二次函数与一元二次方程 学案

合集下载

二次函数与一元二次方程--教学设计

二次函数与一元二次方程--教学设计

二次函数与一元二次方程--教学设计教学设计主题:二次函数与一元二次方程教学目标:1.理解二次函数的定义和性质;2.掌握一元二次方程的求解方法;3.能够将实际问题转化为二次函数或一元二次方程进行求解。

教学重点:1.二次函数的定义和性质;2.一元二次方程的求解。

教学难点:1.实际问题的建模;2.一元二次方程的求解。

教学准备:1.教师准备:教师课件、教学演示;2.学生准备:学生课本、笔记本。

教学过程:一、导入(5分钟)1.教师通过课件展示一张图,引导学生思考二次函数的图像特点;2.教师提问:你们在高中学过哪些与二次函数相关的知识?请举例说明。

二、概念讲解(20分钟)1.教师通过课件讲解二次函数的定义,并给出例题让学生进行分析和讨论;2.教师引导学生总结二次函数的性质,并进行讨论交流。

三、习题练习(15分钟)1.教师布置若干练习题,要求学生互相讨论解题方法和结果。

练习题可以涉及二次函数的图像、顶点坐标、对称轴等内容。

四、实际问题建模(15分钟)1.教师通过课件呈现一些实际问题,并提问学生如何将这些问题转化为二次函数或一元二次方程;2.学生进行小组讨论,寻找问题的解决方法和步骤。

五、一元二次方程的求解(20分钟)1.教师通过课件讲解一元二次方程的定义、一般形式和求解方法,引导学生理解方程解的含义;2.教师给出一些例题,引导学生进行求解过程,并解释每个步骤的含义和思路。

六、总结归纳(10分钟)1.教师带领学生总结二次函数与一元二次方程的相关知识点和求解方法;2.学生进行讨论和补充。

七、拓展与应用(15分钟)1.教师设计一些拓展题目,要求学生运用所学知识解决实际问题;2.学生进行小组讨论和解答,教师给予指导和点评。

八、课堂总结(5分钟)教师对本节课的重点内容进行总结,并提醒学生复习和预习下节课的内容。

教学反思:通过本节课的教学,学生可以对二次函数与一元二次方程的定义、性质和求解方法有更深入的理解。

通过实际问题的建模和解答,学生可以将所学知识应用到实际生活中,提高问题解决能力。

初中数学初三数学上册《二次函数与一元二次方程》教案、教学设计

初中数学初三数学上册《二次函数与一元二次方程》教案、教学设计
二、学情分析
在本章节的教学中,我们需要面对的是初三学生,他们在前两年的数学学习中,已经积累了一定的数学基础,掌握了函数、一元一次方程等基本知识。然而,二次函数与一元二次方程作为数学知识的一个难点,对学生而言,理解和运用上可能存在一定困难。
学生在学习过程中可能出现以下情况:对二次函数图像特征的理解不够深入,对一元二次方程求解方法的掌握不够熟练,以及在解决实际问题时不能灵活运用所学知识。因此,在教学过程中,我们要关注以下几点:
(3)鼓励学生进行合作学习,培养学生的团队协作能力和交流表达能力。
3.教学步骤:
(1)导入新课:通过生活中的实际问题,引出二次函数与一元二次方程的概念。
(2)探究新知:引导学生观察二次函数的图像,总结图像特征;教授一元二次方程的求解方法,并分析各种求解方法的适用条件。
(3)巩固练习:设计不同难度的练习题,让学生在练习中巩固所学知识,提高解题能力。
(2)一元二次方程的求解方法有哪些?它们之间的优缺点是什么?
2.小组汇报
各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成,巩固所学知识。
(1)求解给定二次函数的顶点、开口方向和对称轴。
(2)利用一元二次方程求解实际问题的最优解。
2.教师巡回指导,解答学生在练习过程中遇到的问题。
3.鼓励学生分组讨论和合作学习,培养学生的团队协作能力和交流表达能力。
4.通过一元二次方程的求解过程,让学生体会数学的转化思想,培养学生解决问题的策略和方法。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养学生积极主动学习的态度。
2.引导学生体会数学在实际生活中的应用价值,增强学生的数学意识。
1.充分了解学生的知识储备,针对学生的薄弱环节进行有针对性的教学。

2023最新-二次函数与一元二次方程教案设计优秀6篇

2023最新-二次函数与一元二次方程教案设计优秀6篇

二次函数与一元二次方程教案设计优秀6篇1.使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根。

读书破万卷下笔如有神,下面为您精心整理了6篇《二次函数与一元二次方程教案设计》,如果对您有一些参考与帮助,请分享给最好的朋友。

数学《一元二次方程》教案设计篇一一、出示学习目标:1、继续感受用一元二次方程解决实际问题的过程;2、通过自学探究掌握裁边分割问题。

二、自学指导:(阅读课本P47页,思考下列问题)1、阅读探究3并进行填空;2、完成P48的思考并掌握裁边分割问题的特点;3、在理解的基础上完成P48-49第8、9题(不精确,只留根号即可)。

探究3:要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?分析:封面的长宽之比为27﹕21=9﹕7,中央矩形的长宽之比也应是9﹕7,则上下边衬与左右边衬的宽度之比是。

9﹕7设上、下边衬的宽均为9xcm,左、右边衬的宽均为7xcm,则:由中下层学生口答书中填空,老师再给予补充。

思考:如果换一种设法,是否可以更简单?设正中央的长方形长为9acm,宽为7acm,依题意得9a·7a=(可让上层学生在自学时,先上来板演)2.P48-49第8、9题中下层学生在自学完之后先板演效果检测时,由同座的同学给予点评与纠正9、如图,要设计一幅宽20m,长30m的图案,两横两竖宽度之比为3∶2,若使彩条面积是图案面积的四分之一,应怎样设计彩条的宽带?(讨论用多种方法列方程比较)注意点:要善于利用图形的平移把问题简单化!三、当堂训练:1、如图,在一幅长90cm,宽40cm的风景画四周镶上一条宽度相同的金色纸边,制成一幅挂画。

如果要求风景画的面积是整个挂画面积的72%,那么金边的宽应是多少?(只要求设元、列方程)2、要设计一个等腰梯形的花坛,上底长100m,下底长180m。

21.3二次函数与一元二次方程 教案

21.3二次函数与一元二次方程 教案

21.3二次函数与一元二次方程教学设计讲授新课题目:写出二次函数y=x2-2x-3的顶点坐标,对称轴,并画出它的图象.教师提示:通过列表法展示该二次函数的画图过程探究一提问:当x为何值时,y=0?展示列表与图像,启发学生思考图像与x轴的交点,同时y=0时,即是方程x2-2x-3=0的解。

学生用已学知识列表法独立解答,并积极踊跃发言,验证自己的解答结果是否正确。

学生观察图像与列表,思考老师的问题并回答。

通过题目引导学生探究二次函数与一元二次方程的关系,而学生对于简单的题目轻而易举即可解答,增加了自信心的同时,也不知不觉地进入了探究新知的环节。

通过循序渐进的提问与提示,引导学生一步步思考,一步步探索二次函数与一元二次方程的关系。

探究一【例】如图,说一说二次函数y=x2+3x+2的图像与x轴有几个交点?交点的横坐标与一元二次方程x2+3x+2=0的根有什么关系?引导并帮学生完善结论:总结:一般地,如果二次函数y=ax2+bx+c 的图象与x轴有两个公共点(x1,0)、(x2,0 )那么一元二次方程ax2+bx+c=0 有两个不相等的实数根x=x1、x=x2 ,反之亦成立. 学生结合上一道习题的解答过程思考,小组讨论解答。

学生通过两道题目的解答,总结出二次函数与一元二次通过启发让学生意识到二次函数与x轴的交点与一元二次方程的根的关系,随即抛物例题让学生自主解答,进一步学习新知。

学生通过自己解答题目找出规律,并自主归纳总结,加深了对变式:变式:不画图象,你能说出函数y=x2+x-6的图象与 x 轴的交点坐标吗?方程的关系。

请一位学生上台解答展示解答过程,其他学生自主解答。

新知的理解,且能培养学生的归纳总结能力、发现规律的能力。

总结新知后及时巩固练习,帮助学生加深理解,增强运用新知解答问题的能力探究二探究二:观察二次函数y=x²-6x+9的图象和二次函数y=x²-2x+3的图象,分别说出一元二次方程x²-6x+9=0和x²-2x+3=0的根的情况.提问:二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次方程ax2+bx+c=0根的关系?例:用图象法求一元二次方程x²+2x-1= 0 的近似解(精确到0.1)。

二次函数与一元二次方程教案

二次函数与一元二次方程教案

二次函数与一元二次方程教案教案标题:探索二次函数与一元二次方程教案目标:1. 了解二次函数与一元二次方程的定义和基本性质;2. 掌握解一元二次方程的方法;3. 掌握二次函数的图像特征和性质;4. 能够应用二次函数和一元二次方程解决实际问题。

教案步骤:一、引入(5分钟)1. 利用实例引出学生对于二次函数和一元二次方程的初步认识。

2. 引导学生思考二次函数与一元二次方程的联系,并提出学习的目标。

二、理论讲解(15分钟)1. 介绍二次函数的定义和一般形式,解释二次函数图像的特征。

2. 讲解一元二次方程的定义和一般形式,介绍解一元二次方程的方法。

三、解题演练(20分钟)1. 给学生提供一些简单的一元二次方程,引导学生运用所学方法解题。

2. 给学生提供一些简单的二次函数图像,要求学生根据图像特征写出函数的表达式。

四、拓展应用(15分钟)1. 提供一些实际问题,引导学生将问题转化为一元二次方程,并解答问题。

2. 提供一些实际问题,引导学生根据问题描述绘制对应的二次函数图像,并分析解决问题的方法。

五、总结归纳(10分钟)1. 学生总结二次函数与一元二次方程的基本性质和解题方法。

2. 教师对本节课的重点内容进行总结,并强调学生在课后的复习重点。

六、作业布置(5分钟)1. 布置一些练习题,要求学生巩固所学的知识和解题方法。

2. 鼓励学生积极思考,提出问题并准备下节课的讨论。

教案评估:1. 课堂参与度:观察学生在课堂上的积极参与程度;2. 练习题表现:检查学生对于二次函数和一元二次方程的掌握情况;3. 实际问题解决能力:评估学生运用所学知识解决实际问题的能力。

教案扩展:1. 可以引入二次函数的最值问题,进一步拓展学生对于二次函数的理解;2. 可以引入一元二次方程的根与系数之间的关系,加深学生对于一元二次方程的理解。

教案注意事项:1. 确保学生已经掌握一元一次方程的解法和基本概念,为学习二次函数和一元二次方程打下基础;2. 鼓励学生多做练习,加深对于二次函数和一元二次方程的理解;3. 教师要及时给予学生反馈,帮助他们纠正错误和提高解题能力。

《二次函数与一元二次方程》教案(高效课堂)2022年人教版数学精品

《二次函数与一元二次方程》教案(高效课堂)2022年人教版数学精品

二次函数与一元二次方程教学目标知识与技能总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根.过程与方法使学生经历二次函数与一元二次方程关系的探究过程。

情感态度与价值观培养学生观察、思考、归纳的良好思维习惯。

重点方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解。

难点本节“合作学习〞涉及的实际问题有的较为复杂,要求学生有较强的概括能力。

教法、学法引导、启发自主学习、合作交流课型新授课教学准备小黑板教学流程教师活动学生活动二次备课一、自主学习1、知识回忆一元二次方程的一般形式是什么?二次函数的一般形式是什么?一元二次方程的根有几种情况?回忆2、出示学习目标总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根.明确目标出示自学提纲⑴自学43页的问题答复云图中的问题⑵完成教材44页思考⑶一元二次方程的根的情况与相应的二次函数的图像与X轴公共点的个数有什么关系?⑷总结出二次函数与一元二次方程的解有什么关系?⑸自学46页例答复怎么通过看二次函数的图像估计相应的一元二次方程的根?阅读提纲,〔1〕~〔5〕4、组织学生自学指导学生阅读课本P43---46课文,并答复以下问题。

学生自学得出结论组内交流,互助互教。

二、自学反应汇报或检测答复老师自学提纲中的问题三、质疑精讲1、学生质疑,师生共同解疑提出质疑,师生共同解决2、教师横向拓展和纵向挖掘1、对43页问题的讲解:由于球的飞行高度h与飞行时间t的关系是二次函数 h=20t-5t2。

所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有符合实际的解,那么说明球的飞行高度可以到达问题中h的值:否那么,说明球的飞行高度不能到达问题中聆听、思考、答复h的值。

2、归纳:一般地,从二次函数y=ax2+bx+c的图象可知,〔1〕如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的一个根。

高中数学教案《二次函数与一元二次方程、不等式》

教学计划:《二次函数与一元二次方程、不等式》一、教学目标1、知识与技能:学生能够理解并掌握二次函数、一元二次方程及一元二次不等式的概念、性质及其相互关系;能够熟练求解一元二次方程和一元二次不等式,并能根据二次函数的图像判断不等式的解集。

2、过程与方法:通过案例分析、图形辅助、探究学习等方法,培养学生的观察、分析和解决问题的能力;通过小组合作、讨论交流,提升学生的协作学习能力和语言表达能力。

3、情感态度与价值观:激发学生对数学学习的兴趣,培养探索数学规律的精神和严谨的科学态度;通过解决实际问题,让学生感受到数学在现实生活中的应用价值。

二、教学重点和难点重点:一元二次方程的求解方法(公式法、因式分解法、配方法);一元二次不等式的解法及与二次函数图像的关系;二次函数的性质(开口方向、顶点、对称轴)。

难点:一元二次不等式解法中根据判别式判断解的存在性;将一元二次不等式转化为二次函数图像下的区域问题;灵活运用二次函数的性质解决实际问题。

三、教学过程1. 导入新课(5分钟)生活实例引入:以医院中病人的病情随时间变化的例子(如体温变化、药物浓度变化),引导学生思考这些变化可能呈现出的二次函数形态,从而引出二次函数的概念。

提出问题:当病情达到某个临界点时(如体温过高或过低),医生需要采取相应措施。

这实际上涉及到一元二次方程和不等式的求解问题。

明确目标:介绍本节课将要学习的内容,即二次函数与一元二次方程、不等式的相互关系及其求解方法。

2. 讲解新知(20分钟)二次函数概念:回顾一次函数的概念,通过类比引出二次函数的一般形式及其图像特征(开口方向、顶点、对称轴)。

一元二次方程求解:详细介绍一元二次方程的三种求解方法(公式法、因式分解法、配方法),并通过实例演示每种方法的应用。

一元二次不等式:结合二次函数图像,讲解一元二次不等式的解法及其与函数图像的关系。

强调根据判别式判断不等式的解集情况,并引导学生掌握将不等式转化为图像下区域问题的方法。

二次函数与一元二次方程优秀教案


例 2:已知抛物线 y x2 6x a 的顶点在 x 轴上,则 a =_________;若抛物线与 x 轴有两
1/3
个交点,则 a 的范围是_________;与 x 轴最多只有一个交点,则 a 的范围是_________ 例 3:已知关于 x 的函数 y ax2 x 1 ( a 为常数)
二次函数与一元二次方程
【教学目标】
1.经历探索二次函数与一元二次方程关系的过程,体会方程与函数之间的关系。 2.理解二次函数的图象与 x 轴公共点的个数与相应的一元二次方程根的对应关系。 3.进一步体验数形结合的数学思想。
【教学重点】
体会方程与函数之间的联系。
【教学难点】
数形结合的数学思想。
【教学过程】
一、问题情景: 1.一次函数 y 2x 5 与 x 轴的交点坐标是什么?它与一元一次方程 2x 5 0 有什么关
系? 2.解下列方程: ① x2 2x 3 0
② x2 6x 9 0
③ x2 2x 3 0
3.下列三个二次函数:① y x2 2x 3 ② y x2 6x 9 ③ y x2 2x 3 与上述相应的一
10.已知关于 x 的二次函数 y x2 (2m 1)x m2 3m 4
2/3
(1)探究 m 满足什么条件时,二次函数的图象与 x 轴的交点的个数; (2)设二次函数的图象与 x 轴的交点为 A(x1, 0), B(x2 , 0) ,且 x12 x22 5 , 求二次函数的解析式。 四、课外作业 1.已知一元二次方程 x2 px q 1 0 的一根为 2. (1)求 q 关于 p 的关系式; (2)求证:抛物线 y x2 px q 与 x 轴有两个交点; (3)设抛物线 y x2 px q 的顶点为 M ,且与 x 轴相交于 A(x1, 0)、B(x2, 0) 两点,求使△ AMB 面积最小时的抛物线的解析式。 2.已知抛物线 y x2 kx 3 k 2 ( k 为常数,且 k 0 )。

二次函数与一元二次方程教案设计

二次函数与一元二次方程教案设计
教学目标
(一)教学知识点
1、能够利用二次函数的图象求一元二次方程的近似根。

2、进一步发展估算能力。

(二)能力训练要求
1、经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。

2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想。

(三)情感与价值观要求
通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。

教学重点
1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2、能够利用二次函数的图象求一元二次方程的近似根。

教学难点
利用二次函数的图象求一元二次方程的近似根。

教学方法
学生合作交流学习法。

教具准备
投影片三张
第一张:(记作2。

8。

2a)
第二张:(记作2。

8。

2b)
第三张:(记作2。

8。

2c)
教学过程
Ⅰ、创设问题情境,引入新课
[师]上节课我们学习了二次函数y=ax2+bx+c(a0)的图象与x轴的交点坐标和一元二次方程ax2+bx+c=0(a0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可。

但是在图象上我们很难准确地求出方程的解,所以要进行估算。

本节课我们将学习利用二次函数的图象估计一元二次方程的根。

数学九年级上册《二次函数与一元二次方程(1)》导学案

5.4 二次函数与一元二次方程(1)班级______学号_____姓名___________[学习目标]1、经历探索二次函数与一元二次方程关系的过程,体会方程与函数之间的关系;2、理解二次函数的图象与x 轴公共点的个数与相应的一元二次方程根的对应关系;3、进一步体验数形结合的数学方法。

[活动方案]活动一 探究二次函数与x 轴交点横坐标和一元二次方程根的关系1.几个具体的一元二次方程及其对应的二次函数,如①方程2230x x --=与函数223y x x =--;②方程2210x x -+=与函数221y x x =-+; ③方程2230x x -+=与函数223y x x =-+求上述①中的一元二次方程的根并求出二次函数与x 轴交点的坐标2. 从关系式看二次函数y=x 2-2x-3成为一元二次方程x 2-2x-3=0的条件是什么?反映在图象上:观察二次函数y=x 2-2x-3的图象,你能确定一元二次方程x 2-2x-3=0的根吗?一元二次方程的根与二次函数图象和x 轴交点坐标有什么关系 ?结论:一元二次方程2230x x --=的判别式∆>0 ⇔一元二次方程2230x x --=有两个不相等的实数根⇔对应的二次函数223y x x =--的图象与x 轴有两个交点为(3,0),(–1,0)。

3. 再研究②③,能得类似的结论吗?①结论:一元二次方程2210x x -+=根的判别式∆=0⇔一元二次方程2210x x -+= 有两等根⇔对应的二次函数221y x x =-+的图象与x 轴有唯一的交点为(1,0)。

②结论:一元二次方程2230x x -+=的判别式∆﹤0 ⇔一元二次方程2230x x -+=无实根⇔对应的二次函数223y x x =-+的图象与x 轴没有交点。

活动二 探究一般情况下:一元二次方程根的情况和二次函数图形与x 轴交点情况之间的联系一元二次方程20ax bx c ++=(a >0)根的个数及其判别式与二次函数2y ax bx c =++(a >0)图象与x 轴的位置之间有什么联系?)以a >0为例,如下表所示:思考:当二次函数2y ax bx c =++(a ﹤0)时,是否也有类似的结论呢?[检测反馈]1.判断下列函数图象与x 轴的交点个数情况:⑴22x x y --= (2)962-+-=x x y (3)222+-=x x y2.下列函数图象与x 轴有两个交点的是( )A .y =7(x +8)2+2B .y =7(x -8)2+2C .y = -7(x -8)2-2D .y = -7(x +8)2+23.已知抛物线9)2(2++-=x a x y 的顶点在坐标轴上,求a 的值.【巩固提升】1.判断下列函数图象与x 轴的交点个数情况:⑴21x x y --= (2)442-+-=x x y (3)222++=x x y2.已知抛物线的解析式为m m x m x y -+--=22)12(.(1)试说明此抛物线与x 轴必有两个不同的交点;(2)若此抛物线与直线432+-=m x y 的一个交点在y 轴上,则m = .3.如图,在同一直角坐标系中,二次函数的图象与两坐标轴分别交于A (-1,0)、点 B (3,0)和点C (0,-3),一次函数的图象与抛物线交于B 、C 两点.(1)求出二次函数的解析式;(2①当x 取何值时,两函数的函数值都随x 增大而增大;②当x 取何值时,一次函数值等于二次函数值;③当x 取何值时,一次函数值大于二次函数值;④当x 取何值时,两函数的函数值的积小于0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数与一元二次方程
教学目标:
1、使学生掌握二次函数与x轴交点个数的判断方法。

2、理解二次函数与x轴交点的横坐标与一元二次方程ax2+bx+c=0根的关系。

教学重点:
二次函数与x轴交点的横坐标与一元二次方程ax2+bx+c=0根的关系
教学难点:
二次函数与x轴交点的横坐标与一元二次方程ax2+bx+c=0根的关系
教学工具:多媒体辅助教学
教学方法:探讨、合作、交流
教学过程:
一、解下列一元二次方程
x2+2x=0 x2-2x+1=0 x2-2x+2=0
二、(1).二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2图象如图示.
每个图象与x轴有几个交点?
二次函数y=ax2+bx+c的图象和x轴交点有三种情况:
①有两个交点,②有一个交点, ③没有交点.
(2).二次函数y=ax2+bx+c的图象和x轴交点横坐标与一元二次方程ax2+bx+c=0的根有什么关系?
当二次函数y=ax2+bx+c的图象和x轴有交点时, 交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.
三、探究
探究1、求二次函数图象y=x2-3x+2与x轴的交点A、B的坐标。

解:∵A、B在x轴上,
∴它们的纵坐标为0,
∴令y=0,则x2-3x+2=0
解得:x1=1,x2=2;
∴A(1,0),B(2,0)
你发现方程x2-3x+2=0 的解x1、x2是A、B的横坐标.
结论1:方程x2-3x+2=0的解就是抛物线y=x2-3x+2与x轴的两个交点的横坐标。

因此,抛物线与一元二次方程是有密切联系的。

即:若一元二次方程ax2+bx+c=0的两个根是x1、x2,则抛物线y=ax2+bx+c与x轴的两个交点坐标分别是A(x1,0 ),B(x2,0 )
(3).二次函数y=ax2+bx+c的图象和x轴交点横坐标与一元二次方程ax2+bx+c=0的根有什么关系?
结论2:
抛物线y=ax2+bx+c与x轴的交点个数可由一元二次方程ax2+bx+c=0的根的情况说明:1、△>0 得到一元二次方程ax2+bx+c=0有两个不等的实数根得到
抛物线与x轴有两个交点——相交。

2、△=0得到一元二次方程ax2+bx+c=0有两个相等的实数根得到
抛物线与x轴有一个交点——相切。

3、△﹤0得到一元二次方程ax2+bx+c=0没有实数根得到
抛物线与x轴没有交点——相离。

探究2、若一元二次方程ax2+bx+c=0的两个根
是x1、x2,则由根与系数的关系得:x1+x2=- b/a
x1x2=c/a
若抛物线y=ax2+bx+c与x轴的两个交点坐标分别是A(x1,0 ),B(x2,0 ),则是否有同样的结论呢?
结论3、若抛物线y=ax2+bx+c与x轴的两个交点坐标分别是A(x1,0 ),B(x2,0 ),则x1+x2=-- b/a ,x1x2=c/a
四、基础训练
1、判断下列各抛物线是否与x轴相交,如果相交,求出交点的坐标。

(1)y=6x2-2x+1 (2)y=-15x2+14x+8
(3)y=x2-4x+4
2、已知抛物线y=x2-6x+a的顶点在x轴上,则a= ;若抛物线与x轴有两个交点,则a的范围是;
3、已知抛物线y=x2-3x+a+1与x轴最多只有一个交点,则a的范围是。

4、已知抛物线y=x2+px+q与x轴的两个交点为(-2,0),(3,0),则p= ,q= 。

5、已知抛物线y=x2+2x+m+1,若抛物线与x轴只有一个交点,求m的值。

二次函数y=ax2+bx+c何时为一元二次方程?它们的关系如何?
五、小结
1、若一元二次方程ax2+bx+c=0的两个根是x1、x2,则抛物线y=ax2+bx+c与x轴的两个交点坐标分别是A(x1,0 ),B(x2,0 )
2、二次函数y=ax2+bx+c何时为一元二次方程?它们的关系如何?。

相关文档
最新文档