全差分放大器设计

合集下载

全差分运算放大器设计概要

全差分运算放大器设计概要

全差分运算放大器设计概要全差分运算放大器是一种常见的电子电路,它可以将输入信号的差分放大,并在输出端提供差分信号。

全差分运算放大器广泛应用于模拟与数字信号处理中,如低噪声放大器、滤波器和交叉耦合放大器等领域。

本文将介绍全差分运算放大器的设计概要,包括电路结构、设计要点和性能指标等。

[图片]该电路由两个共模反馈放大器组成,其中一个作为正放大器,另一个作为负放大器。

输入信号通过差分输入端口加到两个反馈放大器上,经过放大后,在输出端口提供差分信号。

为了保证优良的性能,必须对电路的参数进行适当的设计和调整。

首先,需要确定全差分运算放大器的增益要求。

增益是指输出信号与输入信号之间的比例关系。

在不同的应用中,增益要求可能不同。

根据增益要求,可以选择合适的放大器型号和电路拓扑结构。

其次,需要选择适当的放大器元件。

放大器元件包括晶体管、电阻、电容等。

选择合适的元件是设计成功的关键。

晶体管的选择要考虑其增益、噪声系数、带宽等指标。

电阻和电容的选择要考虑其阻值、容值、精度等因素。

然后,需要确定电路的偏置方案。

全差分运算放大器需要提供适当的偏置电压,以确保电路能够正常工作。

偏置电压的选择要考虑元件的工作状态和参数的稳定性。

常见的偏置方案包括电流镜偏置、电流源偏置等。

设计完成后,需要对电路进行性能测试和优化。

性能测试包括增益、带宽、噪声系数、非线性失真等指标的测试。

根据测试结果,可以进行相应的电路优化,以满足设计要求。

最后,需要对电路进行可靠性分析。

可靠性分析是为了确保电路在长时间工作过程中不会出现故障。

可靠性分析包括温度分析、电路重要参数的敏感度分析等。

全差分运算放大器设计的关键在于电路的结构和元件的选择。

合理的电路结构和适当的元件选择可以使电路具有较高的增益、宽带和低噪声等性能。

此外,还需要注意电路的偏置方案和可靠性分析,以确保电路的正常工作和长时间可靠性。

总之,全差分运算放大器是一种重要的电子电路,具有广泛的应用前景。

采用折叠式结构的两级全差分运算放大器的设计

采用折叠式结构的两级全差分运算放大器的设计

目录1. 设计指标 (1)2. 运算放大器主体结构的选择 (1)3. 共模反馈电路(CMFB)的选择 (1)4. 运算放大器设计策略 (2)5. 手工设计过程 (2)5.1 运算放大器参数的确定 (2)5.1.1 补偿电容Cc和调零电阻的确定 (2)5.1.2 确定输入级尾电流I0的大小和M0的宽长比 (3)5.1.3 确定M1和M2的宽长比 (3)5.1.4确定M5、M6的宽长比 (3)5.1.5 确定M7、M8、M9和M10宽长比 (3)5.1.6 确定M3和M4宽长比 (3)5.1.7 确定M11、M12、M13和M14的宽长比 (4)5.1.8 确定偏置电压 (4)5.2 CMFB参数的确定 (4)6. HSPICE仿真 (5)6.1 直流参数仿真 (5)6.1.1共模输入电压范围(ICMR) (5)6.1.2 输出电压范围测试 (6)6.2 交流参数仿真 (6)6.2.1 开环增益、增益带宽积、相位裕度、增益裕度的仿真 (6)6.2.2 共模抑制比(CMRR)的仿真 (7)6.2.3电源抑制比(PSRR)的仿真 (8)6.2.4输出阻抗仿真 (9)6.3瞬态参数仿真 (10)6.3.1 转换速率(SR) (10)6.3.2 输入正弦信号的仿真 (11)7. 设计总结 (11)附录(整体电路的网表文件) (12)采用折叠式结构的两级全差分运算放大器的设计1. 设计指标5000/ 2.5 2.551010/21~22v DD SS L out dias A V VV V V VGB MHz C pF SR V s V V ICMR V P mWµ>==−==>=±=−≤的范围2. 运算放大器主体结构的选择图1 折叠式共源共栅两级运算放大器运算放大器有很多种结构,按照不同的标准有不同的分类。

从电路结构来看, 有套筒式共源共栅、折叠式共源共栅、增益提高式和一般的两级运算放大器等。

全差分套筒式运算放大器设计

全差分套筒式运算放大器设计

全差分套筒式运算放大器设计1、设计内容本设计基于经典的全差分套筒式结构设计了一个高增益运算放大器,采用镜像电流源作为偏置。

为了获得更大的输出摆幅及差模增益,电路采用了共模反馈及二级放大电路。

本设计所用到的器件均采用SMIC 0.18µm的工艺库。

2、设计要求及工艺参数本设计要实现的各项指标和相关的工艺参数如表1和表2所示:3、放大器设计3.1 全差分套筒式放大器拓扑结构与实际电路图1 全差分套筒式放大器拓扑结构图2 最终电路图3.2 设计过程在图1中,Mb1和M9组成的恒流源为差放提供恒流源偏置,且M1,M2完全一样,即两管子所有参数均相同。

Mb2、M7和M8构成了镜像电流源,M5、M6和M7、M8构成了共源共栅电流源,M1、M2、M3、M4构成了共源共栅结构,可以显著提高输出阻抗,提高放大倍数(把M3的输出阻抗提高至原来的(gm3 + gmb3)ro2倍。

但同时降低了输出电压摆幅。

为了提高摆幅,控制增益,在套筒式差分放大器输出端增加二级放大。

本设计中功率上限为10mW,可以给一级放大电路分配3mA的电流。

设计要求摆幅为3V,所以图1中M1、M3、M5、M9的过驱动电压之和不大于1.8-3/2=0.3V。

我们可以平均分配每个管子的过驱动电压。

根据漏电计算流公式(1)(考虑沟道长度调制效应),可以计算出每个管子的宽长比。

I D=12μn C ox WL(V GS−V TH)2(1+λV DS)(1)其中,C ox等于ε/t ox,μn和t ox可以从工艺库中查找。

4、仿真结果经过调试优化之后的仿真结果如以下各图所示:图3 增益及相位裕度从图中可以看出,本设计的低频增益达到了74.25dB,达到了预期要求。

3dB 带宽为35kHz左右,比较小,可见设计还有改进的余地。

当CL为2pF时,相位裕度:PM=180°+∠βH(ω)=180°−125.5°=54.5°电源电压为1.8V时,输出摆幅如下图所示,达到了3V。

低电压高速CMOS全差分运算放大器设计双

低电压高速CMOS全差分运算放大器设计双
l运放结构分析和选择
运算放大器的设计首先要根据其用途选择一种合适 的电路结构,从运放的建立时问、开环增益、单位增益带 宽、相位裕度、输入共模范围、输出摆幅、功耗等方面性能 的限制进行结构设计。常见的全差分运算放大器有下面 几种类型:两级(two—stage)式、套筒共源共栅(telescopic) 式、折叠共源共栅(fold—cascade)式。
4‘结语
本文使用TSMC公司的CM025工艺
设计并实现了一个低压高速全差分运算放
大器。采用折叠共源共栅结构,在达到较高
的带宽同时,增大了输出摆幅。连续时间共
模反馈电路以及低压宽摆幅偏置电路,实现
(1)信置电路OO半电路小信号等效模型
图3偏置电路及半电路小信号等效模型
了电路的高稳定性。该运放在2.5 V电源 电压下,’单位增益带宽可以达到501 MHz, 直流增益71.6 dB,相位裕度51。,功耗
P。《P,,更接近于原点,因此P2为折叠共源共栅运放的 主极点,P。为次极点。
要提高开环增益A。,可以采取增加M8,M9的跨导和
1 5】
沟逝长度,但将引起其源极寄生电容的增加和漏源饱和电 正减小,从而降低运放的次极点频率。同样增加M10, M11的沟道长度,会使A。增加而次极点频率减小。考虑 到M4,M5,M6,M7不在信号通路上,因此可以增加其沟 道长度球增加输出阻抗,而不降低工作速度。
△gM9(r2//rlo)r9 R。。“M7一r4+r7[1+(gM7+gM7b)^]
△gM7 r7 r4 r为MOS管的小信号输出电阻。负载电容C。远大于MOS 管各端的寄生电容,CL△cD瞰+CD曲+CD酊。。
节点1对应的极点P。:
P-=一石万勿习丽i1冠i而△一等
节点2对应的极点P。:

全差分运算放大器设计

全差分运算放大器设计

全差分运算放大器设计全差分运放(Fully-Differential Amplifier,简称FDA)是一种特殊的运放,它具有两个差动输入和两个差动输出。

全差分运放具有许多优点,包括良好的共模抑制和电源抑制比,适用于高精度传感器信号放大、功率放大和模拟信号处理等领域。

在这篇文章中,我将介绍全差分运放的设计原理和步骤。

首先,我们需要确定设计的要求和规范。

这包括增益要求、带宽要求、电源电压和输入输出电阻等参数。

根据这些要求,我们可以选择合适的运放器件和电路拓扑。

全差分运放的常见电路拓扑有两级差分放大器、共射共源放大器和增益交换放大器等。

在这里,我们以两级差分放大器为例进行设计。

第一步是选择运放器件。

我们需要根据设计要求选择适合的运放器件,可以根据其增益带宽积、供电电压范围和失调电流等参数进行选择。

一般来说,我们可以选择低失调电流、高增益带宽积和低电压噪声的器件。

第二步是确定电路拓扑。

在两级差分放大器中,第一级是差分放大器,第二级是共射共源放大器。

差分放大器的作用是提供高输入阻抗和共模抑制比,共射共源放大器的作用是提供电流放大和驱动能力。

由于这两级放大器要分别满足不同的要求,我们可以选择不同的放大倍数和器件参数来优化电路性能。

第三步是确定偏置电路。

偏置电路的作用是提供恒定的工作电流,这可以通过电流源和电阻网络来实现。

偏置电流的选择要根据运放器件的要求和特点,可以使用恒流源或电流反馈等方法来实现。

第四步是确定反馈电路。

反馈电路的作用是控制放大倍数和增益稳定性,可以使用电阻、电容或者电流源等元件来实现。

选择适当的反馈方式可以减小失调电压和非线性,提高性能。

第五步是进行电路仿真和优化。

通过电路仿真,我们可以验证设计的性能和满足要求。

优化可以通过调整电路参数和进行迭代仿真来实现,以达到设计要求。

第六步是进行电路布局和线路板设计。

在设计布局时,要注意分离放大器电路和干扰源,减少电源和信号线的串扰。

线路板设计要保证差分信号走线的对称性和阻抗匹配,以提高传输性能。

模拟集成电路设计——两级全差分高增益放大器设计_2

模拟集成电路设计——两级全差分高增益放大器设计_2

全差分高增益放大器的设计一、设计产品名称全差分高增益放大器二、设计目的1.掌握模拟集成电路的基本设计流程;2.掌握Cadence基本使用方法;3.学习模拟集成电路版图的设计要点;4.培养分析、解决问题的综合能力;5.掌握模拟集成电路的仿真方法;6.熟悉设计验证流程方法。

三、设计内容全差分高增益放大器(Full-differential OTA)是一种非常典型的模拟IP, 在各类模拟信号链路、ADC.模拟滤波器等重要模拟电路中应用广泛, 是模拟IC 设计人员必需掌握的一种基础性IP 设计。

采用华大九天Aether 全定制IC 设计平台及其自带的0.18um PDK, 设计一款全差分高增益放大器电路, 完成电路图设计、前仿真、Layout 设计和物理验证(DRC&LVS)。

考虑以下OTA 架构:图1 OTA架构四、电路设计思路模拟集成电路的设计分为前端与后端, 设计流程可以分为明确性能要求、选择电路结构、计算器件参数、原理图绘制、前仿真、版图绘制、DRC设计规则检查、LVS版图与电路图一致性检查、寄生参数提取及后仿真、流片测试。

本次实验使用基于华大九天Aether 全定制IC 设计平台及其自带的0.18um PDK, 实现模拟集成电路全差分高增益放大器的全流程设计与仿真。

(1)性能指标:需要验证三种PVT Corner:a) 电源电压1.8V, 温度27℃, corner 为TT;b) 电源电压1.6V, 温度80℃, corner 为SS;c) 电源电压2.0V, 温度-40℃, corner 为FF;要求各Corner 下开环技术指标(含Cload=10fF):①放大器开环DC 增益Av0≥90dB;②0dB 带宽BW0≥500MHz;③相位裕度Phase Margin≥50°。

④DC 抑制比PSRR-0≥60dB, (3*2=6 分)⑤10MHz 时抑制比PSRR-10M≥45dB。

全差分运算放大器设计

全差分运算放大器设计

全差分运算放大器设计岳生生(200403020126)一、设计指标以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下:✧直流增益:>80dB✧单位增益带宽:>50MHz✧负载电容:=5pF✧相位裕量:>60度✧增益裕量:>12dB✧差分压摆率:>200V/us✧共模电压:2.5V (VDD=5V)✧差分输入摆幅:>±4V二、运放结构选择运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。

如图2所示;(b )折叠共源共栅,folded-cascode 。

如图3所示;(c )共源共栅,telescopic 。

如图1的前级所示。

本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT NV之和小于0.5V ,输出端的所有PMOS管的,DSAT PV之和也必须小于0.5V 。

对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该要求,因此我们采用两级运算放大器结构。

另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。

考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。

两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。

三、性能指标分析1、 差分直流增益 (Adm>80db)该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益1351113571135135753()m m m o o o o o m m m m o o o o m m g g gg gg G A R r rr r g g r r r r=-=-=-+第二级增益92291129911()m o o o m m o o gg G AR r rgg=-=-=-+整个运算放大器的增益:4135912135753911(80)10m m m m overallo o o o m m o o dB g g g gAA A g g g gr r r r ==≥++2、 差分压摆率 (>200V/us )转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。

(完整word)全差分高增益、宽带宽CMOS运算跨导放大器的设计

(完整word)全差分高增益、宽带宽CMOS运算跨导放大器的设计

目录1 引言 (1)2 软件介绍 (3)3 运算放大器设计基础 (5)3.1运放的主要性能指标 (5)3.2运算放大器的基本结构 (6)3.2.1全差分运放 (6)3.2.2套筒式结构 (7)3.2.3折叠式结构 (8)4 系统总体设计 (10)4.1电路设计的整体结构 (10)4.2 主放大电路设计 (11)4.3 偏置电路的设计 (13)4.4 输出级的设计 (13)4.5 共模反馈的设计 (14)4.6 总体布局 (15)5 仿真与分析 (17)5.1运放直流与交流特性 (17)5.2噪声特性分析 (19)5.3电源抑制比 (19)5.4设计指标 (20)5.5放大器参数 (21)6 版图设计与分析 (22)6.1 L-Edit介绍 (22)6.2版图设计规则 (22)6.3基本器件版图设计 (23)6.3.1 NMOS版图设计 (23)6.3.2 电容电阻版图设计 (24)6.4版图的总体设计 (26)6.4.1主电路模块版图 (26)6.4.2偏置模块版图 (27)6.4.3输出模块版图 (27)6.4.4整体模块版图 (28)6.5 LVS版图比对 (29)7 结论 (31)谢辞 ................................................................................................... 错误!未定义书签。

参考文献 .. (32)附录1 (33)附录2 (35)1 引言集成运算放大器(Integrated Operational Amplifier)简称集成运放,是由多个CMOS管与电容电阻通过耦合方式实现提高增益的模拟集成电路[1]。

集成运放具有增益高、输入阻抗大、输出阻抗低、共模抑制比高和失调与漂移性小等优点,而且当输入电压值为零时,输出值也为零。

集成运放是构成常用集成电路系统的通用模块[2] [3]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对于全差分放大器,一般可以得到更大的swing (由于差分信号),同时可以实现对共模干扰、噪声以及偶数阶的非线性的抑制;但其需要有两个匹配的反馈网络,以及共模反馈电路
顺便提一下,对于全差分的折叠共源共栅(folded cascode)放大器,需要注意
转换速率(正向与负向)对输入对差分对的尾电流源和cascode电流源的考虑
非主极点的位置–输入对管的drain节点(注意全差分没有镜像极点的问题..),如果考虑PMOS输入的结构,将会折叠到n管的cascode,从而减小此节点阻抗,提高此非主极点的频率;但是P输入结构亦有其问题,如直流增益和cmfb电路的速度(考虑cmfb控制的为cascode的pmos电流源)
关于共模反馈CMFB
从反馈环路来看,共模的稳定问题来源于闭环的共模增益:由于输入差分对的尾电流源的local-feedback,通常共模增益较小,导致运放无法控制其输出共模点;通过CMFB共模反馈电路,可以提高共模反馈环路的增益,以稳定共模信号。

设计CMFB需考虑补偿以减小环路的稳定时间(settling time)和提高稳定性。

从性能上,我们希望共模反馈的单位增益带宽足够大,但由于cmfb的环路相较于差模通路可能有更多高频极点,故此在一定的功耗要求下其UGB一般比较难做的高,有书中提到可以将其设计为差模UGB 的1/3
一般共模反馈的方法是控制放大器的电流源,这里如果是folded-cascode的结构,可以考虑用cmfb控制cascode的电流源而不是输入差分对的电流源—-因其在共模环路中有较少的节点–>更容易补偿等..(另一种考虑是控制尾电流源可能导致共模增益的问题)
另外,对于cmfb控制的尾电流源,常见将尾电流源分为两半,其中之一由cmfb控制,另一半接恒定偏置电流;这种结构的具体分析可见Gray书12.4.2节的内容,简单来说,single-stage的opamp中控制尾电流源的cmfb结构,其UGB主要为gmt/CL, 其中gmt为尾电流源的跨导,这里拆分尾电流源来减半cmc共模控制的部分,这样UGB减小,即缩减带宽来提升共模反馈环路的相位裕度,当然cmfb的增益相应也减小了;另外恒定偏置部分也可帮助共模电压的初始建立,减小cmfb大的扰动。

具体的,共模反馈可以分为连续时间和开关电容两类
连续时间的共模反馈
一般的问题是信号幅度的限制和共模信号干扰,具体的共模反馈的方法:
1.电阻分压resistive-divider (如下左图)
电阻和cm-sense amplifier的输入电容会引入一个极点,可以通过在电阻上并联电容的方法,引入一个左半平面零点,来减小高频极点的影响
另外一个问题,sense resistor 会load输出,减小了开环差动增益,考虑通过voltage buffer 的办法,如source follower,但其也会限制输出的差动摆幅(output swing)
关于控制尾电流源和直接inject电流的方法的比较(Gray 书)
2. 双差分对或DDA–differential difference amplifier (如下右图)
对输出的differential –swing的限制(由于直接取分输出信号到cmfb的差分对,为使其工作于饱和区,运放输出swing受限于cmfb差分对的差模输入范围)
详细的大信号分析–>输出差模对输出共模的影响
3. 深线性区的mos管transistors in triode region (主要可见Razavi书中的分析)
对输出swing的要求
较小的cmfb环路增益和带宽
关于开关电容cmfb
SC-CMFB结构,一般常用在开关电容电路中,对比连续时间的CMFB电路,他支持更大的信号摆幅,同时减小了对输出swing的限制,也没有阻性的负载效应;但需要两相非交叠时钟,同时会因非线性时钟馈通注入噪声。

开关电容cmfb一般结构可见下图,简单来说可以认为电路通过C2取得输出信号共模,并用C1给其以DC点(settle到Vcmref-Vbias的电压)。

一般的开关电容cmfb:C1应在C2大小的1/4到1/10之间(Ken Martin),但是也有其他论文谈到不同的选择方法,如:
Ojas Choksi, L. Richard Carley: Analysis of Switched-Capacitor Common-Mode Feedback Circuit, IEEE Transactions on Circuits and Systems—II: Analog and Digital Signal Processing, V ol. 50, No. 12, DEC 2003中具体关于电容大小和开关非理想性的介绍
对于SC-CMFB 的仿真, 与开关电容电路类似, 主要是pss –> pac 的方法(当然另外也有提到先做瞬态.tran 分析,再利用‘prevoppt’取settle 后op 点做ac 分析的方法);一般可以参考的是Designer’s Guide 上的‘Simulating switched-capacitor filters with SpectreRF’的这篇论文;如果主要是对差模信号的分析,也可将开关电容的共模反馈电路用连续时间的近似模型代替,如下图。

相关文档
最新文档