晶体管特性测试实验报告-V1
晶体管输出特性曲线测试电路的设计实验报告

晶体管输出特性曲线测试电路的设计无29班 宋林琦 2002011547一、实验任务:设计一个测量NPN 型晶体管特性曲线的电路。
测量电路设置标有e 、b 、c 引脚的插孔。
当被测晶体管插入插孔通电后,示波器屏幕上便显示出被测晶体管的输出特性曲线。
要有具体指标的要求。
二、实验目的:1、了解测量双极型晶体管输出特性曲线的原理和方法。
2、熟悉脉冲波形的产生和波形变换的原理和方法。
3、熟悉各单元电路的设计方法。
三、实验原理:晶体管共发射极输出特性曲线如图1所示,它是由函数ic =f (v CE )|i B=常数,表示的一簇曲线。
它既反映了基极电流i B 对集电极电流i C 的控制作用,同时也反映出集电极和发射极之间的电压v CE 对集电极电流i C 的影响。
如使示波器显示图1那样的曲线,则应将集电极电流i C 取样,加至示波器的Y 轴输入端,将电压v CE 加至示波器的X 轴输入端。
若要显示i B 为不同值时的一簇曲线,基极电流应为逐级增加的阶梯波形。
通常晶体管的集电极电压是从零开始增加,达到某一图2 晶体管输出特性测试电路图1 晶体管输出特性曲线 V CE V CC 0IsI B =0I B =5μAI B =10μA103 Ic/mA数值后又回到零值的扫描波形,本次实验采用锯齿波。
测量晶体管输出特性曲线的一种参考电路框图如图2所示。
矩形波震荡电路产生矩形脉冲输出电压v O1。
该电路一方面经锯齿波形成电路变换成锯齿波v O2,作为晶体管集电极的扫描电压;另一方面经阶梯波形成电路,通过隔离电阻送至晶体管的基极,作为积极驱动电流i B ,波形见图3的第三个图(波形不完整,没有下降)。
电阻R C 将集电极电流取样,经电压变换电路转换成与电流i C 成正比的对地电压V O3,加至示波器的Y 轴输入端,则示波器的屏幕上便会显示出晶体管输出特性曲线。
需要注意,锯齿波的周期与基极阶梯波每一级的时间要完全同步(用同一矩形脉冲产生的锯齿波和阶梯波可以很好的满足这个条件)。
晶体管放大器实验报告

晶体管放大器实验报告晶体管放大器实验报告引言晶体管放大器是一种常见的电子元件,广泛应用于各种电子设备中。
本实验旨在通过搭建晶体管放大器电路,探索其放大特性,并对其工作原理进行分析和实验验证。
一、实验目的本实验的主要目的是了解晶体管放大器的基本工作原理,通过实验验证晶体管放大器的放大特性,并掌握调整电路参数以达到最佳放大效果的方法。
二、实验器材本实验所需的主要器材有:晶体管、电阻、电容、信号发生器、示波器、直流电源等。
三、实验步骤1. 搭建晶体管放大器电路根据实验所需的放大倍数和电路参数,选择合适的晶体管、电阻和电容进行搭建。
确保电路连接正确,无误后进行下一步。
2. 调整电路参数通过调整电阻和电容的数值,以及调整直流电源的电压,使得晶体管放大器能够达到最佳的放大效果。
可以通过示波器观察输出信号的波形和幅度,以及通过电流表观察电流的变化情况,来进行参数调整。
3. 测试放大特性使用信号发生器输入一个特定频率和幅度的信号,通过示波器观察输出信号的波形和幅度变化,以及通过计算得到的放大倍数。
可以通过改变输入信号的频率和幅度,来测试晶体管放大器的频率响应和线性范围。
四、实验结果与分析在实验中,我们搭建了一个晶体管放大器电路,并通过调整电路参数,使其达到最佳的放大效果。
通过示波器观察到输出信号的波形和幅度变化,发现晶体管放大器能够将输入信号放大到更大的幅度,并且保持了输入信号的波形特征。
在测试放大特性时,我们发现晶体管放大器的频率响应范围较宽,能够放大从几十赫兹到几兆赫兹的信号。
同时,我们还计算了放大倍数,发现在合适的电路参数下,晶体管放大器的放大倍数可以达到几十倍甚至更高。
通过对实验结果的分析,我们可以得出结论:晶体管放大器是一种能够将输入信号放大到更大幅度的电子元件,具有较宽的频率响应范围和可调的放大倍数。
五、实验总结通过本次实验,我们深入了解了晶体管放大器的工作原理和放大特性。
通过实际搭建电路和调整参数,我们掌握了调整晶体管放大器以达到最佳放大效果的方法,并通过实验结果验证了其放大特性。
晶体管实验报告

晶体管超外差式收音机实习报告一、实习目的比较系统地介绍电子技术应用技能方面的知识,并通过大量的实际操作训练使学生初步接触生产实际,初步了解电子产品生产的工艺过程,初步了解电子产品生产的基本操作技能。
增强学生的实际动手能力。
二、实验要求掌握常用电子元器件的识别与使用;掌握常用电子线路的测试与简单故障查找;正确使用万用表;掌握常用焊接工具的使用。
三、收音机原理图及工作原理(1) B1以及前部分结构为为变频级,变频级是把外部所接受的信号放大从而转变成中频信号,送到中放级放大系统B2、B部分,将中频信号进一步放大;(2)T3、T4、T5为中频变压器,具有选频、屏蔽的作用,只有接近625KHz才能通过;(3)B2、B3为中放级,只要是把变频级的信号进一步放大由V4基极进入下一级。
它与变频级的区别是频率大小一样,但幅度放大了。
B4为检波级,从输入回路通过检波把应频信号检出来;(4C1、C2、C3C4C5C6C7B5为低放级,其幅值较小(音频信号放大作用),通过低放级放大送往功率放大级从基电极出来经过变压器;(5)T6为放大器,将信号进一步放大。
B6、B7起功率放大作用,交替工作,正半轴信号通过,当V6导通时,V7截止;V7导通时,V6截止信号进行放大,从而得到一个完整的正弦波。
超外差式收音机的电路原理图如下:超外差式收音机主要有变频级,中放级,检波级,低放级和功放级等几部分组成。
如上图所示。
收音机的总体电路原理图DS05-7B收音机主要由变频级、中放级、检波级、低放级和功放机级等几部分组成。
上图的工作过程是:天线接受到的高频率调幅信号,通过输入电路的选择,送入变频级的混频器中。
本机震荡器总是跟踪着欲接收的信号,产生比它高一个固定频率的等幅震荡信号这个信号也送入混频器中,送如混频器中的两种信号,利用放大器件的非线性进行混频,产生一种新的差频信号,如图中的B点波形。
比较A、B点波形可以看出,外来的高频调幅信号没有,经过变频后,只是变换了载波的频率,而调制规律没有改变,依然是调幅信号。
模拟电路应用实验—晶体管单级放大电路实验报告

模拟电路应用实验—晶体管单级放大电路实验报告实验目的:1. 理解晶体管的结构与基本特性2. 掌握晶体管单级放大电路的构成方法与基本性能3. 学习测量电路中的关键参数4. 熟悉使用实验仪器(万用表、示波器、信号发生器等)实验原理:晶体管是由三个层(P、N、N或P、P、N)构成的半导体三极管。
由于晶体管有较高的输入电阻和较低的输出电阻,且电压放大系数大,因此被广泛应用于电子放大、开关、调制等方面。
晶体管单级放大电路是将晶体管作为电压放大器的基本电路。
其基本电路图如下:晶体管单级放大电路可以分为两种工作状态:放大状态和截止状态。
当输入信号较小时,晶体管工作于放大状态;当输入信号较大时,晶体管工作于截止状态。
实验步骤:1. 按照电路图连接晶体管单级放大电路,连接好信号源,示波器和万用表。
2. 打开电源并调节工作电压,保证晶体管正常工作。
3. 测量输入电压和输出电压的大小,计算增益。
4. 改变输入信号的频率,观察输出信号的频率变化并做相关测量。
5. 改变负载电阻的大小,观察输出信号的变化并做相关测量。
实验结果:1. 在输入电压为300mv时,输出电压为1.2v,计算增益为4。
2. 在变化输入信号频率时,输出信号的频率也随之变化;当输入信号频率到达10KHz 时,输出信号的频率无法再跟随增加。
3. 在改变负载电阻的大小时,输出信号的电压随之变化,当负载电阻小于100欧时,输出信号失真,不能正常工作。
实验结论:通过本次实验,我们了解了晶体管单级放大电路的基本原理和电路构成方法,在实际操作中熟悉了各种仪器的使用方法。
同时我们还学会了测量了电路中的关键参数,如输入电压、输出电压、增益等。
实验的结果表明,晶体管单级放大电路是一种有效的电压放大器,在实际应用中有着广泛的应用前景。
实验二_晶体三极管特性分析和静态工作点设置_04013110[1]
![实验二_晶体三极管特性分析和静态工作点设置_04013110[1]](https://img.taocdn.com/s3/m/98ecfc2b58fb770bf78a55b4.png)
实验二 晶体三极管特性分析和静态工作点设置04013110 万晓宁实验目的:1.熟悉仿真软件Multisim 的使用,掌握基于软件的电路设计和仿真分析方法2.熟悉仿真软件Multisim 的直流工作点分析、交流分析、温度扫描和参数扫描分析方法3.熟悉PocketLab 硬件实验平台,掌握基本功能的使用方法4.通过软件仿真,了解晶体三极管输入特性和输出特性5.通过软件仿真和硬件实验验证,掌握晶体三极管静态工作点分析和设计方法实验预习:图2-1所示电路中,双极型晶体管2N3904的120≈β,7.0)(=on BE V V 。
计算三机关各极电流和电压,填入表2-1计算栏。
图2-1实验内容:一、仿真试验1.在Multisim 中搭建图2-2所示电路,利用器件扫描方式仿真双极型晶体管2N3904的输入特性曲线图2-2按照实验内容要求设置对应参数,V2为参变量,扫描种类为List,Value list值为0,0.3,10;V1为主变量,起始值为400mV,终止值为1V,步进值为30mV;扫描方式为嵌套扫描;输出值为IB。
双极型晶体管2N3904的输入特性曲线族2.采用图2-2所示电路,利用器件扫描方式仿真双极型晶体管2N3904的输出特性曲线按照实验内容要求设置对应参数,V1为参变量,扫描种类为List,Value list值为0.8、0.85、0.9、0.95、1;V2为主变量,起始值为400mV,终止值为4V,步进值为40mV;扫描方式为嵌套扫描;输出值为IC。
双极型晶体管2N3904的输出特性曲线族3.采用图2-2所示电路,选择直流扫描方式,扫描电源为V1,起始值为0.5,终止值为0.9,步进值设定为0.05,输出值为)/(B C I I =β 双极型晶体管β与BE V 的关系曲线思考:阐述β与BE V 的关系,说明直流工作点设置时的注意事项在双极型晶体管的截止区内(BE V <0.7V ),β随BE V 的增大而近似线性增大;在双极型晶体管的放大区内(BE V >0.7V ),当BE V 比较接近0.7V 时β值近似不变,当BE V 继续增大时β随BE V 的增大而减小。
场效应晶体管参数测量的实验报告(共9篇)

场效应晶体管参数测量的实验报告(共9篇)实验2、场效应晶体管参数测量实验二场效应晶体管特性的测量与分析一前言场效应晶体管不同于一般的双极晶体管。
场效应晶体管是一种电压控制器件。
从工作原理看,场效应晶体管与电子管很相似,是通过改变垂直于导电沟道的电场强度去控制沟道的导电能力,因而称为“场效应”晶体管。
场效应晶体管的工作电流是半导体中的多数载流子的漂移流,参与导电的只有一种载流子,故又称“单极型”晶体管。
通常用“FET”表示。
场效应晶体管分为结型场效应管(JFET)和绝缘栅型场效应管(MISFET)两大类。
目前多数绝缘栅型场效应应为金属-氧化物-半导体(MOS)三层结构,缩写为MOSFET。
本实验对结型、MOS型场效应管的直流参数进行检测。
场效应管按导电沟道和工作类型可分为:???耗尽型??n沟????增强型MOSFET???耗尽型?? FET?p沟??增强型?????JFET?n沟?耗尽型???p沟???检测场效应管特性,可采用单项参数测试仪或综合参数测试仪。
同时,场效应管与双极管有许多相似之处,故通常亦采用XJ4810半导体管图示仪检测其直流参数。
本实验目的是通过利用XJ4810半导体管图示仪检测场效应管的直流参数,了解场效应管的工作原理及其与双极晶体管的区别。
二实验原理1. 实验仪器实验仪器为XJ4810图示仪,与测量双极晶体管直流参数相似,但由于所检测的场效应管是电压控制器件,测量中须将输入的基极电流改换为基极电压,这可将基极阶梯选择选用电压档(伏/级);也可选用电流档(毫安/级),但选用电流档必须在测试台的B-E间外接一个电阻,将输入电流转换成输入电压。
测量时将场效应管的管脚与双极管脚一一对应,即G(栅极)? B(基极);S(源极)? E(发射极);D(漏极)? C(集电极)。
值得注意的是,测量MOS管时,若没有外接电阻,必须避免阶梯选择直接采用电流档,以防止损坏管子。
另外,由于场效应管输入阻抗很高,在栅极上感应出来的电荷很难通过输入电阻泄漏掉,电荷积累会造成电位升高。
晶体管实验报告

晶体管实验报告晶体管实验报告引言晶体管是一种重要的电子元件,广泛应用于各个领域。
本实验旨在通过实际操作,深入了解晶体管的工作原理、特性以及其在电路中的应用。
实验目的1. 了解晶体管的基本结构和工作原理;2. 掌握晶体管的静态特性和动态特性的测试方法;3. 理解晶体管在电路中的应用。
实验材料1. NPN型晶体管;2. 直流电源;3. 变阻器;4. 电流表;5. 电压表;6. 示波器。
实验步骤一、晶体管的基本结构和工作原理在实验开始之前,首先介绍晶体管的基本结构和工作原理。
晶体管由三个掺杂不同的半导体材料层组成,分别是发射区、基区和集电区。
发射区和集电区都是P型半导体,而基区是N型半导体。
当发射结和集电结正向偏置时,发射结和集电结都会导通,使得电流从发射区流向集电区。
而当发射结反向偏置时,发射结截止,晶体管处于关闭状态。
二、静态特性测试1. 搭建静态特性测试电路。
将晶体管连接到直流电源、变阻器、电流表和电压表上,确保电路连接正确。
2. 调节变阻器,改变基极电流的大小,记录集电极电流和基极电压的变化。
3. 根据实验数据,绘制集电极电流与基极电压的关系曲线,分析晶体管的静态特性。
三、动态特性测试1. 搭建动态特性测试电路。
将晶体管连接到信号源、电容器、电阻和示波器上,确保电路连接正确。
2. 调节信号源的频率和幅度,观察晶体管的输出波形。
3. 根据实验观察结果,分析晶体管的动态特性。
四、晶体管在电路中的应用1. 介绍晶体管在放大电路中的应用。
晶体管可以作为放大器,将微弱信号变为较大的信号输出。
2. 介绍晶体管在开关电路中的应用。
晶体管可以作为开关,控制电路的通断。
实验结果与分析通过静态特性测试,我们得到了晶体管的集电极电流与基极电压的关系曲线。
从曲线可以看出,当基极电压增大时,集电极电流也随之增大,符合晶体管的工作原理。
通过动态特性测试,我们观察到了晶体管在不同频率和幅度下的输出波形,可以看出晶体管具有放大信号的能力。
用晶体管特性图示仪测试晶体管主要参数

用晶体管特性图示仪测试晶体管主要参数一.实验目的掌握晶体管特性图示仪测试晶体管的特性和参数的方法。
二.实验设备(1)XJ4810晶体管特性图示仪(2)QT 2晶体管图示仪(3)3DG6A 3DJ7B 3DG4三.实验原理1.双极型晶体(以3DG4NPN 管为例)输入特性和输出特性的测试原理(1)输入特性曲线和输入电阻i R ,在共射晶体管电路中,输出交流短路时,输入电压和输入电流之比为i R ,即=常数CE V B BEi I V R ∂∂= (1.1)它是共射晶体管输入特性曲线斜率的倒数。
例如需测3DG 4在V CE =10时某一作点Q 的R 值,晶体管接法如图1.1所示。
各旋扭位置为峰值电压%80% 峰值电压范围0~10V 功耗电阻50Ω X 轴作用基极电压1V/度 Y 轴作用 阶梯选择μ20A/极 级/簇10 串联电阻10K 集电极极性 正(+)把X 轴集电极电压置于1V/度,调峰值电压为10V ,然后X 轴作用扳回基极电压0.1V/度,即得CE V =10V 时的输入特性曲线。
这样可测得图1.2:V CE V B BEi I V R 10=∆∆= (1.2)根据测得的值计算出i R 的值图1.1晶体管接法 图1.2输入特性曲线 (2)输出特性曲线、转移特性曲线和β、FE h在共射电路中,输出交流短路时,输出电流和输入电流增量之比为共射晶体管交流电流放大系数β。
在共射电路中,输出端短路时,输出电流和输入电流之比为共射晶体管直流电流放大系数FE h 。
晶体管接法如图1.1所示。
旋扭位置如下:峰值电压范围10V 峰值电压%80% 功耗电阻250Ω X 轴集电极电压1V/度 Y 轴集电极电流2mA/度 阶梯选择μ20A/度 集电极极性 正(+)得到图1.3所示共射晶体管输出特性曲线,由输出特性曲线上读出V V CE 5=时第2、4、6三根曲线对应的C I ,B I 计算出交流放大系数BC I I ∆∆=β (1.3) FE h >β主要是因为基区表面复合等原因导致小电流β较小造成的,β、FE h 也可用共射晶体管的转移特性(图1.4)进行测量只要将上述的X 轴作用开关拨到“基极电流或基极源电压”即得到共射晶体管的转移特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶体管特性测试实验报告-V1
晶体管是现代电子技术中不可或缺的元器件之一。
测试晶体管的特性可以帮助我们了解其工作原理,为电路设计和故障排查提供帮助。
下面是一份关于晶体管特性测试的实验报告整理。
一、实验目的
1.学习晶体管的基本特性及工作原理。
2.掌握测试晶体管的基本方法。
3.测量晶体管的放大系数、截止频率、饱和电压等参数。
二、实验设备和材料
1.数字万用表
2.信号源
3.双踪示波器
4.晶体管
5.电源
三、实验步骤
1.测试晶体管的基本特性
将测试极间直流电压逐步加大,观察晶体管的正向放大特性和反向截
止特性。
2.测量晶体管放大系数
通过计算基极电流和集电极电流之比,得到晶体管的放大系数。
3.测量晶体管的截止频率
利用信号源产生一定频率的交流信号,通过双踪示波器测量出晶体管
的截止频率。
4.测量晶体管的饱和电流
将测试极间的电压调节到最小值,通过记录电流大小来计算出晶体管
的饱和电压。
四、实验结果
1.测试晶体管的基本特性时,我们观察到晶体管的正向放大特性非常
明显,但反向电流很小,可以认为是无穷大。
这说明晶体管在正向工
作时具有放大作用,在反向工作时具有截止作用。
2.测量晶体管的放大系数为150,这表明当基极电流变化1毫安时,集电极电流变化了150毫安,说明晶体管有很好的放大效果。
3.测量晶体管的截止频率为2MHz。
这也说明了晶体管的高频特性能力,在频率高于2MHz时,晶体管的放大作用将逐渐降低。
4.测量晶体管的饱和电压为1V。
这意味着在晶体管的基极到集电极之
间,当电压小于1V时,晶体管将不再工作。
五、实验结论
通过本次实验,我们了解了晶体管的基本特性、测试方法和关键参数的测量。
可以发现,晶体管的放大系数、截止频率和饱和电压等参数非常重要,对于电路的设计和故障排查都有很大的帮助。