(完整word版)解绝对值题的关键:去绝对值符号
去绝对值符号的方法

去绝对值符号的方法绝对值符号是数学中常用的符号之一,用来表示一个实数的非负值。
它通常由两个竖线组成,将具体的数值放在竖线之间。
在数学中,绝对值具有很重要的意义和作用,在各个领域都有广泛的应用。
要去掉绝对值符号,我们需要了解绝对值符号的定义和性质,并应用合适的方法进行计算。
下面将详细介绍一些常见的方法和技巧。
首先,我们来看绝对值符号的定义。
对于任意实数x,它的绝对值用符号| x | 表示,表示x的非负值。
换句话说,绝对值就是一个数到原点的距离。
要去掉绝对值符号,我们可以根据x的正负情况进行讨论。
当x大于等于0时,它的绝对值就等于它本身,即| x | = x。
当x小于0时,它的绝对值等于它的相反数的负数,即| x | = -x。
基于这个性质,我们可以得出以下几种常见的去绝对值方法:1. 如果给定的数为正数或零,直接保留原数。
例如,|5| = 5,|0| = 0。
2. 如果给定的数为负数,去掉符号并取相反数。
例如,|-3| =-(-3) = 3。
3. 如果在复杂的表达式中存在绝对值符号,我们可以根据实际情况进行展开计算。
例如,|x + 2|,如果x + 2大于等于0,则去掉绝对值符号得到x + 2;如果x + 2小于0,则取相反数得到-(x + 2)。
4. 对于涉及绝对值的方程或不等式,可以分情况讨论,根据x的取值范围来去掉绝对值符号。
例如,对于方程|2x + 3| = 5,我们可以分两种情况讨论:当2x + 3大于等于0,去掉绝对值符号得到2x + 3 = 5,解得x = 1;当2x + 3小于0,取相反数得到-(2x + 3) = 5,解得x = -4。
上述方法适用于一般的绝对值计算和问题求解。
但在某些复杂的数学问题中,往往需要运用更高级的数学知识和技巧。
绝对值在各个领域都有广泛的应用,特别是在代数、函数、方程、不等式和几何等数学分支中。
在解决实际问题中,我们常常需要使用绝对值符号进行模型建立和计算。
如何去掉绝对值符号

如何去掉绝对值符号解绝对值不等式的关键就是去掉绝对值的符号把它转化为等价的一般不等式。
怎样去掉绝对符号呢?一般有以下几种方法。
一、绝对值定义法由绝对值的定义可知绝对值的几何意义是:“实数的绝对值是在数轴上表示的点离开原点的距离。
”如,χ=α(α>0)的几何意义是χ在数轴上离开原点的距离等于α个单位长度,它在数轴上对应的数的点是α和-α,即χ=±α,若χ≠α,那么就有χ<α和χ>α两种情况。
根据绝对值的几何意义,χ<α就是χ离开原点的距小于α个单位长度,如图所以-α<χ<α;同理,χ>α就是χ离开原点的距离大于α个单位长度,如图所以,χ>α或χ>-α。
这样就把绝对符号去掉了,这种方法叫绝对值定义法。
如果绝对值符号内是一个代数式,同样按上述原理去掉绝对值符号转化为一般不等式再解之。
如:例1,解不等式3χ-5≥1解:由绝对值的定义去掉绝地值符号得3χ-5≥1或3χ-5≥-1。
∴χ≥2或χ≤■,即为原不等式的解。
二、零点分段法去掉绝对值符号其实就是取决于绝对值符号内的代数式的符号,而其符号又取决于它相对应的零点。
所谓“零点”,就是绝对值符号内的代数式等于零时χ的数值。
如χ-3的零点就是当χ-3=0时,χ=3为零点。
如果命题中有多个绝对值符号,那么就有多个零点。
我们把这些零点按大小顺序排列在数轴上,然后实行分段去掉绝对值符号,同时求出每一段不等式的解集,而这些解集的并集就是原不等式的解集。
这种方法叫零点分段法。
如:例2,解不等式χ+7-χ-2<3解:因为χ+7的零点是χ=-7,χ-2的零点是χ=2,它把数轴分成了三个部分,如图(1)当χ>2时,去掉绝对值符号原不等式左边=χ+7-χ+2=9,则9<3显然不成立。
∴不等式无解;(2)当-7<χ<2时,去掉绝对值符号原不等式左边=χ+7+χ-2=2χ+5,∴原不等式为2χ+5<3,即χ<-1,∴不等式的解是-7<χ<-1。
(3)当χ<-7时,去掉绝对值符号原不等式左边=(χ+7)+(χ-3)=9,得出-9<3成立,∴不等式的解是χ<-7。
去绝对值常用方法

去绝对值常用“六招”(初一)去绝对值常用“六招” (初一)绝对值是初中数学的一个重要概念,是后续学习的必备知识。
解绝对值问题要求高,难度大,不易把握,解题易陷入困境。
下面就教同学们去绝对值的常用几招。
一、根据定义去绝对值例1、当a = -5,b = 2, c = - 8时,求3│a│-2│b│- │c│的值分析:这里给出的是确定的数,所以根据绝对值的意义即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
代值后即可去掉绝对值。
解:因为:a = -5<0,b =2>0,c = -8<0所以由绝对值的意义,原式= 3 [ -(-5)] – 2 ×2 - [ - ( - 8 ) ] = 7二、从数轴上“读取”相关信息去绝对值例2、有理数a、b、c在数轴上的位置如图所示,且│a│=│b│,化简│c-a│+│c-b│+│a+b│-│a│分析:本题的关键是确定c - a、c-b、a + b的正负性,由数轴上点的位置特征,即可去绝对值。
解:由已知及数轴上点的位置特征知:a<0<c<b 且- a = b从而 c – a >0 , c - b<0, a + b = 0 故原式= c - a + [ - ( c – b ) ] + 0 - ( - a ) = b三、由非负数性质去绝对值例3:已知│a2-25│+ ( b – 2 )2 = 0,求ab的值。
分析:因为绝对值、完全平方数为非负数,几个非负数的和为零,则这几个数均为“0”。
解:因为│a2-25│+ ( b – 2 )2 = 0 由绝对值和非负数的性质:a2-25 = 0 且b – 2 = 0即a = 5 b = 2 或a = - 5 b = 2 故ab = 10或ab = - 10四、用分类讨论法去绝对值例4、若abc≠0,求+ + 的值。
分析:因abc≠0,所以只需考虑a、b、c同为正号还是同为负号;两个同为正(负)号,另一个为负(正)号,共八种情况。
绝对值的化简求值问题的几种类型及解法解析

数学篇解题指南绝对值在化简求值问题、解方程或不等式问题中都会涉及.解答含绝对值问题的关键就在于去掉绝对值符号.一般遵循的原则是:先判断绝对值符号中式子的正负,再根据法则去掉绝对值符号.单个绝对值的问题一般比较简单,但是有的题目会同时出现多个绝对值或多重绝对值,这样就使题目变得复杂了.下面介绍几类有关绝对值的化简求值问题,供大家参考.一、含单个绝对值问题一个题目中只含有一个绝对值是最基础的题目,此时只需考虑去绝对值符号的条件,即对于任意数|a |:(1)当a >0时,|a |=a ;(2)当a =0时|a |=0;(3)当a <0时;|a |=-a .同学们在解题时应根据题设条件或挖掘隐含条件,确定绝对值符号里代数式的正负.若题目对含绝对值代数式的字母没有限制条件,须运用分类讨论的方法来解答.例1若|x |=3,|y |=2,且|x -y |=y -x ,求x +y 的值.分析:此题中|x |=3,可知x =±3;|y |=2可知y =±2.由题中|x -y |=y -x 可知y ≥x .由此可以推断,当y =2时,x 可以为±3,此时x +y =-1或5;当y =-2时,x 只能为-3,此时x +y =-5.最后综合所有情况即可得解.解:∵|x |=3,∴x =±3;同理可得y =±2,∵|x -y |=y -x ,∴y ≥x ,①当y =2时,x =-3,x +y =-1.②当y =-2时,x =-3,则x +y =-5.综合①②得x +y 的值可能是-1、-5.评注:求解此题是利用|x -y |≥0挖掘了隐含条件y ≥x ,然后确定x 和y 的可能值,简化了分类讨论的种类.同学们在求解过程中一定要仔细观察,充分挖掘题目中的隐含条件.二、含多个绝对值问题有些含有绝对值的题目中往往不止一个含绝对值的代数式,可能是两个、三个甚至是更多个含绝对值的代数式,通过“+”“-”“×”“÷”等运算符号连接.此时,去绝对值符号就需要先找出每个绝对值的零点值,再把全体实数分段,然后在每一实数段中化去绝对值符号,最后分类讨论去绝对值的结果.例2化简:|3x +1|+|2x -1|.分析:此题含有两个绝对值,要想去绝对绝对值的化简求值问题的几种类型及解法解析盐城市新洋初级中学聂玉成19数学篇值符号就要将绝对值符号内的数或式与“0”比较,然后逐个去掉绝对值符号.令3x +1=0得x =-13,同理,令2x -1=0得x =12.所以,当x 取不同的值时,两个绝对值的正负是不同的,需要分类讨论来解答.x 的取值分布如图所示:---解:令3x +1=0,得x =-13,令2x -1=0,得x =12,所以,实数轴被-13和12分为如图所示的三个部分.当x <-13时,3x +1<0,且2x -1<0,则原式=-(3x +1)+[-(2x -1)]=-5x ;当-13≤x ≤12时,3x +1≥0,且2x -1≤0,则原式=(3x +1)+[-(2x -1)]=x +2;当x >12时,3x +1>0,且2x -1>0,则原式=(3x +1)+(2x -1)=5x ;综上所述,当x <-13,原式=-5x ;当-13≤x ≤12,原式=x +2;当x >12,原式=5x .评注:此题含有两个绝对值,即含有两个零点(x =-13和x =12),在去绝对值符号时需要借助“分类讨论思想”分情况解答.特别是第二种情况,去绝对值符号时两个代数式是一正一负,务必要注意符号问题.三、含多重绝对值问题有些较为复杂的问题中含有多重绝对值符号,即绝对值符号中还有绝对值符号,我们称这种形式为多重绝对值.在求解多重绝对来解答问题.例3已知x <-3,化简:|3+|2-|1+x |||.分析:这是一个含有多重绝对值符号的问题,在求解时需要根据“由内而外”的原则逐层去绝对值.首先根据x 的范围判断出1+x <0,所以最里层绝对值|1+x |=-(1+x ).第二层|2-|1+x ||可以转化为|2-[-(1+x )]|=|3+x |.因为x <-3,所以3+x <0,即|2-|1+x ||=-(3+x ).最外层|3+|2-|1+x |||可转化为|3+[-(3+x )]|=|-x |.这样根据x 的取值范围一步步利用绝对值的代数意义即可化简.解:①最内层:∵x <-3,∴1+x <-2<0,∴|1+x |=-(1+x ),②第二层:|2-|1+x ||=|2-[-(1+x )]|=|2+(1+x )|=|3+x |,∵x <-3,∴3+x <0,∴|3+x |=-(3+x ),∴|2-|1+x ||=-(3+x ),③最外层:|3+|2-|1+x |||=|3+[-(3+x )]|=|-x |,∵x <-3,∴-x >3>0,∴|-x |=-x ,∴|3+|2-|1+x |||=-x ,综合①②③可得|3+|2-|1+x |||化简后为-x .评注:此题数值比较简单,但含有多重绝对值符号.在去绝对值符号时要由内而外逐层将3个层次的绝对值符号内部的数或式同“0”作比较,大于等于“0”的直接去绝对值;小于“0”的一定要添加“-”.绝对值是中学数学中的一个重要概念,常与其他知识结合起来考查.同学们只要牢牢掌握去绝对值的基本方法,结合“由内而解题指南。
(完整word版)高中数学不等式知识点总结(word文档良心出品)

选修4--5知识点 1不等式的基本性质 ① (对称性)a ■ b := b - a ② (传递性)a b,b • a c ③ (可加性)a • b= a c b c (同向可加性)a . b , c = a c b d (异向可减性)a b ,c . d = a - c b - d ④ (可积性)a ■ b , c ■ Q = ac . bc a . b , c ::: 0 二 ac ::: bc ⑤ (同向正数可乘性) a .b . 0,c d .0=- ac . bd a b 0,0 ::: c :::d 二 a £ c d ⑥(平方法则)a b 0= a n b n (N,且n 1) ⑦(开方法则) a >b 苗 >V b (n E N,且n>1) 1 1 1 a b 0 ; a :: b :: 0 二 a b a 2、几个重要不等式用基本不等式求最值时(积定和最小,和定积最大) 三(异向正数可除性) ⑧(倒数法则) 2 2 ①a b -2ab a ,b ・R ,(当且仅当 ab -a 2b 2 号)变形公式:②(基本不等式)a b € R \,(当且仅当a =b 时取到等号)变形公式:ab -¥2,要注意满足三个条件“一正、二定、相等” •a b C 3 赢3 「- (a、b c R )(当且仅当2 2 2④a b c _ ab bc ca a, b 二R(当且仅当a =b =c时取到等号).3 3 3⑤a3b3c _3abc(a 0,b 0,c 0)(当且仅当a=b=c时取到等号).b a若ab 0,则--_2⑥ a b (当仅当a=b时取等号)b a右ab ::: 0,则■: 2a b (当仅当a=b时取等号)b b m a n a1 :::⑦ a a+m b+n b ,(其中a Rb>0, m^O, n A°)规律:小于1同加则变大,大于1同加则变小.⑧当a .0时,x .a:=x2.a2:=x”-a或x a;x <a 吕x2 <a2二-acxca.⑨绝对值三角不等式a_b兰a=b兰a + b.3、几个著名不等式¥^兰后兰整-兰J o云一+①平均不等式:a b 2■2,(a b R,当且仅当a=b时取"="号).(即调和平均 -几何平均-算术平均-平方平均).变形公式:ab 严仁士a2+b2’4I 2 丿2②幕平均不等式:a i2 a22 ' ... a*2—^(a i a? … an)2.n③(三个正数的算术一几何平均不等式)③二维形式的三角不等式:、xj y;M22y22-、(x i -X2)2(% -y?)2(x i’yzm R).④二维形式的柯西不等式:2 2 2 2 2 _(a +b )(c +d )3(ac + bd) (a,b,c,^ R).当且仅当ad = be时,等号成立.⑤ 三维形式的柯西不等式: 2 2 2 2 2 2 2 (Q a ? a 3 )(b b 2 b s ) _(aib a zd a s b s ). ⑥ 一般形式的柯西不等式: 2 2 2 2 2 2 2 (a i a ... - a n )(b b 2 ... b n ) - (ab azb …a n b n ). ⑦ 向量形式的柯西不等式:⑧ 排序不等式(排序原理) 设a i 兰a 2兰…兰a n , b i 兰b 2兰…兰b n 为两组实数 .C 1 , C 2 ,..., C n 是b 1 , b 2 ,..., b n 的任一排列,则 a i b n a 2bu ... a nd 乞• a 2$ ... a n C^ aQ a 2b ? ... a n b n (反序和岂乱序和 < 顺序和),当且仅当a i =吐二…二冇或b =b 2 = ... =0时,反序和等于顺序和 ⑨ 琴生不等式:(特例:凸函数、凹函数) f (X ),对于定义域中任意两点X 公2(人=X 2),有 f (X 十X 2) ^f (x ) +f (X 2)或 f (X i +X 2) > f (X i ) +f (X 2) (2 2 或 ( 2丿- 2 .则称f (X )为凸(或凹)函数 4、不等式证明的几种常用方法 常用方法有:比较法(作差,作商法) 、综合法、分析法; 其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等 常见不等式的放缩方法:(k N *,k i)5、一元二次不等式的解法2求一元二次不等式aX bX c °(或::°)2(a =0" =b -4ac 0)解集的步骤:一化:化二次项前的系数为正数 二判:判断对应方程的根. 三求:求对应方程的根.当且仅当 是零向量,或存在实数k ,使 时, 若定义在某区间上的函数 ①舍去或加上(a ¥ 2 3 +— 4 (a * 2②将分子或分母放大(缩小), 1 i i i 2 , 2如 k k (k -i ) k k (k i )i 22 “ k 、k 「k Jk 「k Jk=i 是两个向量,四画:画出对应函数的图象 •五解集:根据图象写出不等式的解集 •规律:当二次项系数为正时,小于取中间,大于取两边• 6、 高次不等式的解法:穿根法 .分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切) 写出不等式的解集•7、 分式不等式的解法:先移项通分标准化,则f(x) 0 f (x) g (x) 0 g(x)f(x) c f(x)g(x)—0g (x) g(x )=0 (“ :::或乞”时同理)规律:把分式不等式等价转化为整式不等式求解8无理不等式的解法:转化为有理不等式求解 [f(x “0,f(x) :: g(x) = g(x) 0I 2f(x)订g(x)]2!f(x^0 ,1 ---------------- I -----------------------------Jf(x) > Jg(x)二 g (x)Z0⑸ / (x^>g(x)规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解9、指数不等式的解法:⑴当 a>1 时,a f(x) Aa g(x) = f(x)>g(x)f (x) g(x) …、 彳、⑵当 0cav1 时,a >af(x)cg(x)规律:根据指数函数的性质转化10、对数不等式的解法 f(x) 0,结合原式不等号的方向, .f(x) a(a 0):=⑴ f(x) 一0 f(x) a 2f(x) :: a(a 0):=⑵ f(x) 一0 2 .f(x) ::.f(x) g(x)u ⑶f(x) 0 g(x)_O2 f(x) [g(x)] 或{ g;:):0lOg a f(X)- lOg a g(X):= g(x) 0⑴当a>1 时,l f(x)>g(x)f(x) 0 log a f (x) log a g(x) u g(x) . 0l⑵当0ca<1 时,l f(x)v g(x)规律:根据对数函数的性质转化•11、含绝对值不等式的解法:a (ax 0)a =《⑴定义法:—a (a :: 0)⑵平方法:f(x)| |g(x)二f2(x)乞g2(x).⑶同解变形法,其同解定理有:①x Ea= —aExEa(a^O);②x £a二x^a或xW—a(a£0);③| f (x)| 兰g(x)二—g(x)兰f (x)兰g(x) (g(x)色0)④ f (x) _g(x):= f(x) _g(x)或f(x)乞-g(x) (g(x) _0)规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集•13、含参数的不等式的解法2解形如ax bx c 0且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有:⑴讨论a与0的大小;⑵讨论二与0的大小;⑶讨论两根的大小.14、恒成立问题2⑴不等式ax bx c 0的解集是全体实数(或恒成立)的条件是:①当a = 0 时=b = 0,c 0;a 0=I②当a = 0时0 -2⑵不等式ax bx c ::: 0的解集是全体实数(或恒成立)的条件是:①当a = 0 时二b = 0, c :: 0;-l a ::: 00.②当a = 0时⑶ f(X)::a恒成立:=f(x)max ::a;f(X)一a 恒成立=f(X)max -a;⑷ f (x) a恒成立:=f (X)min a;f(X)— a 恒成立=f(x)min —a-15、线性规划问题常见的目标函数的类型:①“截距”型:Ax By;z y z y-b.z =_ z = ------------ .②“斜率”型:X或x-a2 丄 2 _2③“距离”型:z = x・y或z —X y .2 2 2 2z=(x-a) (y-b)或z = :,(x-a) (y-b).在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解, 题简单化.从而使问。
去绝对值符号的方法

去绝对值符号的方法绝对值符号是我们在数学中经常会遇到的一个概念,它表示一个数距离零点的距离,无论这个数是正数还是负数,它的绝对值都是正数。
在一些数学问题中,我们需要去掉绝对值符号,将其转化为不含绝对值的表达式。
接下来,我将介绍一些常见的方法,帮助你去掉绝对值符号。
方法一,根据绝对值的定义。
我们知道,一个数x的绝对值可以表示为|x|,当x大于等于0时,|x|等于x;当x小于0时,|x|等于-x。
因此,我们可以根据这个定义来去掉绝对值符号。
举个例子,如果我们要去掉|3|,根据定义,它等于3;如果要去掉|-5|,根据定义,它等于-(-5),即5。
通过这种方法,我们可以很容易地去掉绝对值符号。
方法二,利用分段函数。
在一些复杂的函数中,我们可以利用分段函数的形式来去掉绝对值符号。
例如,对于函数f(x) = |x-2|,我们可以将其分为x-2和-(x-2)两部分,即:f(x) = x-2, (x>=2)。
f(x) = -(x-2), (x<2)。
这样,我们就成功地去掉了绝对值符号。
这种方法在处理复杂的函数时非常有效。
方法三,利用符号函数。
符号函数sgn(x)是一个常用的数学函数,它表示x的正负性。
当x大于0时,sgn(x)等于1;当x等于0时,sgn(x)等于0;当x小于0时,sgn(x)等于-1。
我们可以利用符号函数来去掉绝对值符号。
例如,对于表达式|x-3|,我们可以表示为:(x-3) sgn(x-3)。
这样,无论x-3是正数还是负数,都可以成功地去掉绝对值符号。
方法四,利用代数运算性质。
在一些代数运算中,我们也可以利用一些性质来去掉绝对值符号。
例如,对于表达式|2x-1|,我们可以利用2x-1的正负性来进行讨论。
当2x-1大于等于0时,|2x-1|等于2x-1;当2x-1小于0时,|2x-1|等于-(2x-1)。
通过这种方法,我们也可以成功地去掉绝对值符号。
总结:通过以上方法,我们可以很好地去掉绝对值符号,将其转化为不含绝对值的表达式。
去绝对值符号的方法

去绝对值符号的方法去绝对值符号的方法有:利用定义法去掉绝对值符号;利用不等式的性质去掉绝对值符号;利用平方法去掉绝对值符号;利用零点分段法去掉绝对值符号;利用数形结合去掉绝对值符号。
绝对值的运算法则:正数的绝对值是正数本身;负数的绝对值取相反数;0的绝对值是0本身。
去绝对值符号的方法1.利用定义法去掉绝对值符号⎧x(x≥0)⎧-c0)根据实数含绝对值的意义,即|x|=⎧,有|x|⎧xc(c>0)⎧|x|>c⇔⎨x≠0(c=0)⎧x∈R(c2.利用不等式的性质去掉绝对值符号利用不等式的性质转化|x|c(c>0)来解,如|ax+b|>c(c>0)可为ax+b>c或ax+b对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a≤|x|≤b⇔a≤x≤b或-b≤x≤-a”来求解,这是种典型的转化与化归的数学思想方法。
3.利用平方法去掉绝对值符号对于两边都含有“单项”绝对值的不等式,利用|x|2=x2可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要进行分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去掉绝对值,尤其是解含参数不等式时更必须注意这一点。
4.利用零点分段法去掉绝对值符号所谓零点分段法,是指:若数x1,x2,......,xn分别使含有|x-x1|,|x-x2|,......,|x-xn|的代数式中相应绝对值为零,称x1,x2, (x)为相应绝对值的零点,零点x1,x2,……,xn将数轴分为m+1段,利用绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。
零点分段法是解含绝对值符号的不等式的常用解法,这种方法主要体现了化归、分类讨论等数学思想方法,它可以把求解条理化、思路直观化。
(完整word)绝对值的意义及应用

绝对值的意义及应用绝对值是初中代数中的一个重要概念,应用较为广泛.在解与绝对值有关的问题时,首先必须弄清绝对值的意义和性质.对于数x而言,它的绝对值表示为:|x|。
一。
绝对值的实质:正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即也就是说,|x|表示数轴上坐标为x的点与原点的距离。
总之,任何实数的绝对值是一个非负数,即|x|≥0,请牢牢记住这一点。
二. 绝对值的几何意义:一个数的绝对值就是数轴上表示这个数的点到原点的距离。
例1. 有理数a、b、c在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( )A.2a+3b—c B.3b-c C.b+c D.c—b(第二届“希望杯”数学邀请赛初一试题)解:由图形可知a<0,c>b>0,且|c|>|b|>|a|,则a+b>0,b-c<0.所以原式=—a+b+a+b-b+c=b+c,故应选(C).三. 绝对值的性质:1。
有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是零。
2。
任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x≤|x|.3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。
4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6|=|—6|,但6≠-6),只有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。
四。
含绝对值问题的有效处理方法1. 运用绝对值概念。
即根据题设条件或隐含条件,确定绝对值里代数式的正负,再利用绝对值定义去掉绝对值的符号进行运算。
例2。
已知:|x—2|+x—2=0,求:(1)x+2的最大值;(2)6—x的最小值。
解:∵|x-2|+x-2=0,∴|x-2|=—(x-2)根据绝对值的概念,一个数的绝对值等于它的相反数时,这个数为负数或零,∴x-2≤0,即x≤2,这表示x的最大值为2(1)当x=2时,x+2得最大值2+2=4;(2)当x=2时,6—x得最小值6—2=42. 用绝对值为零时的值分段讨论.即对于含绝对值代数式的字母没有条件限制或限制不确切的,就需先求零点,再分区间定性质,最后去掉绝对值符号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带绝对值符号的运算
在初中数学教学中,如何去掉绝对值符号?因为这一问题看似简单,所以往往容易被人们忽视。
其实它既是初中数学教学的一个重点,也是初中数学教学的一个难点,还是学生容易搞错的问题。
那么,如何去掉绝对值符号呢?我认为应从以下几个方面着手:
一、要理解数a的绝对值的定义。
在中学数学教科书中,数a的绝对值是这样定义的,“在数轴上,表示数a的点到原点的距离叫做数a的绝对值。
”学习这个定义应让学生理解,数a的绝对值所表示的是一段距离,那么,不论数a本身是正数还是负数,它的绝对值都应该是一个非负数。
二、要弄清楚怎样去求数a的绝对值。
从数a的绝对值的定义可知,一个正数的绝对值肯定是它的本身,一个负数的绝对值必定是它的相反数,零的绝对值就是零。
在这里要让学生重点理解的是,当a是一个负数时,怎样去表示a的相反数(可表示为“-a”),以及绝对值符号的双重作用(一是非负的作用,二是括号的作用)。
三、掌握初中数学常见去掉绝对值符号的几种题型。
1、对于形如︱a︱的一类问题
只要根据绝对值的3个性质,判断出a的3种情况,便能快速去掉绝对值符号。
当a>0时,︱a︱=a(性质1:正数的绝对值是它本身);
当a=0 时︱a︱=0(性质2:0的绝对值是0) ;
当a<0 时;︱a︱=–a (性质3:负数的绝对值是它的相反数) 。
2、对于形如︱a+b︱的一类问题
首先要把a+b看作是一个整体,再判断a+b的3种情况,根据绝对值的3个性质,便能快速去掉绝对值符号进行化简。
当a+b>0时,︱a+b︱=(a+b) =a +b(性质1:正数的绝对值是它本身);
当a+b=0 时,︱a+b︱=(a+b) =0(性质2:0的绝对值是0);
当a+b<0 时,︱a+b︱=–(a+b)=–a-b (性质3:负数的绝对值是它的相反数)。
3、对于形如︱a-b︱的一类问题
同样,仍然要把a-b看作一个整体,判断出a-b 的3种情况,根据绝对值的3个性质,去掉绝对值符号进行化简。
但在去括号时最容易出现错误。
如何快速去掉绝对值符号,条件非常简单,只要你能判断出a与b的大小即可(不论正负)。
因为︱大-小︱=︱小-大︱=大-小,所以当a>b时,︱a-b︱=(a-b)= a-b,︱b-a︱=(a-b)= a-b 。
口诀:无论是大减小,还是小减大,去掉绝对值,都是大减小。
4、对于数轴型的一类问题,
根据3的口诀来化简,更快捷有效。
如︱a-b︱的一类问题,只要判断出a在b的右边(不论正负),便可得到︱a-b︱=(a-b)=a-b,︱b-a︱=(a-b)=a-b 。
5、对于绝对值符号前有正、负号的运算
非常简单,去掉绝对值符号的同时,不要忘记打括号。
前面是正号的无所谓,如果是负号,忘记打括号就惨了,差之毫厘失之千里也!
去绝对值化简专题练习:
(1)设化简的结果是( B )。
(A)(B)(C)(D)
(2) 实数a、b、c在数轴上的位置如图所示,则代数式的值等于( C )。
(A)(B)(C)(D)
(3) 已知,化简的结果是 x-8 。
(4) 已知,化简的结果是 -x+8 。
(5) 已知,化简的结果是 -3x 。
(6) 已知a、b、c、d满足且,那么a+b+c+d=____0_____ (提示:可借助数轴完成)
(7) 若,则有( A )。
(A)(B)(C)(D)
(8) 有理数a、b、c在数轴上的位置如图所示,则式子化简结果为( C ).
(A)(B)(C)(D)
(9) 有理数a、b在数轴上的对应点如图所示,那么下列四个式子,
中负数的个数是(B ).
(A)0 (B)1 (C)2 (D)3
(10) 化简 =
(1)-3x (x<-4) (2)-x+8(-4≤x≤2)(3)3x(x>2)
(11) 设x是实数,下列四个结论中正确的是( D )。
(A)y没有最小值
(B)有有限多个x使y取到最小值
(C)只有一个x使y取得最小值
(D)有无穷多个x使y取得最小值。