点与圆的位置关系教案
点和圆的位置关系教案

点和圆的位置关系教案点和圆的位置关系教案一、教学目标知识与技能:使学生了解点和圆的三种位置关系,掌握其定义及判定方法。
过程与方法:通过观察、操作、比较、归纳等方法,培养学生的数学思维能力和解决问题的能力。
情感态度与价值观:让学生感受数学的美,培养他们的探究精神和合作意识。
二、教学内容与重难点教学重点:点和圆的三种位置关系及其定义。
教学难点:如何判定点和圆的位置关系。
三、教学方法与手段教学方法:采用直观演示、探究发现、归纳总结的教学方法。
教学手段:使用PPT课件、实物模型等辅助教学。
四、教学过程导入新课:通过问题导入,激发学生学习兴趣。
教师可提出一些生活中的问题,如:“怎样描述一个物体的位置?”“我们能否说一个点在圆内或者圆外?”引导学生思考,进而引出点和圆的位置关系。
探究新知:通过观察和操作,让学生了解点和圆的三种位置关系,并掌握其定义。
教师可以让学生动手操作,比如在一张纸上画一个圆,将不同距离的点与圆比较,观察这些点与圆的位置关系。
同时,教师可以借助PPT课件,通过动画演示,让学生更直观地了解点和圆的三种位置关系。
归纳总结:通过观察和操作,让学生总结出点和圆的三种位置关系的定义及判定方法。
教师可以通过提问的方式引导学生进行归纳总结,如:“在上述操作中,我们可以发现哪些点与圆的位置关系?”“这些位置关系的定义是什么?”等等。
巩固练习:通过练习题,让学生进一步巩固所学知识。
教师可以准备一些练习题,如:“在下列各点中,哪些点在圆内?哪些点在圆外?哪些点在圆上?”等等。
课堂小结:通过回顾本节课所学内容,让学生再次明确本节课的重点和难点。
教师可以引导学生回顾本节课所学知识,如:“本节课我们学习了什么内容?”“点和圆的三种位置关系是什么?”等等。
五、评价与反馈评价方式:采用多种评价方式相结合的方式进行评价,包括课堂表现、作业情况、测试成绩等。
反馈方式:通过口头反馈和书面反馈相结合的方式进行反馈,针对不同层次的学生进行不同的反馈方式和内容。
《点和圆的位置关系》教案设计:如何轻松掌握判断两圆位置关系方法?

《点和圆的位置关系》教案设计:如何轻松掌握判断两圆位置关系方法?一、教学目标:1. 让学生了解点和圆的位置关系,理解圆心距与半径之间的数量关系。
2. 培养学生运用数学知识解决实际问题的能力。
3. 培养学生合作交流、归纳总结的能力。
二、教学内容:1. 点和圆的位置关系。
2. 圆心距与半径之间的数量关系。
三、教学重点与难点:重点:点和圆的位置关系,圆心距与半径之间的数量关系。
难点:如何运用这些知识解决实际问题。
四、教学方法:1. 采用问题驱动的教学方法,引导学生主动探究点和圆的位置关系。
2. 利用直观教具,如圆规、直尺等,帮助学生理解圆心距与半径之间的数量关系。
3. 创设实际问题情境,培养学生运用数学知识解决问题的能力。
五、教学过程:1. 导入:利用多媒体展示一些生活中的圆形物体,如硬币、圆桌等,引导学生关注点和圆的位置关系。
2. 新课导入:讲解点和圆的位置关系,介绍圆心距与半径之间的数量关系。
3. 实例分析:分析一些实际问题,如在平面直角坐标系中,判断两个圆的位置关系。
4. 小组讨论:让学生分组讨论,总结判断两个圆位置关系的方法。
5. 归纳总结:引导学生归纳总结判断两个圆位置关系的方法,以及圆心距与半径之间的数量关系。
6. 练习巩固:布置一些练习题,让学生运用所学知识解决问题。
7. 课堂小结:对本节课的内容进行小结,强调重点和难点。
8. 课后作业:布置一些课后作业,巩固所学知识。
9. 教学反思:教师在课后对自己的教学进行反思,看是否达到教学目标,学生是否掌握了所学知识。
六、教学评价:1. 采用课堂提问、练习解答等方式,评价学生对点和圆位置关系的掌握程度。
2. 通过课后作业、小测验等形式,评估学生对圆心距与半径之间数量关系的理解。
3. 关注学生在实际问题中运用数学知识解决问题的能力,以及合作交流、归纳总结的能力。
七、教学拓展:1. 利用信息技术手段,如几何画板等,让学生更加直观地了解点和圆的位置关系。
圆的概念和点与圆的关系教案设计方案学位论文

中学集体备课教案(2012~2013学年度第一学期)初三年级数学学科主备人③观察点P所形成了怎样的图形。
导入课题――圆二、讲授新课[师生活动1] 师引导学生阅读课本106-107内容,让学生发现去归结:1.圆的定义(1)圆是怎么形成的?(2)如何画圆?(3)圆的表示方法:以O为圆心的圆,记作“______”,读作“________”2.在平面内,点与圆的位置关系(1)在平面内,点与圆有哪几种位置关系?__ ___、__ ___、_______.画一个圆,分别在圆内、圆上、圆外各取一个点,并比较圆内、圆上、圆外的点到圆心之间的距离与半径的大小,你能发现什么?。
(2)归纳、总结得出结论。
如果⊙O的半径为r,点P到圆心O的距离为d,那么点P在圆内⇒____________;点P在圆上⇒____________;点P在圆外⇒____________。
(3)逆命题是否成立?符号“⇔”读作“等价于”,表示从左端可以推出右端,从右端可以推出左端。
[师生活动2]画一画1.画线段PQ,使得PQ=4cm,2.(1)画出下列图形到点P的距离等于2cm的点的集合;到点Q的距离等于3cm的点的集合.(2)在所画图中,到点P的距离等于2cm,且到点Q的距离等于3cm的点有几个?请在图中将它们表示出来.(3)在所画图中,到点P的距离小于或等于2cm,且到点Q的距离大于或等于3cm的点的集合是怎样的图形?把它画出来.三、尝试应用中学集体备课教案(2012~2013学年度第一学期)初三年级数学学科主备人时间11.18间的区别与联系,如半圆和弧一半圆也是弧,是半个圆周,但弧不一定是半圆,半圆不是优弧也不是劣弧,也不是弓形;直径和弦,是过圆心的特殊弦,但弦不一定都是直径;同圆、等圆、同心圆的区别与联系。
1、与圆有关概念(1)请在图上画出弦CD,直径AB.并说明_______________________叫做弦;___________________________叫做直径.(2)弧、半圆、优弧与劣弧的概念及表示方法.弧:________________________________.半圆:______________________________.优弧:_______________________,表示方法:________.劣弧:_______________________,表示方法:________.(3)借助图形理解圆心角、同心圆、等圆.圆心角:___________________________.同心圆: __________________________.等圆: ____________________________.(4) 同圆或等圆的半径_______.等弧: ______________________________.三、尝试应用已知:如图,点A、B和点C、D分别在同心圆上.且∠AOB=∠COD,∠C与∠D相等吗?为什么?四、解决问题:(1)书后练习P1091.判断下列结论是否正确。
人教版点和圆的位置关系获奖教案设计(共两篇)

人教版点和圆的位置关系获奖教案设计(共两篇)《点和圆的位置关系》教案一.学习目标:1.理解点和圆的三种位置关系,并会运用它解决一些实际问题;2.会过不在同一直线上的三个点作圆,理解三角形的外心和外接圆的概念3.结合本节内容的学习,体会数形结合、分类讨论的数学思想.二.学习重点:点和圆的位置关系.教学过程:一.导入新知:多媒体出示射击靶的图片,利用上面射击点和圆环的位置关系,引出课题且板书课题。
二.探究新知:1.请同学黑板上摆出点与圆的所有位置关系。
2. 多媒体出示动画点与圆的所有位置关系。
3.师生归纳点与圆的所有位置关系。
设⊙O 的半径为 r,点 P 到圆心的距离为 d,则有:点 P 在圆外 d>r ;点 P 在圆上 d=r ;点 P 在圆内 d<r .4.作圆:已知圆心和半径,可以作一个圆.(1)圆经过已知点A,可以作几个?(学生先独立操作,后老师给出结果)(1)圆经过已知点A,可以作几个?(学生先独立操作,后老师引导给出结果)(2)圆经过已知点 A、B.(3)已知点 A、B、C,可以作几个圆?(分两种情况讨论)已知三点共线已知三点不共线结论:不在同一条直线上的三个点确定一个圆.如何经过不在同一条直线上的三个点 A、B、C 作圆?(老师引导学生找到作图方法,演示作图过程)①连接 AB、BC;②分别作线段 AB、BC 的垂直平分线DE 和 FG,DE 和FG 相交于点 O;③以点O 为圆心,OA 为半径作圆,⊙O 就是所要求作的圆.(4)归纳概念:经过三角形的三个顶点可以作一个圆,这个圆叫做三角圆.外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心.三。
例题讲解:例1 已知⊙O 的半径为 5,圆心 O的坐标为(0,0),若点 P的坐标为(4,2),点 P 与⊙O 的位置关系是().A.点 P 在⊙O 内 B.点 P 在⊙O上C.点 P 在⊙O 外 D.点 P 在⊙O 上或⊙O 外例2 直角三角形的外心是______的中点,锐角三角形的外心在三角形______,钝角三角形的外心在三角形_________.四.课堂小结(1)点和圆的位置关系:设⊙O 的半径为 r,点 P 到圆心的距离为 d,则点 P 在圆外 d>r;点 P 在圆上 d=r;点 P 在圆内 d<r.(2)不在同一条直线上的三个点确定一个圆.(3)理解三角形外接圆和三角形外心的概念.(五).布置作业教科书第 95 页练习第 2,3 题.一、基础知识1.认识点和圆的位置关系及相关概念,会利用点和圆的位置关系和数量关系解题①点P在圆上d=r②点P在圆外d>r③点P在圆内d<r(注:d是点P到圆心的距离,r是圆的半径,其中从左往右推到“”是圆的位置关系的性质;从右往左推到“”是点和圆的位置的判定方法)判断点和圆的位置关系有两种:①当题目给出点和圆的图形时,根据图形判断②当没有图形,题目给出数量时,通过比较点和圆心的距离与半径的大小关系判断2.理解并掌握确定圆的条件过一点可以做无数个圆,过两点也可以做无数个圆不在同一条直线上的三个点确定一个圆(注:三个点必须是不在同一直线上;确定是“有且只有”的意思)3.认识三角形的外接圆,掌握外心的定义及特征经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形的外心,外心是三角形三条垂直平分线的交点,它到三角形三个顶点的距离相等4.认识反证法二、重难点分析本课教学重点:确定圆的条件及利用点和圆的位置关系和数量关系解题。
《点和圆的位置关系》教案设计

《点和圆的位置关系》教案设计第一章:引言1.1 教学目标让学生了解点和圆的基本概念。
引导学生通过观察和思考,探索点和圆的位置关系。
1.2 教学内容点和圆的定义。
点和圆的位置关系的观察和描述。
1.3 教学方法通过实物展示和图片引出点和圆的概念。
让学生观察和描述点到圆的位置关系,引导学生运用自己的语言表达。
1.4 教学评估观察学生对点和圆概念的理解程度。
评估学生对点和圆位置关系的观察和描述能力。
第二章:点在圆内2.1 教学目标让学生理解点在圆内的位置关系。
引导学生通过实际操作,验证点在圆内的性质。
2.2 教学内容点在圆内的定义。
点在圆内的性质和特点。
2.3 教学方法通过实际操作,让学生感受点在圆内的位置关系。
引导学生通过观察和思考,总结点在圆内的性质和特点。
2.4 教学评估观察学生对点在圆内的理解程度。
评估学生通过实际操作验证点在圆内的能力。
第三章:点在圆上3.1 教学目标让学生理解点在圆上的位置关系。
引导学生通过实际操作,验证点在圆上的性质。
3.2 教学内容点在圆上的定义。
点在圆上的性质和特点。
3.3 教学方法通过实际操作,让学生感受点在圆上的位置关系。
引导学生通过观察和思考,总结点在圆上的性质和特点。
3.4 教学评估观察学生对点在圆上的理解程度。
评估学生通过实际操作验证点在圆上的能力。
第四章:点在圆外4.1 教学目标让学生理解点在圆外的位置关系。
引导学生通过实际操作,验证点在圆外的性质。
4.2 教学内容点在圆外的定义。
点在圆外的性质和特点。
4.3 教学方法通过实际操作,让学生感受点在圆外的位置关系。
引导学生通过观察和思考,总结点在圆外的性质和特点。
4.4 教学评估观察学生对点在圆外的理解程度。
评估学生通过实际操作验证点在圆外的能力。
第五章:总结和拓展5.1 教学目标让学生总结点和圆的位置关系的特点。
引导学生思考点和圆的位置关系的应用。
5.2 教学内容点和圆的位置关系的总结。
点和圆的位置关系的拓展应用。
人教版九年级数学上册24.2.1点与圆的位置关系(教案)

此外,对于教学难点,我发现通过具体例子的逐步解析,学生们能够更好地理解和记忆点到圆心距离的计算方法。但是,我也发现有些学生在面对更复杂的问题时,仍然会感到困惑。这提醒我,在今后的教学中,需要更加注重对学生解题思路和方法的培养,而不仅仅是知识点的传授。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“点与圆位置关系在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“如何利用点与圆位置关系设计最优的花园布局?”
最后,我感到在总结回顾环节,学生们对于本节课的学习内容有了很好的吸收和理解。不过,我也在思考如何能够在课后更好地跟进学生的学习情况,及时解答他们的疑问,确保每个学生都能够真正掌握点与圆位置关系这一几何基础知识。
3.重点难点解析:在讲授过程中,我会特别强调点到圆心距离的计算方法和判断准则这两个重点。对于难点部分,我会通过具体的图形示例和计算步骤来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与点与圆位置关系相关的实际问题,如判断某个点是否在一个给定的圆内。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。学生可以用尺子和圆规在纸上画出一个圆,并在圆的不同位置标出点,然后测量这些点到圆心的距离,验证判断准则。
四、教学流程
点和圆的位置关系(说课教案)

人教版数学九年级上册第二十四章§24.2.1点和圆的位置关系说课稿远安县外国语学校刘山河《24.2.1点与圆的位置关系》说课稿尊敬的各位老师:大家好!今天我说课的内容是人教版九年级上册《点和圆的位置关系》。
下面,我从教材分析,学情分析、教学目标及重难点,教学环节、和教学反思六个方面进行阐述。
【教材分析】圆的教学在平面几何中乃至整个中学教学中都占有重要的地位,而点和圆的位置关系的应用又比较广泛,又是在学习了圆的有关性质的基础上进行的,为后面的直线和圆、圆与圆的位置关系作铺垫的一节课,在今后的解题及几何证明中,将起到重要的作用。
【学情分析】九年级学生有了一定的分析力和归纳力,根据他们的特点,通过复习旧知引入这节课内容,通过点和圆的相对运动,揭示点和圆的位置关系,培养学生运动变化的辩证唯物主义观点;通过对探索过程的反思,进一步强化对分类和化归思想的认识。
【教学目标及重难点】依据教材和大纲,分析学生的认知水平,这节课的教学目标及重难点如下:一、教学目标和过程方法:1、探索并掌握点与圆的位置关系,及这三种位置关系对应的圆的半径与点到圆心的距离之间的关系。
经历探索点与圆的位置关系的过程,体会数学分类思考的数学思想。
2、探索如何过一点、两点和三点作圆,了解不在同一直线上的三点确定一个圆。
通过探索不在同一直线上的三点确定一个圆的问题,进一步体会解决数学问题的策略.3、了解三角形的外接圆和三角形的外心。
4、了解反证法,进一步体会解决数学问题的策略。
二、重点和难点重点:1、用数量关系判断点与圆的位置关系;2、不在同一直线上的三点确定一个圆。
难点:点和圆的位置关系的运用。
【教学环节安排】根据教学内容和目标,本节课设计如下几个环节,下面我将重点说明一下教学环节的安排及设计意图。
1、出示“学生飞镖比赛”图片,将比赛结果抽象出来形成图片。
2、出示问题,“如图,某地计划修建一座圆形水池,圆心距离大树底部10米。
为了保护大树,水池半径r可以取多少米?”设计意图:r10米①通过图片,让学生从“形”的角度直接认识并归纳“点和圆的三种位置关系”。
点、直线与圆的位置关系(中考复习教案)

点、直线与圆的位置关系(中考复习教案)第一章:点的圆的位置关系教学目标:1. 理解点与圆的位置关系,掌握点在圆内、圆上和圆外的判断方法。
2. 学会运用点与圆的位置关系解决实际问题。
教学内容:1. 点在圆内的判断方法:点到圆心的距离小于圆的半径。
2. 点在圆上的判断方法:点到圆心的距离等于圆的半径。
3. 点在圆外的判断方法:点到圆心的距离大于圆的半径。
教学活动:1. 引导学生通过观察图形,判断点与圆的位置关系。
2. 利用实例讲解点在圆内、圆上和圆外的应用。
3. 进行练习,巩固点与圆的位置关系的判断方法。
第二章:直线与圆的位置关系教学目标:1. 理解直线与圆的位置关系,掌握直线与圆相交、相切和相离的判断方法。
2. 学会运用直线与圆的位置关系解决实际问题。
教学内容:1. 直线与圆相交的判断方法:圆心到直线的距离小于圆的半径。
2. 直线与圆相切的判断方法:圆心到直线的距离等于圆的半径。
3. 直线与圆相离的判断方法:圆心到直线的距离大于圆的半径。
教学活动:1. 引导学生通过观察图形,判断直线与圆的位置关系。
2. 利用实例讲解直线与圆相交、相切和相离的应用。
3. 进行练习,巩固直线与圆的位置关系的判断方法。
第三章:圆与圆的位置关系教学目标:1. 理解圆与圆的位置关系,掌握圆与圆相交、相切和相离的判断方法。
2. 学会运用圆与圆的位置关系解决实际问题。
教学内容:1. 圆与圆相交的判断方法:两圆心距小于两圆半径之和,大于两圆半径之差。
2. 圆与圆相切的判断方法:两圆心距等于两圆半径之和。
3. 圆与圆相离的判断方法:两圆心距大于两圆半径之和。
教学活动:1. 引导学生通过观察图形,判断圆与圆的位置关系。
2. 利用实例讲解圆与圆相交、相切和相离的应用。
3. 进行练习,巩固圆与圆的位置关系的判断方法。
第四章:点、直线与圆的综合应用教学目标:1. 掌握点、直线与圆的综合应用方法,解决实际问题。
2. 学会运用点、直线与圆的位置关系解决几何问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点与圆的位置关系
肖海霞
学习目标:1、理解点与圆的位置关系由点到圆心的距离决定; 2、理解不在同一条直线上的三个点确定一个圆; 3、会画三角形的外接圆,熟识相关概念
学习过程
一、点与圆的位置三种位置关系
生活现象:阅读课本P53页,这一现象体现了平面内...点与圆的位置关系. 如图1所示,设⊙O 的半径为r , A 点在圆内,OA r B 点在圆上,OB r C 点在圆外,OC r
反之,在同一平面上.....,已知的半径为r ⊙O ,和A ,B ,C 三点: 若OA >r ,则A 点在圆 ; 若OB <r ,则B 点在圆 ; 若OC=r ,则C 点在圆 。
二、多少个点可以确定一个圆
问题:在圆上的点有 多个,那么究竟多少个点就可以确定一个圆呢? 试一试 画图准备:
1、圆的 确定圆的大小,圆 确定圆的位置; 也就是说,若如果圆的 和 确定了, 那么,这个圆就确定了。
2、如图2,点O 是线段AB 的垂直平分线
上的任意一点,则有OA OB 图2 画图:
1、画过一个点的圆。
右图,已知一个点A ,画过A 点的圆. 小结:经过一定点的圆可以画 个。
图 1
o
B
A
A
2、画过两个点的圆。
右图,已知两个点A 、B ,画经过A 、B 两点的圆. 提示:画这个圆的关键是找到圆心,
画出来的圆要同时经过A 、B 两点, 那么圆心到这两点距离 ,可见, 圆心在线段AB 的 上。
小结:经过两定点的圆可以画 个,但这些圆的圆心在线段的 上 3、画过三个点(不在同一直线)的圆。
提示:如果A 、B 、C 三点不在一条直线上,那么经过A 、B 两点所画的圆的圆心在线段AB 的垂直平分线上, 而经过B 、C 两点所画的圆的圆心在 线段BC 的垂直平分线上,此时,这 两条垂直平分线一定相交,设交点为O , 则OA =OB =OC ,于是以O 为圆心, OA 为半径画圆,便可画出经过A 、B 、C 三点的圆.
小结:不在同一条直线.....上的三个点确定 个圆. 三、概括
我们已经知道,经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线的交点.
如图:如果⊙O 经过△ABC 的三个顶点, 则⊙O 叫做△ABC 的 ,圆心O 叫
做△ABC 的 ,反过来,△ABC 叫做 ⊙O 的 。
△ABC 的外心就是AC 、BC 、AB 边的 交点。
四、分组练习
A
B
C
B
(A组)1、已知⊙O的半径为4,A为线段PO的中点,当OP=10时,点A 与⊙O的位置关系为()
A.在圆上B.在圆外C.在圆内D.不确定2、任意画一个三角形,然后再画这个三角形的外接圆.
3、判断题:
①三角形的外心到三边的距离相等………………()
②三角形的外心到三个顶点的距离相等。
…………()
4、三角形的外心在这个三角形的()
A.内部B.外部C.在其中一边上D.以上三种都可能5、能过画图的方法来解释上题。
在下列三个圆中,分别画出内接三角形(锐角,直角,钝角三种三角形)
6,则其外接圆半径的长为
7、若点O是△ABC的外心,∠A=70°,则∠BOC=
(B组)
8、一个点到圆的最小距离为4cm,最大距离为9cm,则该圆的半径是()A.2.5cm或6.5cm B.2.5cm C. 6.5cm D.5cm或13cm
9、随意画出四点,其中任何三点都不在同一条直线上,是否一定可以画一个圆经过这四点?请试画图说明.。