电力电子实验指导书功率场效应晶体管(MOSFET)特性与驱动电路研究
场功率效应晶体管

场功率效应晶体管场功率效应晶体管(Field-Effect Power Transistor)是一种重要的电子器件,广泛应用于功率放大和开关电路中。
它具有许多优点,如高效率、高频率响应和可靠性。
本文将介绍场功率效应晶体管的工作原理、特点以及应用领域。
一、工作原理场功率效应晶体管是一种三端器件,由栅极(Gate)、漏极(Drain)和源极(Source)组成。
它的工作原理基于场效应,通过控制栅极电压来调节漏极-源极之间的电流。
当栅极电压为零时,晶体管处于截止状态,电流无法通过。
而当栅极电压增加时,形成了一个电场,使得漏极-源极之间形成一个导电通道,电流得以流动。
因此,栅极电压的变化可以控制晶体管的导通与截止,实现信号放大或开关控制的功能。
二、特点1. 高效率:场功率效应晶体管具有较低的导通电阻和较高的开关速度,因此能够实现高效率的功率放大和开关操作。
2. 高频率响应:由于晶体管的结构特点,场功率效应晶体管具有较高的频率响应能力,适用于高频率信号的放大和处理。
3. 可靠性:场功率效应晶体管采用了先进的半导体制造工艺和材料,具有较高的可靠性和稳定性,适用于长时间工作和恶劣环境条件下的应用。
三、应用领域1. 音频功率放大:场功率效应晶体管在音频功率放大器中得到广泛应用。
它能够将低电平的音频信号放大到足够的功率,驱动扬声器产生高质量的声音。
2. 射频功率放大:由于场功率效应晶体管具有高频率响应的特点,因此在射频功率放大器中得到广泛应用。
它能够将射频信号放大到足够的功率,用于通信系统、雷达和无线电设备等领域。
3. 开关电路:场功率效应晶体管的开关速度快,能够实现高频率的开关操作。
因此,在开关电路中,它可以用于开关控制、电源管理和电机驱动等应用。
4. 电源管理:场功率效应晶体管在电源管理电路中扮演重要角色。
它能够实现电源的开关控制和功率调节,提高电源的效率和稳定性。
5. 汽车电子:场功率效应晶体管在汽车电子系统中得到广泛应用。
功率场效应晶体管原理及其驱动

功率场效应晶体管原理及其驱动MOSFET的原理是基于将控制电压应用于金属-氧化物-半导体(MOS)结构,从而控制通道中的载流子的流动。
MOSFET由p型或n型的半导体材料构成,通常是硅。
它有三个端口:源极、栅极和漏极。
源极和漏极之间的区域称为通道,它决定了MOSFET的导电特性。
当栅极施加正电压时,与栅极相邻的绝缘体氧化层之下形成一个正电荷,阻碍了载流子的流动,MOSFET处于关断状态。
当栅极施加负电压时,形成一个负电荷,促进了载流子的流动,MOSFET处于导通状态。
因此,MOSFET的导通能力和开关速度都可以通过控制栅极电压进行调节。
MOSFET的驱动实际上是将适当的电压和电流应用到栅极,以使MOSFET在导通和关断之间切换。
为确保MOSFET的正常工作,驱动电路必须具备以下特点:1.电压限制:MOSFET的栅极-源极耐压特性决定了驱动电路中栅极到源极的电压范围。
超过耐压范围可能会损坏MOSFET。
2.电流驱动:MOSFET的栅极驱动电流应足够大,以确保MOSFET能够迅速导通和关断。
驱动电流的大小取决于应用中所需的开关速度。
3.输入电容:MOSFET的栅极具有一定的输入电容,所以驱动电路应能够充电和放电栅极,以确保快速开关。
根据应用需要,MOSFET的驱动可以采用不同的电路配置。
以下是两种常见的MOSFET驱动电路:1.高侧驱动电路:用于将MOSFET驱动到正电压,常见于单相和三相逆变器、电机驱动等应用。
高侧驱动电路使用一个隔离电路(如变压器或光耦)将驱动电压与MOSFET的源极隔离开来,以防止源极电位过高或过低。
2.低侧驱动电路:用于将MOSFET驱动到负电压,常见于直流-直流转换器、DC电机驱动等应用。
低侧驱动电路可以直接将源极连接到地,所以驱动电路相对简单。
在实际应用中,MOSFET的驱动也需要考虑保护功能,以避免因过电流或过热损坏。
常见的保护电路包括过压保护、过流保护、过温保护等。
总之,功率场效应晶体管(MOSFET)通过控制栅极电压来控制载流子的流动,实现电压和电流的控制和放大。
电力电子实验报告

电力电子实验报告学院名称电气信息学院专业班级电气自动化03班学号学生姓名指导教师实验一电力晶体管(GTR)驱动电路研究一.实验目的1.掌握GTR对基极驱动电路的要求2.掌握一个实用驱动电路的工作原理与调试方法二.实验内容1.连接实验线路组成一个实用驱动电路2.PWM波形发生器频率与占空比测试3.光耦合器输入、输出延时时间与电流传输比测试4.贝克箝位电路性能测试5.过流保护电路性能测试三.实验线路四.实验设备和仪器1.MCL-07电力电子实验箱2.双踪示波器3.万用表4.教学实验台主控制屏五.实验方法1.检查面板上所有开关是否均置于断开位置2.PWM波形发生器频率与占空比测试(1)开关S1、S2打向“通”,将脉冲占空比调节电位器RP顺时针旋到底,用示波器观察1和2点间的PWM波形,即可测量脉冲宽度、幅度与脉冲周期,并计算出频率f与占空比D当S2通,RP右旋时:当S2断,RP右旋时:当S2通,RP左旋时:当S2断,RP左旋时:(2)将电位器RP左旋到底,测出f与D。
(3)将开关S2打向“断”,测出这时的f与D。
(4)电位器RP顺时针旋到底,测出这时的f与D。
(5)将S2打在“断”位置,然后调节RP,使占空比D=0.2左右。
3.光耦合器特性测试(1)输入电阻为R1=1.6K 时的开门,关门延时时间测试a.将GTR单元的输入“1”与“6”分别与PWM波形发生器的输出“1”与“2”相连,再分别连接GTR单元的“3”与“5”,“9”与“7”及“6”与“11”,即按照以下表格的说明连线。
b.GTR单元的开关S1合向“”,用双踪示波器观察输入“1”与“6”及输出“7”与“11”之间波形,记录开门时间ton(含延迟时间td和下降时间tf)以及关门时间toff(含储存时间ts和上升时间tr)对应的图为:(2)输入电阻为R2=150 时的开门,关门延时时间测试将GTR单元的“3”与“5”断开,并连接“4”与“5”,调节电位器RP顺时针旋到底(使RP短接),其余同上,记录开门、关门时间。
北航电力电子实验报告

电力电子实验报告学号12031006王天然实验一功率场效应晶体管(MOSFET)特性与驱动电路研究一.实验目的:1.熟悉MOSFET主要参数的测量方法2.掌握MOSEET对驱动电路的要求3.掌握一个实用驱动电路的工作原理与调试方法二.实验设备和仪器1.NMCL-07电力电子实验箱中的MOSFET与PWM波形发生器部分2.双踪示波器3.安培表(实验箱自带)4.电压表(使用万用表的直流电压档) 三.实验方法1.MOSFET 主要参数测试 (1)开启阀值电压V GS(th)测试开启阀值电压简称开启电压,是指器件流过一定量的漏极电流时(通常取漏极电流I D =1mA)的最小栅源极电压。
在主回路的“1”端与MOS 管的“25”端之间串入毫安表(箱上自带的数字安培表表头),测量漏极电流I D ,将主回路的“3”与“4”端分别与MOS 管的“24”与“23”相连,再在“24”与“23”端间接入电压表, 测量MOS 管的栅源电压Vgs ,并将主回路电位器RP 左旋到底,使Vgs=0。
图2-2 MOSFET实验电路将电位器RP逐渐向右旋转,边旋转边监视毫安表的读数,当漏极电流I D=1mA时的栅源电压值即为开启阀值电压V GS(th)。
读取6—7组I D、Vgs,其中I D=1mA必测,填入下表中。
I D0.2 0.5 1 5 100 200 500 (mA)Vgs2.64 2.72 2.863.04 3.50 3.63 3.89 (V)(2)跨导g FS测试双极型晶体管(GTR)通常用h FE(β)表示其增益,功率MOSFET器件以跨导g FS表示其增益。
跨导的定义为漏极电流的小变化与相应的栅源电压小变化量之比,即g FS=△I D/△V GS。
★注意典型的跨导额定值是在1/2额定漏极电流和V DS=15V下测得,受条件限制,实验中只能测到1/5额定漏极电流值,因此重点是掌握跨导的测量及计算方法。
根据上一步得到的测量数值,计算gFS=0.0038ΩI D(mA)0.2 0.5 1 5 10 100 200 500Vgs(V) 2.64 2.72 2.86 3.04 3.13 3.5 3.63 3.89g FS0.0038 0.0036 0.0222 0.0556 0.2432 0.7692 1.1538DS导通电阻定义为R DS=V DS/I D将电压表接至MOS 管的“25”与“23”两端,测量U DS,其余接线同上。
电力电子技术实验指导书最新

实验一 电力电子元件测试一、实验目的1.观察晶闸管(SCR )的结构,掌握测试晶闸管好坏的正确方法。
2.观察IGBT 和MOSFET 的结构,掌握测试IGBT 和MOSFET 好坏的正确方法。
3.验证晶闸管导通与关断条件。
4.掌握各种电力电子器件的工作特性。
二、实验设备三、实验线路及原理1、晶闸管电极的判定和简单测试若从外观上判断,3个电极形状各不相同,无需作任何测量就可以识别。
小功率晶闸管的门极比阴极细,大功率的门极则用金属编制套引出,像一根辫子。
有的在阴极上另引出一根较细的引线,以便和触发电路连接,这种晶闸管虽有4个电极,也无需测量就能识别。
(2)晶闸管的简单测试在实际的使用过程中,很多时候需要对晶闸管的好坏进行简单的判断,我们常常采用万用表法进行判别。
1)万用表档位放至于欧姆档R ×100,将红表笔接在晶闸管的阳极,黑表笔接在晶闸管的阴极观察指针摆动情况,如图1-1所示。
图1-1 测量阳极和阴极间反向电阻2)将黑表笔接晶闸管的阳极,红表笔接晶闸管的阴极观察指针摆动情况,如图1-2所示。
图1-2 测量阳极和阴极间正向电阻结果:正反向阻值均很大原因:晶闸管是四层三端半导体器件,在阳极和阴极之间有三个PN 结,无论如何加电压,总有一个PN 结处于反向阻断状态,因此正反向阻值均很大。
3)将红表笔接晶闸管的阴极,黑表笔接晶闸管的门极观察指针摆动情况,如图1-3所示。
图1-3 测量门极和阴极间正向电阻4)将黑表笔接晶闸管的阴极,红表笔接晶闸管的门极观察指针摆动情况,如图1-4所示。
图1-4 测量门极和阴极间反向电阻理论结果:当黑表笔接控制极,红表笔接阴极时,阻值很小;当红表笔接控制极,黑表笔接阴极时,阻值较大。
实测结果:两次测量的阻值均不大 原因:在晶闸管内部控制极与阴极之间反并联了一个二极管,对加到控制极与阴极之间的反向电压进行限幅,防止晶闸管控制极与阴极之间的PN 结反向击穿。
2、SCR 、MOSFET 、IGBT 特性实验将电力电子器件(包括SCR 、MOSFET 、IGBT 三种)和负载电阻R 串联后接至直流电源的两端,由直流电源为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A 特性。
电力电子实验指导书

《电力电子技术》实验指导书南阳师范学院物理与电子工程学院编订人:刘红钊实验一GTR、GTO、MOSFET、IGBT的特性与驱动电路研究一.实验目的1.熟悉GTR、GTO、MOSFET、IGBT的开关特性。
2.掌握GTR、GTO、MOSFET、IGBT缓冲电路的工作原理与参数设计要求。
3.掌握GTR、GTO、MOSFET、IGBT对驱动电路的要求。
4.熟悉GTR、GTO、MOSFET、IGBT主要参数的测量方法。
二.实验内容1.GTR的特性与驱动电路研究。
2.GTO的特性与驱动电路研究。
3.MOSFET的特性与驱动电路研究。
4.IGBT的特性与驱动电路研究。
三.实验设备和仪器1.NMCL-07C电力电子实验箱2.双踪示波器3.万用表(自备)4.教学实验台主控制屏四.实验方法1、GTR的特性与驱动电路研究(1)不同负载时GTR的开关特性测试(a)电阻负载时的开关特性测试GTR:将开关S2拨到+15V,PWM波形发生器的“21”与面板上的“20”相连,“24与“10”、“12”与“13”和“15”、“17”与GTR的“B”端、14”和GTR的“E”端、“18”与主回路的“3”相连、GTR“C”端与主回路的“1”相连。
E用示波器分别观察,基极驱动信号I B(“15”与“18”之间) 的波形及集电极电流I E(“14”与“18”之间) 的波形,记录开通时间ton,关断时间toff。
ton= us,toff= us(b)电阻、电感性负载时的开关特性测试除了将主回器部分由电阻负载改为电阻、电感性负载以外(即将GTR的C端与“1”断开,而与“2”相连),其余接线与测试方法同上。
ton= us,toff= us(2不同基极电流时的开关特性测试(a)断开“13”与“15”的连接,将基极回路的“12”与“15”相连,其余接线同上,测量并记录基极驱动信号I B(“15”与“18”之间)及集电极电流I E(“14”与“18”之间)波形,记录开通时间ton,关断时间toff。
mosfet的实验报告

mosfet的实验报告《实验报告:探索mosfet的特性与应用》摘要:本实验报告旨在探索mosfet(金属氧化物半导体场效应晶体管)的特性和应用。
通过实验,我们对mosfet的工作原理、特性曲线以及在电子电路中的应用进行了深入研究。
实验结果表明,mosfet作为一种重要的半导体器件,在放大、开关和调节等方面具有重要的应用价值。
引言:mosfet是一种常见的半导体器件,其在电子电路中具有重要的应用价值。
本实验旨在通过实际操作,深入了解mosfet的特性和应用,为进一步的学习和研究打下基础。
实验一:mosfet的基本特性在本实验中,我们首先搭建了一个简单的mosfet电路,通过测量电压和电流的变化,绘制了mosfet的特性曲线。
实验结果显示,mosfet的特性曲线呈现出明显的非线性特性,且具有一定的开启电压和饱和电流。
通过分析特性曲线,我们对mosfet的工作原理有了更深入的理解。
实验二:mosfet在放大电路中的应用在本实验中,我们将mosfet应用于放大电路中,通过调节mosfet的工作点,实现了对输入信号的放大。
实验结果表明,mosfet在放大电路中具有良好的线性特性,能够有效地放大输入信号,为电子设备的放大功能提供了重要支持。
实验三:mosfet在开关电路中的应用在本实验中,我们将mosfet应用于开关电路中,通过控制mosfet的导通和截止,实现了对电路的开关功能。
实验结果表明,mosfet在开关电路中具有快速响应的特性,能够实现高效的开关控制,为电子设备的开关功能提供了重要支持。
结论:通过本次实验,我们深入了解了mosfet的特性和应用。
mosfet作为一种重要的半导体器件,在放大、开关和调节等方面具有重要的应用价值。
我们相信,通过不断的学习和研究,mosfet将会在电子领域发挥更加重要的作用。
功率场效应管(MOSFET)特性试验研究及仿真开题报告

沈航北方科技学院毕业设计(论文)开题报告功率场效应管(MOSFET)特性试验研究及仿真专业:自动化学生姓名:姓名指导教师:杜维东开题时间: 2015年3月毕业设计(论文)开题报告功率MOS场效应晶体管,即MOSFET,其原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。
1.功率场效应管(MOSFET)的历史场效应晶体管于1925年由Julius Edgar Lilienfeld和于1934年由Oskar Heil分别发明,但是实用的器件一直到1952年才被制造出来(结型场效应管)。
1960年Dawan Kahng发明了金属氧化物半导体场效应晶体管,从而大部分代替了JFET,对电子行业的发展有着深远的意义。
2.功率场效应管(MOSFET)的组成FET由各种半导体构成,目前硅是最常见的。
大部分的FET是由传统块体半导体制造技术制造,使用单晶半导体硅片作为反应区,或者沟道。
大部分的不常见体材料,主要有非晶硅、多晶硅或其它在薄膜晶体管中,或者有机场效应晶体管中的非晶半导体。
有机场效应晶体管基于有机半导体,常常用有机栅绝缘体和电极。
3.功率场效应管(MOSFET)的应用功率场效应管(MOSFET),目前与我们的日常生活息息相关,如现代电子计算机、超大规模集成电路、数码相机、开关电源、LED照明领域、逆变电源,控制电路、液晶电视、数码音响、热释电传感器等就是以场效应管为基本器件构成和发展起来的。
然而由于场效应管栅极河沟道之间的绝缘层易被电压击穿,特别是栅源之间的耐压只有几十伏,电流也仅为微安级,所以在拆、装、存、测过程中,都必须将栅源极短路。
MOS场效应管由于特殊的结构和工艺,其栅极与导电沟道没有电接触,即绝缘的,故它的输入电阻很高,可达109Ω以上,工作时几乎栅极不取电流,又栅-源极间电容非常小,极易受外界电磁场或静电的感应而带电,而少量电荷就可在极间电容上形成相当高的电压(U=Q/C),将管子损坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三功率场效应晶体管(MOSFET)特性与驱动电路研究一.实验目的:1.熟悉MOSFET主要参数的测量方法2.掌握MOSEET对驱动电路的要求3.掌握一个实用驱动电路的工作原理与调试方法二.实验内容1.MOSFET主要参数:开启阀值电压V GS(th),跨导g FS,导通电阻R ds输出特性I D=f(Vsd)等的测试2.驱动电路的输入,输出延时时间测试.3.电阻与电阻、电感性质载时,MOSFET开关特性测试4.有与没有反偏压时的开关过程比较5.栅-源漏电流测试三.实验设备和仪器1.MCL-07电力电子实验箱中的MOSFET与PWM波形发生器部分2.双踪示波器(自配)3.毫安表4.电流表5.电压表4、实验线路见图2—2五.实验方法1.MOSFET主要参数测试(1)开启阀值电压V GS(th)测试开启阀值电压简称开启电压,是指器件流过一定量的漏极电流时(通常取漏极电流I D=1mA)的最小栅源电压。
在主回路的“1”端与MOS 管的“25”端之间串入毫安表,测量漏极电流I D ,将主回路的“3”与“4”端分别与MOS 管的“24”与“23”相连,再在“24”与“23”端间接入电压表, 测量MOS 管的栅源电压Vgs ,并将主回路电位器RP 左旋到底,使Vgs=0。
将电位器RP 逐渐向右旋转,边旋转边监视毫安表的读数,当漏极电流I D =1mA 时的栅源电压值即为开启阀值电压V GS (th )。
读取6—7组I D 、Vgs ,其中I D =1mA 必测,填入表2—6。
(2)跨导g FS 测试双极型晶体管(GTR )通常用h FE (β)表示其增益,功率MOSFET 器件以跨导g FS表示其增益。
跨导的定义为漏极电流的小变化与相应的栅源电压小变化量之比,即g FS =△I D /△V GS 。
典型的跨导额定值是在1/2额定漏极电流和V DS =15V 下测得,受条件限制,实验中只能测到1/5额定漏极电流值。
图2-2 MOSFET实验电路根据表2—6的测量数值,计算g FS。
(3)转移特性I D=f(V GS)栅源电压Vgs与漏极电流I D的关系曲线称为转移特性。
根据表2—6的测量数值,绘出转移特性。
(4)导通电阻R DS测试导通电阻定义为R DS=V DS/I D将电压表接至MOS 管的“25”与“23”两端,测量U DS,其余接线同上。
改变V GS从小到大读取I D与对应的漏源电压V DS,测量5-6组数值,填入表2—7。
(5)I D=f(V SD)测试I D=f(V SD)系指V GS=0时的V DS特性,它是指通过额定电流时,并联寄生二极管的正向压降。
a.在主回路的“3”端与MOS管的“23” 端之间串入安培表,主回路的“4”端与MOS管的“25”端相连,在MOS管的“23”与“25”之间接入电压表,将RP右旋转到底,读取一组I D与V SD的值。
b.将主回路的“3”端与MOS管的“23”端断开,在主回路“1”端与MOS管的“23”端之间串入安培表,其余接线与测试方法同上,读取另一组I D与V SD的值。
c.将“1”端与“23”端断开,在在主回路“2”端与“23”端之间串入安培表,其余接线与测试方法同上,读取第三组I D与V SD的值。
2.快速光耦6N137输入、输出延时时间的测试将MOSFET单元的输入“1”与“4”分别与PWM波形发生器的输出“1”与“2”相连,再将MOSFET单元的“2”与“3”、“9”与“4”相连,用双踪示波器观察输入波形(“1”与“4”)及输出波形(“5”与“9”之间),记录开门时间t on、关门时间t off。
t on= ,t off=3.驱动电路的输入、输出延时时间测试在上述接线基础上,再将“5”与“8”、“6”与“7”、“10”、“11”与“12”、“13”、“14”与“16”相连,用示波器观察输入“1”与“4”及驱动电路输出“18”与“9”之间波形,记录延时时间t off。
4.电阻负载时MOSFET开关特性测试(1)无并联缓冲时的开关特性测试在上述接线基础上,将MOSFET单元的“9”与“4”连线断开,再将“20”与“24”、“22”与“23”、“21”与“9”以及主回路的“1”与“4”分别和MOSFET单元的“25”与“21”相连。
用示波器观察“22”与“21”以及“24”与“21”之间波形(也可观察“22”与“21”及“25”与“21”之间的波形),记录开通时间t on与存储时间t s。
t on= ,t s=(2)有并联缓冲时的开关特性测试在上述接线基础上,再将“25”与“27”、“21”与“26”相连,测试方法同上。
5.电阻、电感负载时的开关特性测试(1)有并联缓冲时的开关特性测试将主回路“1”与MOSFET单元的“25”断开,将主回路的“2”与MOSFET单元的“25”相连,测试方法同上。
(2)无并联缓冲时的开关特性测试将并联缓冲电路断开,测试方法同上。
6.有与没有栅极反压时的开关过程比较(1)无反压时的开关过程上述所测的即为无反压时的开关过程。
(2)有反压时的开关过程将反压环节接入试验电路,即断开MOSFET单元的“9”与“21”的相连,连接“9”与“15”,“17”与“21”,其余接线不变,测试方法同上,并与无反压时的开关过程相比较。
7.不同栅极电阻时的开关特性测试电阻、电感负载,有并联缓冲电路(1)栅极电阻采用R6=200Ω时的开关特性。
(2)栅极电阻采用R7=470Ω时的开关特性。
(3)栅极电阻采用R8=Ω时的开关特性。
8.栅源极电容充放电电流测试电阻负载,栅极电阻采用R6,用示波器观察R6两端波形并记录该波形的正负幅值。
9.消除高频振荡试验当采用电阻、电感负载,无并联缓冲,栅极电阻为R6时,可能会产生较严重的高频振荡,通常可用增大栅极电阻的方法消除,当出现高频振荡时,可将栅极电阻用较大阻值的R8。
6.实验报告1.根据所测数据,列出MOSFET主要参数的表格与曲线。
2.列出快速光耦6N137与驱动电路的延时时间与波形。
3.绘出电阻负载,电阻、电感负载,有与没有并联缓冲时的开关波形,并在图上标出t on、t off。
4.绘出有与没有栅极反压时的开关波形,并分析其对关断过程的影响。
5.绘出不同栅极电阻时的开关波形,分析栅极电阻大小对开关过程影响的物理原因。
6.绘出栅源极电容充放电电流波形,试估算出充放电电流的峰值。
7.消除高频振荡的措施与效果。
8.实验的收获、体会与改进意见。
六、思考题1.增大栅极电阻可消除高频振荡,是否栅极电阻越大越好,为什么?请你分析一下,增大栅极电阻能消除高频振荡的原因。
2.从实验所测的数据与波形,请你说明MOSFET对驱动电路的基本要求有哪一些?你能否设计一个实用化的驱动电路。
3.从理论上说,MOSFET的开、关时间是很短的,一般为纳秒级,但实验中所测得的开、关时间却要大得多,你能否分析一下其中的原因吗?实验四绝缘栅双极型晶体管(IGBT)特性与驱动电路研究一.实验目的1.熟悉IGBT主要参数与开关特性的测试方法。
2.掌握混合集成驱动电路EXB840的工作原理与调试方法。
二.实验内容1.IGBT主要参数测试。
2.EXB840性能测试。
3.IGBT开关特性测试。
4.过流保护性能测试。
三.实验设备和仪器1.NMCL-07电力电子实验箱中的IGBT与PWM波形发生器部分。
2.双踪示波器。
(自配)3.毫安表4.电压表5.电流表6.教学实验台主控制屏4.实验线路见图2—35.实验方法1.IGBT主要参数测试(1)开启阀值电压V GS(th)测试在主回路的“1”端与IGBT的“18”端之间串入毫安表,将主回路的“3”与“4”端分别与IGBT 管的“14”与“17”端相连,再在“14”与“17”端间接入电压表,并将主回路电位器RP左旋到底。
将电位器RP逐渐向右旋转,边旋转边监视毫安表,当漏极电流I D=1mA时的栅源电压值即为开启阀值电压V GS(th)。
读取6—7组I D、Vgs,其中I D=1mA必测,填入表2—8。
(2)跨导g FS测试在主回路的“2”端与IGBT的“18”端串入安培表,将RP左旋到底,其余接线同上。
将RP逐渐向右旋转,读取I D与对应的V GS值,测量5-6组数据,填入表2—9。
(3)导通电阻R DS测试将电压表接入“18”与“17”两端,其余同上,从小到大改变V GS,读取I D与对应的漏源电压V DS,测量5-6组数据,填入表2—10。
2.EXB840性能测试(1)输入输出延时时间测试IGBT部分的“1”与“13”分别与PWM波形发生部分的“1”与“2”相连,再将IGBT部分的“10”与“13”、与门输入“2”与“1”相连,用示波器观察输入“1”与“13”及EXB840输出“12”与“13”之间波形,记录开通与关断延时时间。
t on= ,t off=(2)保护输出部分光耦延时时间测试将IGBT部分“10”与“13”的连线断开,并将“6”与“7”相连。
用示波器观察“8”与“13”及“4”与“13” 之间波形,记录延时时间。
(3)过流慢速关断时间测试接线同上,用示波器观察“1”与“13”及“12”与“13”之间波形,记录慢速关断时间。
(4)关断时的负栅压测试断开“10”与“13”的相连,其余接线同上,用示波器观察“12”与“17”之间波形,记录关断时的负栅压值。
(5)过流阀值电压测试断开“10”与“13”,“2”与“1”的相连,分别连接“2”与“3”,“4”与“5”,“6”与“7”,将主回路的“3”RP左旋到底,用示波器观察“12”与“17”之间波形,将RP逐渐向右旋转,边旋转边监视波形,一旦该波形消失时即停止旋转,测出主回路“3”与“4”之间电压值,该值即为过流保护阀值电压值。
(6)4端外接电容器C1功能测试——供教师研究用EXB840使用手册中说明该电容器的作用是防止过流保护电路误动作(绝大部分场合不需要电容器)。
a.C1不接,测量“8”与“13”之间波形。
图2-3 IGBT实验电路b.“9”与“13”相连时,测量“8”与“13” 之间波形,并与上述波形相比较。
3.开关特性测试(1)电阻负载时开关特性测试将“1”与“13”分别与波形发生器“1”与“2”相连,“4”与“5”,“6”与“7”,‘2“与”3“,“12”与“14”,“10”与“18”,“17”与“16”相连,主回路的“1”与“4”分别和IGBT部分的“18”与“15”相连。
即用示波器分别观察“8”与“15”及“14”与“15”的波形,记录开通延迟时间。
(2)电阻,电感负载时开关特性测试将主回路“1”与“18”的连线断开,再将主回路“2”与“18”相连,用示波器分别观察“8”与“15”及“16”与“15”的波形,记录开通延迟时间。