写出判定直线与圆的位置关系。

【教学难点】由位置关系得出大小关系式从而判断解的个数
【教学目标】
知识与技能
掌握直线和圆的几种位置关系,熟练掌握判断位置关系的两种方法。

判断直线到圆心距离与圆半径的大小关系法和求解个数法
过程与方法
1、理解直线和圆的三种位置关系,感受直线和圆的位置与它们的方程所组成的二元二次方程组的解的对应关系;
2、体验通过比较圆心到直线的距离和半径之间的大小判断直线与圆的位置关系;
3、领会数形结合的数学思想方法,提高发现问题、分析问题、
解决问题的能力。

情感态度与价值观
让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣,感受“方程思想”、“坐标法”等数学思想的内涵,养成良好的思维习惯。

【教学方法】教师启发讲授、学生探究学习
【教学手段】PowerPoint,动画演示
【教学过程设计】
1、回顾旧知(3分钟) 平面几何中,直线与圆有哪几种位置关
系?在初中,我们怎样判断直线与圆的位
置关系?
教师
运用
边提
问边
回答
的形
式引
导学
生回
忆知
识点
学生
回忆
并回
答问

回顾知识点
的益处在于
不仅复习了
以前学习的
知识,又为
今后的学习
作铺垫
与学生进行
互动交流,
学生更积极
思考,并可
活跃课堂氛

2、引入新课,探究新知(2分钟)
2、探索规律,理解认识(1分钟)一艘轮船在沿直线返回港口的途中,接到气象台的台风预
报:台风中心位于轮船正西70km处,受影响的范围是半径
长为30km的圆形区域。

已知港口位于台风中心正北40km
处,如果轮船不改变航线,那么它是否会受到台风影响?
我们以台风的中心为原点o,东西方向取x轴,建立所
示直角坐标系,其中10km为单位长度
老师
引导
学生
思考
学生
观察
动画
并思
考如
何解

通过探索,
培养学生的
观察能力和
运动变化的
观点,同时
充分利用图
形的直观
性,渗透了
数形结合的
思想,学生
在探索的过
程中品尝了
自己劳作后
的甘甜,感
受到耕耘后
的丰收喜
悦,更激起
学生的探索
创新意识。

.
x
O
y
港口
.
轮船
4、知
识深入,拓展提高
(5分钟)老师
讲解
例题,
教授
学生
解题
方法
学生
自主
思考,
探究
其中
的异

此两道例题
以思考与讲
授的方式一
起,和学生
一起完成,
让学生学会
发现规律,
学会解题技
巧,把知识
应用到题目

(四)归纳小结,整体感知约1分钟教师
在方
法层
面上,
引导
学生
回顾,
引导
学生
体会
探究
过程
中用
到的
思想
方法
和思
维方
法,如
数形
结合,
类比
推理

小结
本节
知识,
让学
生积
累自
己的
学习
经验
课堂小结是
一堂课内容
的概括和总
结,有利于
学生系统掌
握所学内
容,帮助学
生归纳记忆
本节课所学
知识。

(五)布置作业.必做题:❶P128 2,3,4
❷练习册P65 课堂达标
教师
布置
作业
学生
记录
作业
针对学生的
个体差异设
置分层练
习,既注重
课内基础知
识的掌握,
又兼顾了有
学余力的学
生的能力的
提高。

相关文档
最新文档