电磁学小论文

合集下载

电磁学小论文

电磁学小论文

2018/7/2
实验
由于线圈的这种绕法,我们研究了不同距离下的输出电压大小:
Distant/cm U/mv
1
0
160
2
1
80
3
1.5
54 发现,最大电压也不过160mv,而在用水平盘绕的方法时,电压却可以
达到4V。
关于频率
最初采用频率为1KHZ,得出 来的结果中,不论是漆包线
还是耳机线,在这种频率下
电流,不仅在相位上落后 ⁄ 个周期,而且其大小还与感应的线圈匝数,半径大小以及线圈的
长度有关,而且在其他条件不变的情况下,高频电明显的感觉到,如果线圈相距较远,或者摆放不在正中心的话,都会对传输电
能的效率照成巨大影响,所以如果要大规模的应用与市场的话,就要投入大量的基础设施和 人力物力。
得到一组输出电压
2
压,找到一个频率值使电压最大。
的数据,然而接着,
我们在主,次级电
3
路中拆掉了电容,
却发现在增大点处
4
实验发现:在输入频率为
的电压不减反增。
2.5MHZ时输出电压最大。
Horizon U/V shift/cm
2.7
1.04
3
2.56
3.3
2.62
3.6
2.18
关于磁共振
可以发现,在3.3cm处的 电压为2.62V对比加了震 荡电路的电压(2.30V), 不降反增,于是我们推 测,我们在这次尝试中 没有时主级电路达到谐 振频率,一方面,这是 由于我们实验仪器造成, 另一方面,谐振必须使 频率非常精确才达到效 果,而我们的实验只是 粗调,达不到效果也是 必然的
小论文参考文献: 《磁共振耦合电能传输系统功率与效率传输特性分析与优化》(李长生,张合,曹娟,刘明) 《无线电能传输系统平行多匝线圈空间位置与效率分析》(张晋勇,麦晓冬,关曼清,邱怡怡)

电磁学原理的应用论文

电磁学原理的应用论文

电磁学原理的应用论文1. 引言电磁学是物理学的一个重要分支,研究电场和磁场以及它们之间的相互作用。

电磁学原理在各个领域得到广泛应用,包括通信、能源、医学等。

本论文将探讨电磁学原理在不同领域的应用案例,并分析其原理和效果。

2. 通信领域应用2.1 电磁波传输•无线通信中常用的调制技术有频率调制、相位调制和幅度调制。

•调制技术基于电磁波的传播原理,通过改变电磁波的频率、相位或幅度来传输信息。

2.2 电磁波天线•通信系统中常用的天线类型有单极天线、双极天线、饼形天线等。

•这些天线通过辐射电磁波来实现无线通信,天线的设计和调整基于电磁学原理。

2.3 频率选择性表面•频率选择性表面(FSS)通过设计和布局特定形状和尺寸的导电元件,选择特定的频率波段进行传输。

•FSS在通信领域中被广泛应用于天线设计、电磁波隔离等。

3. 能源领域应用3.1 电磁感应发电•电磁感应发电是将磁场相对于导线产生感应电动势,并通过导线形成电流,实现能量转换的原理。

•应用电磁学原理设计的电磁感应发电装置广泛应用于各种发电系统,例如风力发电、水力发电等。

3.2 电磁辐射加热•电磁辐射加热利用电磁场对材料的吸收和转化,实现物体加热的原理。

•该原理应用于工业加热、医疗设备等领域,具有高效、环保等优势。

4. 医学领域应用4.1 磁共振成像(MRI)•磁共振成像利用人体组织对强磁场和射频信号的响应来获得影像。

•MRI是一种无创性的检查方法,应用于医学诊断、病理学研究等领域。

4.2 细胞电生理实验•细胞电生理实验通过记录和分析细胞膜上的电流、电势变化,研究细胞的电生理特性。

•应用电磁学原理的电生理研究在解析生物系统的工作原理、疾病治疗等方面具有重要意义。

5. 结论电磁学原理是现代科学和技术的核心基础,其应用涉及到多个领域。

本论文简要介绍了电磁学原理在通信、能源和医学领域的应用案例。

通过对这些案例的分析,可以看出电磁学原理在实际应用中的重要性和价值。

高中物理电磁学教学方法研究论文五篇

高中物理电磁学教学方法研究论文五篇

高中物理电磁学教学方法研究论文五篇第一篇:高中物理电磁学教学方法研究论文高中物理电磁学是将磁场与电场结合在一起,整体突出场与路的关系。

物理教师在教学过程中需要帮助学生深入了解电磁学的特点,运用针对性的教学方法,理论结合实践对学生进行教学,帮助学生掌握电磁学知识。

1、了解高中物理电磁学的特点与注意事项高中物理主要思路就是力与运动、功与能的转换,所以对于高中物理的电磁学教学也需要充分把准这一命脉,将其作为教学的基本思路。

电磁学在高中物理课程的设置中由场和路两方面构成,所以在电磁学教学过程中也应该从这2方面进行教学,帮助学生理解和掌握其基本概念,找出电磁学的基本规律,最终更好地解决电磁场综合问题,完成对电磁学的学习。

例如,在电磁学问题的解答过程中,首先根据粒子在不同的运动情况或者物理现象下都是以力与运动的联系进行组合,将电磁学的问题转换为力与运动或者是功与能的问题。

这样,解题思路得以显现,再对电磁学问题进行力学分析,将粒子运动状态所体现的受力情况完全显露出来,再应用牛顿定律,最终完成电磁学中力学的讨论部分。

同时,对于电磁学中功与能的问题就需要应用能量守恒与转化的观点,列出能量方程式,让电磁学问题迎刃而解。

对于电磁学的教学就是抓住电磁学特点,将抽象的电磁运动转化为宏观的力学与能量问题,利于学生运用已知的知识解决未知的问题。

在电磁学教学过程中,还需要注意尽量帮助学生理解抽象的物理现象,帮助学生运用丰富的想象掌握电磁学运动问题,总结解题的一般思路。

2、高中物理电磁学教学方法分类既然电磁学主要包括了场与路,那么在教学方法的选择上就可采用将这二者分开研究的方式进行。

物质与物质相互作用形成电磁学的场,例如匀强电场、匀强磁场等可以从场入手,对学生进行电磁学的讨论与研究。

而对于电磁学中的路,包括磁感线、电路等,例如匀强磁场与电路的关系就可以反映出它们存在某种特殊的联系。

在电磁学教学过程中可以以场为研究对象,以路为研究方法:1)对于“电生磁”与“磁生电”的讨论中,会运用逆向教学的方法,让学生去思考和探索未知的问题。

电磁学论文(电磁学在生活中应用)

电磁学论文(电磁学在生活中应用)

电磁改变生活一LC振荡电路应用----校园一卡通:我们生活离不开货币,但是在校园内随时拿着一把现金很不方便,尤其还要找零,就更繁琐了。

但现在我们有了校园一卡通,无论是吃饭打水,还是坐车买东西,只要在校园内有卡就能行!那么,一卡通的原理是什么呢?其实校园一卡通的结构并不是十分复杂,运用的都是电磁学知识,其实质是以射频识别技术为核心的非接触式IC卡。

卡内主体就是一个集成电路芯片(IC)和一个感应线圈(LC振荡器)。

但是与其配套的读卡器,也就是我们平时刷卡的机器结构就复杂得多了。

内部结构分为射频区和接口区:射频区内含调制解凋器和电源供电电路,直接与天线连接;接口区有与单片机相连的端口,还具有与射频区相连的收/发器、16字节的数据缓冲器、存放64对传输密钥的ROM、存放3套密钥的只写存储器,以及进行3次证实和数据加密的密码机、防碰撞处理的防碰撞模块和控制单元。

读卡器随时都在发着频率和LC振荡器固有频率相同的脉冲,当卡靠近时,产生电磁激励,LC振荡器产生共振,导通芯片工作,读写数据。

一、涡流的应用----电磁炉科大食堂在冬天就会卖一些煮菜,当你买的时候菜还在电磁炉上煮着,这样在寒冷的冬天,我们就可以一直有热乎乎的菜吃,这是多么幸福的事!时至今日,电磁炉在我们的生活中已经必不可少,它无需明火或传导式加热而让热直接在锅底产生,因此热效率得到了极大的提高。

它是一种高效节能橱具,完全区别于传统所有的有火或无火传导加热厨具。

电磁炉是利用电磁感应加热原理制成的电气烹饪器具。

使用时,加热线圈中通入交变电流,线圈周围便产生一交变磁场,交变磁场的磁力线大部分通过金属锅体,在锅底中产生大量涡流,从而产生烹饪所需的热。

在加热过程中没有明火,因此安全、卫生。

电磁炉的功率一般在700~1800W之间,它的结构主要由外壳、高级耐热晶化陶瓷板、PAN 电磁线盘、加热电路板、控制电路板、显示电路板、风扇组件及电源等组成。

电磁炉使我们的生活更加美好舒适!二、电磁波应用----微波炉现在人们生活很忙碌,饭不一定能准时吃,经常到工作完成了饭也已经凉了,这时候微波炉就是我们的最好选择,因为只需食物放进去一会就热了,简单方便!在我们学校每个食堂和宿舍门口都有一个微波炉供我们使用!微波炉里没有火,是靠微波,即高频电磁波,作为微波炉的热源。

电磁学论文

电磁学论文

电磁学论文生活中的电磁学地球上的第一个生命在大约在46亿年前诞生,就在这时,电磁就与生命结下了不解之缘,伴随生命形式从低等走向高等,也见证着整个生物界的一次次变革。

而在科技快速发展的今天,电磁更是与生命紧密的联系着,小到移动电话,大到卫星通信,无一不是与电磁紧密相连的。

可以说,没有电磁,就没有信息时代,恐怕连人类的整个文明都要倒退几个世纪了。

近些年中,人们对电磁的研究在不断地深入,对磁场、电磁场能、太阳磁场能等与生命之间的能量转化和转移的研究正逐步成为二十一世纪的热门研究方向。

电磁学在生活中的应用有许多,与人们生活息息相关的比如电磁炉、微波炉等给人们生活带来了极大地方便,而最近十分流行的蓝牙耳机,也是电磁学发展的结果。

下面就具体介绍几个电磁学在人们生活中的应用实例。

1.电磁炉(微波炉电路图)(1)电磁炉主要结构有两大部分构成:电子线路部分及结构性包装部分。

①电子线路部分包括:功率板、主机板、灯板、线圈盘及热敏支架、风扇马达等。

②结构性包装部分包括:瓷板、塑胶上下盖、风扇叶、风扇支架、电源线、说明书、功率贴纸、操作胶片、合格证、塑胶袋、防震泡沫、彩盒、条码、卡通箱。

(2)电磁炉工作原理:采用磁场感应电流(又称为涡流)的加热原理,电磁炉是通过电子线路板组成部分产生交变磁场、当用含铁质锅具底部放置炉面时,锅具即切割交变磁力线而在锅具底部金属部分产生交变的电流(即涡流),涡流使锅具铁分子高速无规则运动,分子互相碰撞、摩擦而产生热能(故:电磁炉煮食的热源来自于锅具底部而不是电磁炉本身发热传导给锅具,所以热效率要比所有炊具的效率均高出近1倍)使器具本身自行高速发热,用来加热和烹饪食物,从而达到煮食的目的。

(3)电磁炉的优点:热效率高;更安全(无明火烹调好处多);更环保(卫生、清洁);更精确(温度控制准确);更多能(煎、炒、炸、煮、炖全能);更方便(操作简单外形秀丽)。

2.蓝牙(蓝牙电路示意图)(1)蓝牙是一种支持设备短距离通信(一般是10m之内)的无线电技术。

电磁学小论文

电磁学小论文
生物磁学离不开的就是生物磁场。生物磁场主要来源于生物体内的电活动和非正常生理状态的强磁性物质(如Fe3O4)。在生命活动如物质输运、能量转换和信息传递过程中,会发生电荷的传递或离子的迁移。例如心脏搏动、骨骼肌运动、神经系统感知和调控过程中,这些组织的细胞膜对各种离子的通透性会发生瞬时变化,出现脉冲式的离子电流,导致细胞膜电位的改变,形成动作电位。动作电位的传播在生物组织中形成生物电流,同时伴生相应的生物磁场。此外,由于环境污染等原因,吸入人体的铁磁性物质的粉尘,会沉积于肺部或进入胃肠系统,经外加磁场磁化后,可测到一定的剩余磁场。
(二)在电磁辐射危害到人体健康的同时人们也将电磁应用到医学中为人体健康服务,并且取得了很多成果。
核磁共振技术
核磁共振技术早期仅限于原子核的磁矩、电四极矩和自旋的测量,随后则被广泛地用于确定分子结构,用于对生物在组织与活体组织的分析、病理分析、医疗诊断、产品无损检测等诸多方面。我们在生活中都曾接触过接触过CT。其实它的全名叫核磁共振CT,从这些字眼上便可理解其与物理的关系之慎密。
中国科学技术大学
电磁课小论文
论文题目:
2010
摘要:我们所生活的环境中存在着大量的电磁辐射,它们对人身体的健康存在着极大的危害,而近些年人们在生活中也极力规避这种危害并使现状得到了一些改善。在电磁辐射危害人类健康的同时,人们也将电磁学知识运用到医学治疗中并取得了很多了不起的成果。而这个领域也还在不断发展阶段,尚有很多事情等待我们去做
核磁共振成像(NMR成像)被广泛地用于医疗诊断上,其中最常用是平面成象,即获取样品平面(断面)上的分布信息,称作核磁共振计算机断层成象,也就是常说的核磁共振CT(computed topography)。就人体而言,体内的大部分(75%)物质都是水,且不同组织中水的含量也不同。用核磁共振CT手段可测定生物组织中含水量分布的图像,这实际上就是质子密度分布的图像。当体内遭受某种疾病时,其含水量分布就会发生变化,利用氢核的核磁共振就能诊断出来。图9所示的人体成像装置核磁共振成像系统由磁体系统、谱仪系统、计算机系统和图象显示系统组成。磁体系统由主磁体、梯度线圈、垫补线圈和与主磁场正交的射频线圈组成,是核磁共振发生和产生信号的主体部分。谱仪系统是产生磁共振现象并采用磁共振信号的装置,主要由梯度场发生器和控制系统、MR信号接收和控制等部分组成。计算机图象重建系统要求配备大容量计算机和高分辨的模数转换器(analog/difital converter, A/D),以完成数据采集、累加、傅里叶转换、数据处理和图象显示。

大学物理论文3000字(精选5篇)

大学物理论文3000字(精选5篇)

⼤学物理论⽂3000字(精选5篇) ⽆论是在学习还是在⼯作中,⼤家都尝试过写论⽂吧,借助论⽂可以达到探讨问题进⾏学术研究的⽬的。

你知道论⽂怎样写才规范吗?下⾯是⼩编收集整理的⼤学物理论⽂3000字(精选5篇),希望能够帮助到⼤家。

⼤学物理论⽂篇1 摘要: 电磁运动是物质的⼜⼀种基本运动形式,电磁相互作⽤是⾃然界已知的四种基本相互作⽤之⼀,也是⼈们认识得较深⼊的⼀种相互作⽤。

在⽇常⽣活和⽣产活动中,在对物质结构的深⼊认识过程中,都要涉及电磁运动。

因此,理解和掌握电磁运动的基本规律,在理论上和实际上都有及其重要的意义,这也就是我们所说的电磁学。

关键词: 电磁学,电磁运动 1.库伦定律 17xx年法国物理学家库伦⽤扭秤实验测定了两个带电球体之间的相互作⽤的电⼒。

库伦在实验的基础上提出了两个点电荷之间的相互作⽤的规律,即库仑定律: 在真空中,两个静⽌的点电荷之间的相互作⽤⼒,其⼤⼩和他们电荷的乘积成正⽐,与他们之间距离的⼆次⽅成反⽐;作⽤的⽅向沿着亮点电荷的连线,同号电荷相斥,异号电荷相吸。

这是电学以数学描述的第⼀步。

此定律⽤到了⽜顿之⼒的观念。

这成为了⽜顿⼒学中⼀种新的⼒。

与驽钝万有引⼒有相同之处。

此定律成了电磁学的基础,如今所有电磁学,第⼀必须学它。

这也是电荷单位的来源。

因此,虽然库伦定律描述电荷静⽌时的状态⼗分精准,单独的库伦定律却不容易,以静电效应为主的复印机,静电除尘、静电喇叭等,发明年代也在1960以后,距库伦定律之发现⼏乎近两百年。

我们现在⽤的电器,绝⼤部份都靠电流,⽽没有电荷(甚⾄接地以免产⽣多余电荷)。

也就是说,正负电仍是抵消,但相互移动。

──河中没⽔,不可能有⽔流;但电线中电荷为零,却仍然可以有电流! 2.安培定律 法国物理学家安培(Andre Marie Ampere, 1775-1836)提出:所有磁性的来源,或许就是电流。

他在18xx年,听到奥斯特实验结果之后,两个星期之内,便开始实验。

电磁学的原理及其应用论文

电磁学的原理及其应用论文

电磁学的原理及其应用论文电磁学是自然界一项重要的物理学分支,研究电荷之间的相互作用及其与磁场之间的关系。

其原理是基于麦克斯韦方程组,描述了电磁场的行为与相互作用,其中包括库仑定律、安培定律、法拉第电磁感应定律和麦克斯韦-安培定律等。

电磁学的原理在实际应用中有着广泛的应用,可以用于电路分析、电磁波传播、电磁传感器等方面。

首先,电磁学原理可以用于电路分析。

在电路中,通过应用欧姆定律和基尔霍夫定律等电磁学原理,我们可以分析电路中各个元件之间的电流和电压关系,帮助我们理解电路的工作原理,研究电路中的功率、电阻、电容和电感等参数。

例如,在设计电子设备时,我们需要通过电磁学原理计算电路中的电流和电压分布,确保电路的正常工作。

其次,电磁学原理在电磁波传播中有着重要的应用。

根据麦克斯韦方程组,我们可以推导出电磁波的传播方程,进一步研究电磁波的传播特性。

在通信系统中,例如无线电与光纤通信中,我们可以利用电磁学原理,研究电磁波在不同介质中的传播速度、传播损耗和反射折射等现象,从而优化通信系统的设计和性能。

此外,电磁学原理也有着广泛的应用于电磁传感器中。

根据法拉第电磁感应定律,当一个导体相对于磁场发生运动时会产生感应电动势。

这一原理被广泛应用于感应电机、发电机和变压器等电磁传感器中,将机械能转化为电能或者电能转化为机械能。

例如,在电能供应方面,我们利用电磁感应原理,通过转动磁铁和线圈的相对运动,产生变化的磁场,从而产生交流电,实现电能的传输和分配。

综上所述,电磁学的原理可以广泛应用于电路分析、电磁波传播和电磁传感器等方面。

通过运用电磁学原理,我们能够深入研究电磁场的特性,提高电路和通信系统的设计与性能。

在实际应用中,电磁学原理为我们解决电磁场及其相互作用的问题提供了重要的理论基础,推动了电子技术的发展和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
另一方面,在医学中利用电磁原理可改善人体内部的微循环,达到治病保健的作用,如血液循环机和各种磁疗仪等;根据人体与电磁波的相互作用,在医学上利用电磁能的热效应进行肿瘤的高温治疗和一般热疗。粒子加速器在医学中用来产生用于诊断或治疗的射线,也可用来生产注入人体内利于显像的放射性物质,它是利用带电粒子在磁场中的运动规律制成的。
美国得克萨斯州癌症医学基金会针对一些遭受电磁辐射损伤的病人所做的抽样化验结果表明,在高压线附近工作的工人,其癌细胞生长速度比一般人要快24倍。
危害之三:
影响人类的生殖系统,主要表现为男子精子质量降低,孕妇发生自然流产和胎儿畸形等。
危害之四:
可导致儿童智力残缺。据最新调查显示,我国每年出生的2000万儿童中,有35万为缺陷儿,其中25万为智力残缺,有专家认为电磁辐射也是影响因素之一。世界卫生组织认为,计算机、电视机、移动电话的电磁辐射对胎儿有不良影响。
(四)所以总体上来说电磁对于人体有利有弊,但只要利用得当绝对是利大于弊,如何更好的将电磁应用到医学中为人类健康服务将成为一段时间内需要我们思考和解决的问题。
参考文献:本文应用到的信息主要来自网络所以无法详细列出参考文献还望老师见谅
2010年6月8日完稿
显然电磁辐射对人体的危害是极其明显的,那么我们又要如何尽量避免受到这种危害呢?首先要声明的是在现代社会电磁辐射是无处不在不可避免的,然而如果电磁辐射被控制在一定范围内对人体的影响是极小的,但一旦达到一定程度形成电磁污染就会对人体造成巨大危害。对于防范电磁辐射从原理上主要有两种方法,即减少电磁辐射和远离电磁辐射。具体应用到生活中主要是远离辐射源,在开关带电设备时尽量远离,减少接触时间,敏感人群尽量远离,多吃富含维生素A,维生素C,蛋白质的食物以增强机体对电磁辐射抵抗力等。
生物磁学
近年来一门新的交叉学科——生物磁学已经逐渐形成。生物磁学(biomagnetism)是研究生物磁性和生物磁场的生物物理学分支。通过生物磁学研究,可以获得有关生物大分子、细胞、组织和器官结构与功能关系的信息,了解生命活动中物质输运、能量转换和信息传递过程中生物磁性的表现和作用。生物磁学研究与物理学、生物学、心理学和生理学、医学等有密切关系,并在工农业生产、医学诊断和治疗、环境保护、生物工程等方面有广阔应用前景。生物磁学:生物磁场在医学中,具有顺磁性的许多蛋白质和酶在生命活动中有重要功能,例如含铁的血红蛋白(参与氧输运)、氧化还原素(参与光合作用)、琥珀酸脱氢酶(参与碳水化合物氧化),含钴的核糖核苷酸氧化酶(参与DNA合成)、谷氨酸变位酶(参与氨基酸代谢),含铜的血清蛋白(负责铁的利用)等。测量生物物质的磁化率,可以了解其结构与功能关系的一些信息,如测量顺磁性的脱氧血红蛋白和脱氧肌红蛋白的磁化率与温度的关系,可确定其中Fe3+的能级分裂参数。对人喉正常组织和肿瘤组织的磁化率测量表明,两者有显著的差异。根据物质的固有磁矩与外磁场相互作用,在一定条件下发生强烈共振吸收而建立的磁共振技术,具有灵敏度高、选择性强、可以研究动态和瞬变过程等特点,是研究生物物质结构和功能关系的十分重要的技术。
目前的理疗技术中已有电疗法和磁疗法,其中电疗法包括静电疗法、直流电疗法、低频电疗法、中频电疗法、高频电疗法、超高频电疗法、特高频电疗法、离子导入疗法、电离空气疗法、电水浴疗法、射频疗法等。磁疗法包括静磁场疗法、脉动磁场疗法、低频磁场疗法、中频电磁场疗法、高频电磁场疗法等。另外还包括心脏起搏器,电磁法促进骨愈合等。这些疗法基本还都处在初级阶段,仅限于利用电磁刺激细胞或肌肉起到镇痛,促进新陈代谢等“理”和“养”的阶段而很难真正达到“医”和“疗”的水平,这些主要是由于技术水平所限而并非不可达到的。例如我们都知道兴奋在人体中是以电信号的形式通过反射弧传导的,通过Na+和K+的跨膜移动来完成的,一旦反射弧出现问题就会引发瘫痪等问题,那么是否可通过人工反射弧来代替呢?答案是肯定的,目前已有通过嫁接反射弧治愈疾病的先例,但受电磁,材料和免疫学水平所限目前还无法还无法人工合成反射弧替代物。
(二)在电磁辐射危害到人体健康的同时人们也将电磁应用到医学中为人体健康服务,并且取得了很多成果。
核磁共振技术
核磁共振技术早期仅限于原子核的磁矩、电四极矩和自旋的测量,随后则被广泛地用于确定分子结构,用于对生物在组织与活体组织的分析、病理分析、医疗诊断、产品无损检测等诸多方面。我们在生活中都曾接触过接触过CT。其实它的全名叫核磁共振CT,从这些字眼上便可理解其与物理的关系之慎密。
危害之一:
它极可能是造成儿童患白血病的原因之一。医学研究证明,长期处于高电磁辐射的环境中,会使血液、淋巴液和细胞原生质发生改变。意大利专家研究后认为,该国每年有400多儿童患白血病,其主要原因是距离高压线太近,因而受到了严重的电磁污染。
危害之二:
能够诱发癌症并加速人体的癌细胞增殖。电磁辐射污染会影响人类的循环系统、免疫、生殖和代谢功能,严重的还会诱发癌症,并会加速人体的癌细胞增殖。瑞士的研究资料指出,周围有高压线经过的住户居民,患乳腺癌的概率比常人高7.4倍。
关键词:电磁辐射常常会谈虎色变,那么电磁辐射究竟对人体有怎样的危害?人们又应当如何规避?电磁对人体除了危害是否也能起到好的作用?电磁学是如何应用到现代医学中并将有怎样的发展前景呢?本文将就这些问题进行些粗浅的讨论。
(一)电磁辐射(electromagnetism radiation)又称电子烟雾,是由空间共同移送的电能量和磁能量所组成,而该能量是由电荷移动所产生。近年来国内外对电磁辐射对造成人体不良影响的报道和文章一直未曾中断,那么电磁辐射对人体究竟有怎样的危害呢?据调查研究显示,电磁辐射的危害主要表现为下面六个方面:
核磁共振技术是一种无侵袭的检查方法,对患者没有射线影响,它的优点是不需要移动患者就能获得无重叠的、不失真的、任何解剖方向的断层图像。打破了以往医学影像诊断的惯例,克服了以解剖学为基础的局限性,可以在分子结构的水平上进行诊断。所以,它不仅能描述物质的物理特性,还能观察活体组织的生物化学和生物状态。利用核磁共振图像,可以早期并全面地显示心肌运动障碍的范围和位置;还能明确地划分出血栓形成的范围及显示人体组织中含水含脂肪的部分;还能进行早期肿瘤识别,把正常的组织结构、良性肿瘤结构与恶性肿瘤结构区分开。
(三)电磁学应用到医学中的时间并不算长,尚有很多技术上并不完美或尚待开发。个人认为将来电磁学在医学中的应用将主要体现在两个领域——诊断性仪器的开发和临床病症的治疗。由核磁共振技术和电子显微镜等仪器的特性可看出,电磁由于其自身量子化,对人体损伤小,精确等特点而极适于被开放成为检测性技术,而现在这种技术在医学中并不完备,比如我们现在能获得的磁图极其有限,又比如对很多具有潜伏期的病症我们都缺乏对其进行早期检测的方法,这些问题在目前暂时还无法解决,但随着电磁学在医学领域的不断深入应用这些问题必有一天会被解决。目前另两个限制其发展和广泛性应用的问题就是价位和安全性,如何开发成本更小,对人体损害更小的技术也成为急需我们思考的问题。
核磁共振成像(NMR成像)被广泛地用于医疗诊断上,其中最常用是平面成象,即获取样品平面(断面)上的分布信息,称作核磁共振计算机断层成象,也就是常说的核磁共振CT(computed topography)。就人体而言,体内的大部分(75%)物质都是水,且不同组织中水的含量也不同。用核磁共振CT手段可测定生物组织中含水量分布的图像,这实际上就是质子密度分布的图像。当体内遭受某种疾病时,其含水量分布就会发生变化,利用氢核的核磁共振就能诊断出来。图9所示的人体成像装置核磁共振成像系统由磁体系统、谱仪系统、计算机系统和图象显示系统组成。磁体系统由主磁体、梯度线圈、垫补线圈和与主磁场正交的射频线圈组成,是核磁共振发生和产生信号的主体部分。谱仪系统是产生磁共振现象并采用磁共振信号的装置,主要由梯度场发生器和控制系统、MR信号接收和控制等部分组成。计算机图象重建系统要求配备大容量计算机和高分辨的模数转换器(analog/difital converter, A/D),以完成数据采集、累加、傅里叶转换、数据处理和图象显示。
危害之五:
影响人们的心血管系统,表现为心悸,失眠,部分女性经期紊乱,心动过缓,心搏血量减少,窦性心率不齐,白细胞减少,免疫功能下降等。如果装有心脏起搏器的病人处于高压电磁辐射的环境中,会影响心脏起搏器的正常的使用。
危害之六:
对人们的视觉系统有不良影响。由于眼睛属于人体对电磁辐射的敏感器官,过高的电磁辐射污染会引起视力下降,白内障等。高剂量的电磁辐射还会影响及破坏人体原有的生物电流和生物磁场,使人体内原有的电磁场发生异常。值得注意的是,不同的人或同一个人在不同年龄阶段对电磁辐射的承受能力是不一样的,老人、儿童、孕妇属于对电磁辐射的敏感人群。
中国科学技术大学
电磁课小论文
论文题目:
2010
摘要:我们所生活的环境中存在着大量的电磁辐射,它们对人身体的健康存在着极大的危害,而近些年人们在生活中也极力规避这种危害并使现状得到了一些改善。在电磁辐射危害人类健康的同时,人们也将电磁学知识运用到医学治疗中并取得了很多了不起的成果。而这个领域也还在不断发展阶段,尚有很多事情等待我们去做
生物磁学离不开的就是生物磁场。生物磁场主要来源于生物体内的电活动和非正常生理状态的强磁性物质(如Fe3O4)。在生命活动如物质输运、能量转换和信息传递过程中,会发生电荷的传递或离子的迁移。例如心脏搏动、骨骼肌运动、神经系统感知和调控过程中,这些组织的细胞膜对各种离子的通透性会发生瞬时变化,出现脉冲式的离子电流,导致细胞膜电位的改变,形成动作电位。动作电位的传播在生物组织中形成生物电流,同时伴生相应的生物磁场。此外,由于环境污染等原因,吸入人体的铁磁性物质的粉尘,会沉积于肺部或进入胃肠系统,经外加磁场磁化后,可测到一定的剩余磁场。
磁性X射线造影剂
由于原有X射线造影剂(钡餐)效果不够理想,人们研制了磁性X射线造影剂,现在已用于临床诊断。这是一种具有磁性的流动液体,对X射线具有较好吸收率,通过改变外部磁场,它几乎可到达身体内的任何待查部位,而且不会在体内凝固。
相关文档
最新文档