数理统计的基本概念

合集下载

数理统计

数理统计
数理统计
四、数理统计的基本概念 五、参数估计
四、数理统计的基本概念
1. 总体和样本 总体:研究对象的某项数量指标的值的全体。 个体:总体中的每个元素为个体。 容量:总体中所包含的个体的个数。 按此分为有限总体和无限总体。 例如:某工厂生产的灯泡的寿命是一个总体,每 一个灯泡的寿命是一个个体;某学校男生的身高 的全体一个总体,每个男生的身高是一个个体。


1 ˆ 解得: n
2
x
i 1 n
n
i
x
1 ˆ n

i 1
( X i X )2
(3)估计量的评选标准
1) ˆ ˆ 无偏性:若 ( X 1 , , X n )的数学期望存在, ˆ ˆ 且E . 则称是的无偏估计量。
2)
ˆ ˆ ˆ ˆ 有效性:若1 1 ( X 1 , , X n ), 2 2 ( X 1 , , X n ) ˆ ˆ 都是的无偏估计量;若D( ) D( ).
ˆ 所以 A1 X ,
ˆ A2
2 2 A1
1 n

i 1
n
X i2
1 X n
2

i 1
n
( X i X )2
(2) 极大似然估计法
(1).若总体X属离散型,其分布律 { X x} p( x; ), P 的形式为已知, 为待估参数,是可能取值的范围。
解:X的概率密度为: 1 1 2 f ( x; , ) exp{ (x )2} 2 2 2
似然函数为:
L( , )
2
2 2 2 i 1 n n 1 ln L ln(2 ) ln( ) 2 2 2 2

数理统计基本概念

数理统计基本概念
n1 Γ( ) 2 n 1 x 2 fT ( x ) (1 ) 2 , n n n Γ ( ) 2
P{6.262 χ 2 24.996}
2 2
P{χ 6.262} P{χ 24.996}
0.975 0.05 0.925
注意 应注意分布表的定义与查法!
#
数理统计基本概念
3.自由度为 n的 t 分布 作笔名发表文章.
T~t(n)
又称学生氏分布--第一个研究者以Student
( X 1 , X 2 , , X n ) ~ ( 2 ) e
n 2 2
i 1
( xi )2 2 2
n
数理统计基本概念
四、统计量 定义6.1.2 设X1 , X2 , ·, Xn是总体X的样本, · · T为n元实值函数,若样本的函数 T=T(X1 , X2 , ·, Xn) · · 是随机变量且不含未知参数,称 T为统计量. 对相应的样本值( x1 , x2 , … , xn ) ,称 t =T( x1 , x2 , … , xn )






数理统计基本概念
某厂生产的一批产品中次品率为 p 。从中 抽取10件产品装箱。 概
1)没有次品的概率 2)平均有几件次品

3)为以 0.95的概率保证箱中 有10件正品,箱中至少要装多 少件产品。







数理统计基本概念
所有这些问题的关键是 p 是已知的! 如何获取 p ? 这就是数理统计的任务了!
定的α(0<α<1),数uα满足
P{ X u } ,
(C ) u1 ;

数理统计的基本概念

数理统计的基本概念
(n 2) n n

n 1 2
, x .
t 分布的概率密度图形
图形关于 x 0 对称, lim f ( x; n) 0 , 且 x 当 n 充分大时,f (x; n) 趋近于标准正态 分布的概率密度。
定理 4: X 1, 2, , n 是抽自正态总体 设 X X
若总体 X 是离散型的,其分布律为:
则样本的联合分布为
§6.2 抽样分布
6.2.1 统计量的概念 由样本推断总体的某些情况时,需要对样本进行“ 加工”,构造出若干个样本的已知 (确定)的函数, 其作用是把样本中所含的某一方面的信息集中起来 。 这种不含任何未知参数的样本的函数称为统计量。 它是完全由样本所决定的量。 定义2:设 X 1 , X 2 , , X n 是来自总体X的样本, g( X 1 , X 2 , , X n ) 是样本 X 1 , X 2 , , X n 的函数,如果 g( X 1 , X 2 , , X n ) 中不包含任何未知参数,则称它 是一个统计量。
1 (0.82)
1 0.7939 0.2061
X ~ N (0, 22 ), X1 , X 2 , X3 , X 4 为其样本,求a,b 例2:总体
(2). (n 1)S / ~ (n 1)
2
X (1). X ~ N ( , / n), 或 ~ N (0,) ; 1 / n 2 2 2
2
X (3). X 与 S 相互独立; (4). ~ t(n 1). S/ n
定理5:设X1, X2, …, Xm 与Y1, Y2, …, Yn分别来自总体 2 两样本独立, X ~ N ( 1 , 12 )和Y ~ N ( 2 , 2 )的样本, 2 S12 / S2 则有 F 2 ~ F ( m 1, n 1). 2 1 / 2 定理6*:设X1, X2, …, Xm 与Y1, Y2, …, Yn分别来自

数理统计的基本概念

数理统计的基本概念
首页 上页 返回 下页 结束
第6章
§6.1-6.2
第10页
设(X1,X2,…,Xn)为来自总体X的简单随机样本 1 n 1.样本均值: X X i 常用于估计总体分布的均值,或 检验有关总体分布均值的假设。 n i 1
n 1 2 S2 ( X X ) 2.样本方差: i n 1 i 1
首页 上页 返回 下页 结束
第6章
§6.1-6.2 §6.1 样本及抽样分布
第3页
数理统计的核心问题是由样本推断总体,即统计推断
6.1.1 总体、个体与样本
1. 总体:研究对象的全体称为总体(母体),用X表示, 它是一个随机变量. 总体分为有限总体和无限总体. 个体:组成总体的每个研究对象称为个体.
i 1 i 1
i
ki !
e
首页
上页
返回
下页
结束

第6章
§6.1-6.2
第8页
3 加工某零件时,每一件需要的时间服从均值为1 / 的 指数分布,今以加工时间为零件的数量指标,任取n件 零件构成一个容量为n的样本,求样本分布.
解:零件的加工时间为总体X,则X ~ E ( ), 其概率 e x x0 密度为 f ( x) x0 0 于是样本( X 1 , X 2 , X n )的密度为 f ( x1 , x2 , xn )
样本容量为5
首页 上页 返回 下页 结束
第6章
§6.1-6.2
第5页
样本是随机变量. 抽到哪5辆是随机的
容量为n的样本可以看作n维随机变量(X1, X2, …, Xn). 一旦取定一组样本,得到的是n个具体的数 (x1,x2,…,xn),称为样本的一次观察值,简称样本值 .

数理统计的基本概念

数理统计的基本概念

样本k阶原点矩 样本 阶原点矩 样本k阶中心矩 样本 阶中心矩
河南理工大学精品课程
1 Ak = n 1 Bk = n
∑ ∑
n
n
i =1
X ik ( k = 1, 2 , L )
i =1
( X i − X ) k ( k = 1, 2 , L )
概率论与数理统计
说明 (修正 样本方差还可表示为 修正)样本方差还可表示为 修正
n 1 S2 = [ ∑ X i2 − n X 2 ] n − 1 i =1
1 n 推导】 【推导】 S 2 = ( X i − X )2 ∑ n − 1 i =1 = = = =
河南理工大学精品课程
1 n ( X i2 − 2 X i X + X 2 ) ∑ n − 1 i =1 n n n 1 [ ∑ X i2 − 2 X ∑ X i + ∑ X 2 ] n − 1 i =1 i =1 i =1 n 1 [ ∑ X i2 − 2 n X 2 + n X 2 ] n − 1 i =1 n 1 [ ∑ X i2 −n X 2 ] n − 1 i =1
河南理工大学精品课程 概率论与数理统计
做法
从总体中随机地抽取若干个体(灯泡、 从总体中随机地抽取若干个体(灯泡、工大男
生),测试其所需数据(寿命、身高),最后对所得数据通过 ),测试其所需数据 寿命、身高), 测试其所需数据( ),最后对所得数据通过 整理加工和分析来推断总体(这批灯泡寿命、 整理加工和分析来推断总体(这批灯泡寿命、工大男生身 高)的分布情况,从而了解整体情况. 的分布情况,从而了解整体情况. 一般,我们所研究的总体的某项数量指标X 一般,我们所研究的总体的某项数量指标X是一个随 机变量,其取值在客观上有一定的分布.因此, 机变量,其取值在客观上有一定的分布.因此,对总体的研 究,就是对相应的随机变量X的研究。 就是对相应的随机变量X的研究。 今后,我们称X 今后,我们称X的分布函数和数字特征分别为总体的 分布函数和数字特征, 分布函数和数字特征,并不再区分总体与相应的随机变量 X.对总体的称呼 总体,总体X 总体F X.对总体的称呼:总体,总体X与总体F. 对总体的称呼:

第六章 数理统计的基本概念

第六章 数理统计的基本概念

1 n 2 S S ( X X ) i n 1 i 1
2
(4) 样本k阶(原点)矩
1 n k Ak X i n i 1
k 1, 2,
k 2,3,
(5) 样本k阶中心矩
1 n Bk ( X i X )k n i 1
§2
常用统计量的分布
统计量的分布称为抽样分布.下面介绍三种由 正态总体演化而来的统计量的分布:
• 从二战后到现在,是统计学发展的第三个时期,这是一个在 前一段发展的基础上,随着生产和科技的普遍进步,而使这 个学科得到飞速发展的一个时期,同时,也出现了不少有待 解决的大问题.
学科奠基者



数理统计作为一个进一步完善的数学学科的奠基者是英国人费歇尔。他1909 年入剑桥大学,攻读数学物理专业,三年后毕业。毕业后,他曾去投资办工 厂,又到加拿大农场管过杂务,也当过中学教员。1919年,他开始对生物统 计学产生了浓厚的兴趣,参加罗萨姆斯泰德试验站的工作,致力于数理统计 在农业科学和遗传学中(费歇尔1890—1962)的应用研究。 年轻的费歇尔主要的研究工作是用数学将样本的分布给以严格的确定。 在一般人看来枯燥乏味的数学,常能带给研究者极大的慰藉,费歇尔热衷于 数理统计的研究工作,后来的理论研究成果有:数据信息的测量、压缩数据 而不减少信息、对一个模型的参数估计等。 最使科学家称赞的工作则是试验设计,它将一切科学试验从某一个侧面 “科学化”了,不知节省了多少人力和物力,提高了若干倍的工效。 费歇尔培养了一个学派,其中有专长纯数学的,有专长应用数学的。在30- 50年代费歇尔是统计学的中心人物。1959年费歇尔退休后在澳大利亚度过了 最后三年。
若 x1 , x2 , , xn 是样本的观察值, 则 g ( x1 , x2 , xn ) 是 g ( X 1 , X 2 , X n )

数理统计基本概念

数理统计基本概念
2 ( n1 1) S12 ( n2 1) S2 n1 n2 2
1 1 n1 n2
~ t ( n1 n2 2)
定理 5 (两总体样本方差比的分布)
且X与Y独立, 设X ~ N ( 1, ), Y ~ N ( 2 , ), X1, X2,…, X n1是取自X的样本, Y1,Y2,…, Yn2 是
样本是联系二者的桥梁 总体分布决定了样本取值的概率规律, 也就是样本取到样本值的规律,因而可以由 样本值去推断总体.
二、统计量和抽样分布 1. 统计量 由样本值去推断总体情况,需要对样本 值进行“加工”,这就要构造一些样本的 函数,它把样本中所含的(某一方面)的 信息集中起来.
这种不含任何未知参数的样本的函数 称为统计量. 它是完全由样本决定的量.
2. 独立性: X1,X2,…,Xn是相互独立的随机 变量.
由简单随机抽样得到的样本称为简单 随机样本,它可以用与总体独立同分布的 n个相互独立的随机变量X1,X2,…,Xn表示.
若总体的分布函数为F(x),则其简单随机 样本的联合分布函数为 F(x1) F(x2) … F(xn) 简单随机样本是应用中最常见的情 形,今后,当说到“X1,X2,…,Xn是取自某 总体的样本”时,若不特别说明,就指简 单随机样本.
数理统计的基本概 念
一、总体和样本
1.总体
一个统计问题总有它明确的研究对象.
研究对象的全体称为总体(母体), 总体中每个成员称为个体.
总体

研究某批灯泡的质量
然而在统计研究中,人们关心总体仅仅 是关心其每个个体的一项(或几项)数量指标 和该数量指标在总体中的分布情况. 这时, 每个个体具有的数量指标的全体就是总体.
统计中,总体这个概念 的要旨是:总体就是一个 概率分布.

数理统计的基本概念

数理统计的基本概念

证明:设F~F(n1,n2),则
P{F F1 (n1 , n2 )} 1
1 1 P{ } 1 F F1 (n1 , n2 ) 1 1 P{ } F F1 (n1 , n2 )
得证!
1 P{ F (n2 , n1 )} F
5.1.4 统计量及抽样分布
2. F分布的分位点 对于:0<<1,
若存在F(n1, n2)>0,
满足
P{FF(n1, n2)}=, 则
称F(n1, n2)为 F(n1, n2)的 上侧分位点;
F (n1 , n2 )
注:
1 F1 (n1 , n2 ) F (n2 , n1 )
1 ~ F ( n2 , n1 ) F
列出其频数频率分布表。
组序 分组区间 组中值 1 (147,157] 152 2 (157,167] 162 3 (167,177] 172 4 (177,187] 182 5 (187,197] 192 合计
频数 4 8 5 2 1 20
频率 累计频率(%) 0.20 20 0.40 60 0.25 85 0.10 95 0.05 100 1
1、设X 1 , X 2 ,
, X n (n 2)为来自总体N (0,1)的简单随机样本, (n 1) X 12
2 X i i 2 n
X 为样本均值,S 2为样本方差,则统计量

从 __________ 分布。 (05—06二)
2、设 X 1 , X 2 , X 3是来自正态分布 N (0, 2 )总 体的简单随机样本,则 统计量 2 服从 ________ 分布。(05—06三) X1 X X
3.总体、样本、样本观察值的关系 总体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计中,总体这个概念 的要旨是:总体就是一个 概率分布.
2. 样本 为推断总体分布及各种特征,按一定 规则从总体中抽取若干个体进行观察试验, 以获得有关总体的信息,这一抽取过程称 为 “抽样”,所抽取的部分个体称为样本. 样本中所包含的个体数目称为样本容量.
从国产轿车中抽5辆 进行耗油量试验
样本容量为5
1 2
2 均值,S12和S2 分别是这两个样本的样本方差,
则有
S1 1
2 2
S
2 2
2 2
~ F ( n1 1, n2 1)
上述5个抽样分布定理很重要,
要牢固掌握.
2 2
X1,X2,…, X n 是取自X的样本, Y1,Y2,…, Yn 是 取自Y的样本, X和Y 分别是这两个样本的 样本
1 2
2 均值, S12和S2 分别是这两个样本的样本方差,
则有
X Y ( 1 2 ) ( n1 1) S1 ( n2 1) S2
2 2
1 n1
X

2
n
)

~ N (0,1)
n
n取不同值时样本均值 X 的分布
定理 2 (样本方差的分布)
设X1,X2,…,Xn是取自正态总体 N ( , 2 ) 的样本, X和S 2 分别为样本均值和样本方差, 则有
(1)
( 2)
( n 1) S
2

2
2
~ ( n 1)
2
X和S 相互独立.
样本是随机变量.
抽到哪5辆是随机的
容量为n的样本可以看作n维随机变量. 但是,一旦取定一组样本,得到的是 n个具体的数 (X1,X2,…,Xn),称为样本的 一次观察值,简称样本值 .
由于抽样的目的是为了对总体进行 统计推断,为了使抽取的样本能很好地反 映总体的信息,必须考虑抽样方法. 最常用的一种抽样方法叫作“简单随 机抽样”,它要求抽取的样本满足下面 两点: 1. 代表性: X1,X2,…,Xn中每一个与所考察 的总体有相同的分布.
1
k i
( X n
1
i
X)
k
k=1,2,…
2. 抽样分布 统计量既然是依赖于样本的,而 后者又是随机变量,故统计量也是随 机变量,因而就有一定的分布,这个 分布叫做统计量的“抽样分布” .
抽样分布就是通常的随机变量函数 的分布. 只是强调这一分布是由一个统 计量所产生的. 研究统计量的性质和评 价一个统计推断的优良性,完全取决于 其抽样分布的性质.
某批 灯泡的寿命 国产轿车每公里 的耗油量
该批灯泡寿命的 全体就是总体
国产轿车每公里耗油 量的全体就是总体
由于每个个体的出现是随机的,所以相 应的数量指标的出现也带有随机性. 从而可 以把这种数量指标看作一个随机变量,因此 随机变量的分布就是该数量指标在总体中的 分布. 这样,总体就可以用一个随机变量 及其分布来描述.
例如:研究某批灯泡的寿命时,关心的数 量指标就是寿命,那么,此总体就可以用随 机变量X表示,或用其分布函数F(x)表示.
总体
寿命X可用一概 率分布来刻划
F(x)
某批 灯泡的寿命
鉴于此,常用随机变量的记号 或用其分布函数表示总体. 如 说总体X或总体F(x) .
类似地,在研究某地区中学生的营养状 况时,若关心的数量指标是身高和体重,我 们用X和Y分别表示身高和体重,那么此总体 就可用二维随机变量(X,Y)或其联合分布函数 F(x,y)来表示.

2
2
F
Y n2
服从自由度为n1及 n2 的F分布,n1称为第 一自由度,n2称为第二自由度,记作 F~F(n1,n2) . 由定义可见,F
1 Y n2 X n1
~F(n2,n1)
若X~F(n1,n2), X的概率密度为
( ) n n ( n1 )( n1 x ) n f ( x; n1 , n2 ) ( 1 ) ( n2 ) 2律, 也就是样本取到样本值的规律,因而可以由 样本值去推断总体.
二、统计量和抽样分布 1. 统计量 由样本值去推断总体情况,需要对样本 值进行“加工”,这就要构造一些样本的 函数,它把样本中所含的(某一方面)的 信息集中起来.
这种不含任何未知参数的样本的函数 称为统计量. 它是完全由样本决定的量.
这里请看演示. 分位数
四、几个重要的抽样分布定理 当总体为正态分布时,教材上给出了 几个重要的抽样分布定理. 这里我们不加 证明地叙述. 除定理2外,其它几个定理 的证明都可以在教材上找到.
定理 1 (样本均值的分布)
设X1,X2,…,Xn是取自正态总体 N ( , ) 的样本,则有
2
X ~ N ( ,
2. 独立性: X1,X2,…,Xn是相互独立的随机 变量.
由简单随机抽样得到的样本称为简单 随机样本,它可以用与总体独立同分布的 n个相互独立的随机变量X1,X2,…,Xn表示.
若总体的分布函数为F(x),则其简单随机 样本的联合分布函数为 F(x1) F(x2) … F(xn) 简单随机样本是应用中最常见的情 形,今后,当说到“X1,X2,…,Xn是取自某 总体的样本”时,若不特别说明,就指简 单随机样本.
n1 n2 2

1 n2
~ t ( n1 n2 2)
定理 5 (两总体样本方差比的分布)
且X与Y独立, 设X ~ N ( 1 , ), Y ~ N ( 2 , ),
2 1 2 2
X1, X2,…, X n是取自X的样本, Y1,Y2,…, Yn 是 取自Y的样本, X和Y 分别是这两个样本的 样本
Lim f ( x; n) 0
x
当n充分大时,其图形类似于标准正态分 布密度函数的图形.
请看演示 t 分布 不难看到,当n充分大时,t 分布近 似N (0,1)分布. 但对于较小的n,t分布 与N (0,1)分布相差很大.
3、F分布
定义: 设 X ~ (n1 ), Y ~ (n2 ), X与Y相互 独立,则称统计量 X n1
抽样分布
渐近分布
精确抽样分布 (小样本问题中使用)
(大样本问题中使用)
三. 统计三大分布 1、 分布
2
分布是由正态分布派生出来的一种分布.
2
定义: 设 X 1, X 2 ,, X n 相互独立, 都服从正态 分布N(0,1), 则称随机变量:
X1 X 2 X n
3. 总体、样本、样本值的关系
事实上我们抽样后得到的资料都是具 体的、确定的值. 如我们从某班大学生中 抽取10人测量身高,得到10个数,它们是 样本取到的值而不是样本. 我们只能观察 到随机变量取的值而见不到随机变量.
总体(理论分布) ? 样本 样本值
统计是从手中已有的资料--样本值,去 推断总体的情况---总体分布F(x)的性质.
数理统计的任务就是研究怎样有效 地收集、整理、分析所获得的有限的资 料,对所研究的问题, 尽可能地作出精 确而可靠的结论.
一、总体和样本
1.总体
一个统计问题总有它明确的研究对象.
研究对象的全体称为总体(母体), 总体中每个成员称为个体.
总体

研究某批灯泡的质量
然而在统计研究中,人们关心总体仅仅 是关心其每个个体的一项(或几项)数量指标 和该数量指标在总体中的分布情况. 这时, 每个个体具有的数量指标的全体就是总体.
n取不同值时
( n 1) S
2
2
的分布
定理 3
设X1,X2,…,Xn是取自正态总体 N ( , )
2
的样本, X和S 2 分别为样本均值和样本方差, 则有 X
~ t ( n 1) S n
定理 4 (两总体样本均值差的分布)
设X ~ N ( 1 , ),Y ~ N ( 2 , ), 且X与Y独立,
0 t x 1

dt ,
x0
请看演示

2
分布
由 分布的定义,不难得到:
2
1. 设 X 1, X 2 ,, X n 相互独立, 都服从正态分布 2 N ( , ), 则
2
1
2
( X i ) ~ (n)
2 2 i 1
n
2. 设 X 1 ~ 2 (n1 ), X 2 ~ 2 (n2 ), 且X1,X2相互 独立,则 X 1 X 2 ~ 2 (n1 n2 )
从另一方面看 统计的任务,是根据从总体中抽取的 样本,去推断总体的性质. 由于我们关心的是总体中的个体的某 项指标(如人的身高、体重,灯泡的寿命, 汽车的耗油量…) ,所谓总体的性质, 无非就是这些指标值的集体的性质.
而概率分布正是刻划这种集体性质 的适当工具. 因此在理论上可以把总体 与概率分布等同起来.
T X Y n
所服从的分布为自由度为 n的 t 分布. 记为T~t(n). T的密度函数为:
f ( x; n ) [( n 1) 2] (n 2) n (1 x
2 n 1 2
n
)
具有自由度为n的t分布的随机变量T的数 学期望和方差为:
E(T)=0; D(T)=n / (n-2) , 对n >2 t分布的密度函数关于x=0对称,且
几个常见统计量
它反映了总体均值 的信息
样本均值
它反映了总体方差 的信息
X
X n
i 1 n
1
n
i
样本方差
S
2
( X n 1
i 1
1
i
X)
2
它反映了总体k 阶矩 的信息
n
样本k阶原点矩 样本k阶中心矩
它反映了总体k 阶 中心矩的信息
Ak Bk
X n
相关文档
最新文档