第一轮复习教学案 一元二次方程

合集下载

5年中考第一轮复习:一元二次方程 分式方程

5年中考第一轮复习:一元二次方程 分式方程

美博教育中考复习之一元二次方程、分式方程【课标要求】(1)了解一元二次方程的概念。

(2) 理解配方法,会用因式分解法、十字相乘法、公式法、配方法解简单的数字系数的一元二次方程.(3) 能根据具体问题的实际意义,检验结果是否合理.(4) 掌握一元二次方程根的判别式、一元二次方程根与系数的关系,并能灵活运用.(5)了解分式方程的概念。

(6)掌握分式方程的解法,并会检验。

(7)用应用分式方程解决相关实际问题。

【知识回顾】1、知识脉络(教材相应章节重要内容的结构与联系)2、考点详解(教材相应章节重要内容整理)(1)一元二次方程①只含有一个未知数,且未知项的最高次数是2的整式方程叫做一元二次方程.它的一般形式为02=++c bx ax (c b a ,,是已知数,0≠a ),其中bx ax ,2分别叫做二次项,一次项;c b a ,,分别叫做二次项系数,一次项系数,常数项.②一元二次方程的解法.其基本思想是降次.其常用方法:直接开平方法、配方法、因式分解法、公式法、十字相乘法.③一元二次方程02=++c bx ax (c b a ,,是已知数,0≠a )的根的判别式(ac b 42-=∆):(ⅰ)当0>∆时,一元二次方程有两个不相等的实数根;(ⅱ)当0=∆时,一元二次方程有两个相等的实数根;(ⅲ)当0<∆时,一元二次方程没有实数根.以上结论,反之亦成立.④一元二次方程根与系数的关系(韦达定理):若一元二次方程02=++c bx ax (c b a ,,是已知数,0≠a )的两根为1x 、2x ,则ac x x a b x x =⋅-=+2121,. (2)分式方程①分母中含有未知数的方程叫做分式方程.②分式方程的解法.其基本思想是将分式方程转化为整式方程.其方法是运用等式性质在方程两边同乘以最简公分母.解分式方程必须要验根.列方程(组)解应用题的一般步骤:①审清题意;②找出等量关系;③设出直(间)接未知数;④列出方程(组);⑤解方程(组);⑥验方程(组)的根;⑦答出完整的语句.3、典例剖析考点预测一:一元二次方程根的概念(以选择、填空出现)例1(2008 山东 聊城)已知1x =是方程220x ax ++=的一个根,则a 的值为( )A .2-B .2C .3-D .3【分析】把1x =代入方程220x ax ++=即可得到关于a 的一元一次方程,解方程即可求解。

一轮复习(9):一次二次方程

一轮复习(9):一次二次方程

课时9一元二次方程班级 姓名 学号一、中考考点:1、了解一元二次方程的概念和一元二次方程的根的意义。

2、理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程。

3、了解一元二次方程根的判别式,知道一元二次方程根与系数的关系。

二、例题讲解:例1、(1)已知方程:① 0322=-x ②0112=-x ③ 0131212=+-y y ④022=++c y ay ⑤5)3)(1(2+=-+x x x ⑥ 02=-x x ⑦21=-x是一元二次方程的有 (只需写序号). (2)已知方程32)1(1=--+x xm m 是关于x 的一元二次方程,则=m .例2、(1)已知x=1是一元二次方程x 2-2mx+1=0的一个解,则m 的值是( )A .1B .0C .0或1D .0或-1(2)一元二次方程0422=++x x 的根的情况是 ( )A 、有一个实数根B 、有两个相等的实数根C 、有两个不相等的实数根D 、没有实数根(3)若关于x 的一元二次方程032=-+m x x 有两个不相等的实数根,则m 的取值范围( )A 、m >121 B 、m <121 C 、m >121- D 、m <121- (4)关于x 的一元二次方程0422=++-k x k x 有实数根,则k 的取值范围是 . (5)方程(3)(3)x x x +=+的解是 .(6)若42+x 与32-x 互为相反数,则x 的值为(7)当____x 时,分式2341x x x --+的值为零.例3、用配方法说明:代数式132+--x x 的值不大于1213。

例4、解下列方程(1)22)31()3(-=+x (2)x x x 22)1(3-=- (公式法)(3)46)1)(3(+=++x x x (配方法) (4)052)52(2=++-x x例5、已知关于x 的方程2210x kx -+=的一个解与方程)1(412x x -=+的解相同. ⑴求k 的值;⑵求方程2210x kx -+=的另一个解.例6、已知方程0122=-++a x x 没有实数根,求证:方程a ax x 212-=+一定有两个不相等的实数根。

21.1 一元二次方程1教学案

21.1  一元二次方程1教学案

21.1一元二次方程1.理解一元二次方程及其相关概念,能够熟练地把一元二次方程化为一般形式.2.会应用一元二次方程的解的定义解决有关问题.3.在分析、揭示实际问题中的数量关系,并把实际问题转化为数学模型的过程中,感受方程是刻画现实世界中的数量关系的工具,增强对一元二次方程的感性认识.一、情境导入参加一次集会,如果有x个人,每两人之间都握一次手,共握了21次手,请你列出符合上述条件的方程,并判断方程是什么类型?二、合作探究探究点一:一元二次方程的概念【类型一】一元二次方程的识别下列选项中,是关于x的一元二次方程的是( )A.x2+1x2=1 B.3x2-2xy-5y2=0C.(x-1)(x-2)=3 D.ax2+bx+c=0解析:选项A中的方程分母含有未知数,所以它不是一元二次方程;选项B中的方程含有2个未知数,所以它不是一元二次方程;当a=0时,选项D中的方程不含二次项,所以它不是一元二次方程,排除A、B、D,故选C.方法总结:判断一个方程是不是一元二次方程,必须将方程化简后再进行判断.一元二次方程的三个条件:一是方程两边都是整式;二是只含有一个未知数;三是未知数的最高次数是2.上述三个条件必须同时满足,缺一不可.【类型二】利用一元二次方程的概念确定字母系数关于x的方程(k+1)x|k-1|+kx+1=0是一元二次方程,则k的值为________.解析:由题意得⎩⎪⎨⎪⎧|k-1|=2,k+1≠0,∴⎩⎪⎨⎪⎧k=3或k=-1,k≠-1.∴k=3.方法总结:由一元二次方程的概念满足的条件:未知数最高次数为2,构造方程,解出字母取值,并利用二次项系数不为0排除使二次项系数为0的字母取值,从而确定字母取值.探究点二:一元二次方程的一般形式将下列方程化为一元二次方程的一般形式,并指出它们的二次项系数、一次项系数及常数项.(1)3x 2-2=5x ;(2)9x 2=16;(3)2x (3x +1)=17;(4)(3x -5)(x +1)=7x -2.解析:先分别将各方程化为一般形式,再指出它们的各部分的名称.解:(1)方程化为一般形式为3x 2-5x -2=0,二次项系数是3,一次项系数是-5,常数项是-2.(2)方程化为一般形式为9x 2-16=0,二次项系数是9,一次项系数是0,常数项是-16.(3)方程化为一般形式为6x 2+2x -17=0,二次项系数是6,一次项系数是2,常数项是-17.(4)方程化为一般形式为3x 2-9x -3=0,二次项系数是3,一次项系数是-9,常数项是-3.方法总结:求一元二次方程的各项系数和常数项,必须先把方程化为一般形式,特别要注意确认各项系数和常数项一定要包括前面的符号.探究点三:列一元二次方程(2015·深圳一模)在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m 2.已知床单的长是2m ,宽是1.4m ,求花边的宽度.请根据题意列出方程.解析:设花边的宽度为x m ,则由图可知剩下部分的长为(2-2x )m ,剩下部分的宽为(1.4-2x )m.∵剩下部分面积为 1.6m 2,∴可列方程(2-2x )(1.4-2x )=1.6.方法总结:列方程最重要的是审题,只有理解题意,才能恰当的设出未知数,准确地找出已知量和未知量之间的等量关系,正确的列出方程.探究点四:一元二次方程的解 【类型一】判断一元二次方程的解方程x -2x =0的解为( ) A .x 1=1,x 2=2 B .x 1=0,x 2=1 C .x 1=0,x 2=2 D .x 1=12,x 2=2解析:把各选项中未知数的值分别代入方程的左右两边,只有选项C 中的x 1=0,x 2=2都能使方程x 2-2x =0的左右两边相等,所以选C.方法总结:判断一个未知数的值是否是一元二次方程的解,可以把未知数的值代入方程左右两边,能使方程左右两边相等的未知数的值就是一元二次方程的解.【类型二】利用一元二次方程的解的意义求字母或代数式的值已知1是关于x 的一元二次方程(m -1)x 2+x +1=0的一个根,则m 的值是( )A .1B .-1C .0D .无法确定解析:根据方程的根的概念,直接代入方程,左右两边相等,但考虑到是一元二次方程,所以二次项系数不能等于0.由此得,(m-1)+1+1=0,解得m=-1,此时m-1=-2≠0,∴m=-1.故选B.方法总结:方程的根是能使方程左右两边相等的未知数的值,在涉及方程根的题目中,我们一般是把这个根代入方程左右两边转化为求待定系数的方程来解决问题.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为数学问题,体会数学建模的思想方法.。

2015届九年级数学中考一轮复习教学案:第6课时一元二次方程及其应用

2015届九年级数学中考一轮复习教学案:第6课时一元二次方程及其应用

第6课时一元二次方程及其应用【复习目标】1.了解一元二次方程的定义及一般形式.2.理解配方法,能用配方法、公式法、因式分解法解带有数字系数的一元二次方程.3.会用一元二次方程根的判别式判断方程是否有实根和两个实根是否相等.4.了解一元二次方程的根与系数的关系(不要求应用这个关系解决其他问题).5.能根据具体问题的实际意义,检验方程的解是否合理.【知识梳理】1.-元二次方程的定义:只含有_______个未知数,并且未知数的最高次数是_______的_______式方程叫做一元二次方程.2.一元二次方程的一般形式是________(a_______0),其中ax2叫做_______项,a是_______,bx叫做_______,b是_______,c叫做_______项.3.一元二次方程的解法:(1)直接开平方法:形如(mx+n)2=p(p≥0)的方程的根为________.(2)配方法的步骤:移项,二次项的系数化为1(该步有时可省略),配方,直接开平方.(3)求根公式法:方程ax2+bx+c=0(a≠0),当b2-4ac_______0时,x=________.(4)因式分解法:如果一元二次方程可化为a(x-x1)(x-x2)=0的形式,那么方程的解为________.4.一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=________.(1)当△>0时,方程有两个_______的实数根.(2)当△=0时,方程有两个_______的实数根.(3)当△<0时,方程没有实数根.5.若一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则x1+x2=________,x1·x2=________.6.列一元二次方程解增长率问题可简化为a(1±x)2=b,其中a为变化前的基础,b为变化后的结果,x为变化率,但要注意:增长率没有单位,且对于连续变化的问题都是以前一个时间段为基础,如2月份产量是在1月份基础上变化的,而不是以任意一个月份为基础的.【考点例析】考点一 一元二次方程根的意义例1已知1是关于x 的一元二次方程(m -1)x 2+x +1=0的一个根,则m 的值是( )A .1B .-1C .0D .无法确定提示 由方程根的意义,把x =1代入方程,得到与m 有关的方程,解之即可. 考点二 一元二次方程的解法例2 解下列方程:(1) (x -3)2-9=0;(2) x 2-2x =5;(3) x 2-4x +2=0;(4) 2(x -3)=3x (x -3).提示 观察方程的特点可发现:(1)可用直接开平方法;(2)用配方法或公式法;(3)可用公式法;(4)方程都有共同的因式(x -3),故可用因式分解法.考点三 一元二次方程根的判别式例3 如果关于x 的一元二次方程kx 2-2110k x ++=有两个不相等的实数根,那么k 的取值范围是 ( )A . k<12B .k<12且k ≠0 C .-12≤k<12 D .-12≤k<12且k ≠0 提示 解决本题时需要从三方面综合考虑,一是由“一元二次方程”知k ≠0,二是由二次根式的意义知2k +1≥0,三是由原方程有两个不相等的实数根知()22140x k +->,三者缺一不可.考点四 一元二次方程根与系数的关系例4已知一元二次方程x 2-3x -1=0的两个根分别是x 1、x 2,则x 21x 2+x 1x 22的值为 ( )A .-3B .3C .-6D .6提示由于x21x2+x1x22=x1x2(x1+x2),此时根据一元二次方程根与系数的关系分别求得x1x2、x1+x2的值,从而解决问题.例5 (2012.南充)关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1、x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.提示(1)因为一元二次方程有两个实数根,所以△≥0,从而解出m的取值范围;(2)根据根与系数的关系,可以用含有m的代数式分别表示出x1+x2及x1x2,代入2(x1+x2)+x1x2+10=0即可求出m的值.考点五一元二次方程的应用例6据媒体报道,我国2009年公民出境旅游总人数约5 000万人次,2011年公民出境旅游总人数约7 200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下面的问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?提示(1)设年平均增长率为x.根据题意2010年公民出境旅游总人数为5000(1+x)万人次,2011年公民出境旅游总人数为5000(1+x)2万人次.根据题意列方程求解;(2)2012年我国公民出境旅游总人数约7 200(1+x)万人次.例7某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每辆汽车的售价与销售量有如下关系:若当月仅售出1辆汽车时,则该辆汽车的进价为27万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆;月底厂家根据销售量一次性返利给销售公司,销售10辆以内(含10辆),每辆返利0.5万元;销售量在10辆以上,每辆返利1万元.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为万元;(2)如果汽车的售价为28万元/辆,该公司计划当月盈利12万元,那么需要售出多少辆汽车(盈利=销售利润+返利)?提示用销售数量表示出每辆的进价、返利等,再表示出盈利,根据“盈利=销售利润+返利”列出方程求解.【反馈练习】1.方程(x-1)(x+2)=0的两根为( )A.x1=-1,x2=2 B.x1=1,x2=2C.x1=-1,x2=-2 D.x1=1,x2=-22.已知关于x的一元二次方程(k-2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是( )A.k>43且k≠2 B.k≥43且k≠2C.k>43且k≠2 D.k≥43且k≠23.湛江市2009年平均房价为每平方米4000元,连续两年增长后,2011年平均房价达到每平方米5 500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是( )A.5500(1+x)2=4000 B.5500(1-x)2=4000C.4 00(1-x)2=5500 D.4000(1+x)2=55004.已知关于x的方程x2+mx-6=0的一个根为x=2,则这个方程的另一个根是________.5.已知m和n是方程2x2-5x-3=0的两根,则11m n+=_______.6.解方程:-x2-2x=2x+1.7.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克,若该专卖店销售这种核桃想要平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?。

人教版初中数学中考复习一轮复习——一元二次方程解法及其应用(1)

人教版初中数学中考复习一轮复习——一元二次方程解法及其应用(1)

D 1.(2021·河南) 若方程 x2-2x+m=0没有实数根,则 m的值可以是( )
A.-1
B.0
C.1
D. 3
2.(2021•岳阳)已知关于x的一元二次方程x2+6x+k=0有两个相等 的实数根,则实数k的值为 k 9.
3.(2021•台州)关于x的方程x2﹣4x+m=0有两个不相等的实数根,
a 1,b 3, c 4
b2 4ac -3 2 41(- 4) 9 16 25 0
所以方程有两个不等实数根
x b 3 25 3 5
2a
2
2
x1 4, x2 1
考点二:一元二次方程的解法
1x2 3x 4
2x2 6x 7 0
32 x2 4x 5 0
解:a 1,b (k 3),c 1 k
b2 4ac (k 3)2 41 (1 k) k 2 2k 5 k 2 2k 1 4 (k 1)2 4
因为(k 1)2 4 0, 所以方程有两个不等实数根。
考点三:判别式和一元二次方程根的情况
5.(2021•烟台)已知关于x的一元二次方程x2﹣mnx+m+n=0,其中
考点二:一元二次方程的解法
2.配方法
对应练习: 1x2 4x 1 0
22x2 8x 3 0
12x2 1 3x
22x2 8x 3 0 x2 4x 3 0
2
x2 4x 3 2
x2 4x 4 3 4 2
x22 11 2
x 2 22 2
x1 2
22 ,x 2
变式2.若方程ax2+2x+1=0有两个不相等的实数根,则实数a的 取值范围是(a 1且a 0 )

2022年中考数学人教版一轮复习课件:第6课 一元二次方程的解法及应用

2022年中考数学人教版一轮复习课件:第6课 一元二次方程的解法及应用

26.(2020·广东)已知关于 x,y 的方程组ax+ x+y=2 43y=-10 3,与 xx- +yb=y=2, 15的解相同. (1)求 a,b 的值; (2)若一个三角形的一条边的长为 2 6,另外两条边的长是关 于 x 的方程 x2+ax+b=0 的解.试判断该三角形的形状,并 说明理由.
10.(2021·菏泽)列方程(组)解应用题. 端午节期间,某水果超市调查某种水果的销售情况,下面是 调查员的对话: 小王:该水果的进价是每千克 22 元; 小李:当销售价为每千克 38 元时,每天可售出 160 千克;若 每千克降低 3 元,每天的销售量将增加 120 千克. 根据他们的对话,解决下面所给问题:超市每天要获得销售 利润 3 640 元,又要尽可能让顾客得到实惠,则这种水果的销 售价为每千克多少元?
2.(2021·怀化)对于一元二次方程 2x2-3x+4=0,则它根的情况为
A.没有实数根
( A)
B.两根之和是 3
C.两根之积是-2
D.有两个不相等的实数根
3.一元二次方程根与系数的关系(韦达定理)
若 x1,x2 是关于 x 的一元二次方程 ax2+bx+c=0(a≠0)的根, 则 x1+x2=-ba,x1x2=ac.
4.(2021·大连)“杂交水稻之父”袁隆平和他的团队探索培育的“海
水稻”在某试验田的产量逐年增加,2018 年平均亩产量约 500
千克,2020 年平均亩产量约 800 千克.若设平均亩产量的年
平均增长率为 x,根据题意,可列方程为
(D)
A.500(1+x)=800
B.500(1+2x)=800
A.k>-14 C.k>-14且 k≠0
B.k<41 D.k<41且 k≠0

高中数学 第2章 一元二次函数、方程和不等式 章末复习教学案第一册数学教学案

高中数学 第2章 一元二次函数、方程和不等式 章末复习教学案第一册数学教学案

第2章一元二次函数、方程和不等式知识系统整合规律方法收藏1.比较数(式)的大小依据:a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b.适用范围:若数(式)的大小不明显,作差后可化为积或商的形式.步骤:①作差;②变形;③判断差的符号;④下结论.变形技巧:①分解因式;②平方后再作差;③配方法;④分子(分母)有理化.2.利用基本不等式证明不等式(1)充分利用条件是关键,要注意“1”的整体代换及几个“=”必须保证同时成立.(2)利用基本不等式证明不等式是综合法证明不等式的一种情况,其实质就是从已知的不等式入手,借助不等式的性质和基本不等式,经过逐步的逻辑推理,最后推得所证结论,其特征是“由因导果”.(3)证明不等式时要注意灵活变形,可以多次利用基本不等式的变形形式.3.利用基本不等式求最值(1)利用基本不等式求最值,必须同时满足以下三个条件:一正、二定、三相等.即:①x,y都是正数.②积xy(或和x+y)为常数(有时需通过“配凑、分拆”凑出定值).③x与y必须能够相等(等号能够取到).(2)构造定值条件的常用技巧①加项变换;②拆项变换;③统一换元;④平方后利用基本不等式.4.解一元二次不等式的步骤当a>0时,解形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)的一元二次不等式的一般步骤如下:(1)确定对应方程ax2+bx+c=0的解;(2)画出对应函数y=ax2+bx+c的图象的简图;(3)由图象写出不等式的解集.特别提醒:(1)在通过图象获取解集时,注意不等式中的不等号方向、是否为严格不等关系及Δ=0时的特殊情况.(2)当a<0时,解不等式可以从两个方面入手:①画出对应图象进行直接判定(此时图象开口向下);②两边同乘以-1,把a 转变为-a 再进行求解.5.一元二次不等式的实际应用不等式在解决生活、生产中的一些实际问题中有着广泛的应用,主要有范围问题、最值问题等.解一元二次不等式的应用问题的关键在于构造一元二次不等式模型.解题的一般步骤是:(1)理清题意:弄清问题的实际背景和意义,用数学语言来描述问题. (2)简化假设:精选问题中的关键变量. (3)列出关系式:建立变量间的不等关系式. (4)求解:运用数学知识解相应不等式.(5)检验并作答:将所得不等式的解集放回原题中检验是否符合实际情况,然后给出问题的答案.学科思想培优一、常数代换法[典例1] 已知正数x ,y 满足x +y =1,则1x +41+y 的最小值为( )A .5 B.143 C.92D .2解析 因为x +y =1,所以x +(1+y )=2,则2⎝ ⎛⎭⎪⎫1x +41+y =[x +(1+y )]⎝ ⎛⎭⎪⎫1x +41+y =4x 1+y +1+yx+5≥24x 1+y ·1+y x +5=9,所以1x +41+y ≥92,当且仅当⎩⎪⎨⎪⎧4x 1+y =1+y x ,x +y =1,即⎩⎪⎨⎪⎧x =23,y =13时,等号成立,因此1x +41+y 的最小值为92.故选C.答案 C 二、消元法[典例2] 设x ,y ,z 为正实数,满足x -2y +3z =0,则y 2xz 的最小值为________.解析 解法一:由x -2y +3z =0,得y =x +3z2,故y 2xz =(x +3z )24xz =14⎝ ⎛⎭⎪⎫6+x z +9z x ≥14⎝ ⎛⎭⎪⎫6+2x z ·9z x =3, 当且仅当x =y =3z 时取等号,即y 2xz 的最小值为3.解法二:由x -2y +3z =0,得x =2y -3z ,x y=2-3zy>0.y 2xz =y 2(2y -3z )z =3⎝ ⎛⎭⎪⎫2-3z y ·3z y ≥3⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫2-3z y +3z y 2=3.当且仅当x =y =3z 时取等号,即y2xz 的最小值为3.答案 3 三、配凑法1.从和或积为定值的角度入手配凑某些不等式的约束条件可看成若干变元的和或积的定值,在不等式的变形中,配凑出这些定值,可使问题巧妙获解.常见的配凑变形有化积为和、常数的代换、加法结合律等常规运算和技巧.[典例3] 设x >0,y >0,x 2+y 22=1,求x 1+y 2的最大值.解 ∵x >0,y >0,x 2与y 22的和为定值,∴x 1+y 2=x 2(1+y 2)=2x 2·1+y 22≤2·x 2+1+y 222=2·x 2+y 22+122=324,当且仅当x 2=1+y 22,即x =32,y =22时取等号,即x 1+y 2的最大值为324.[典例4] 已知x ,y ,z 为正数,且满足xyz (x +y +z )=1,求(x +y )(y +z )的最小值. 解 由条件得x +y +z =1xyz,则(x +y )(y +z )=xy +xz +y 2+yz =y (x +y +z )+xz =y ·1xyz +xz =1xz +xz ≥2,当且仅当1xz=xz ,即xz =1时取等号,故(x +y )(y +z )的最小值为2.[典例5] 设a 1,a 2,a 3,…,a n 均为正实数,求证:a 21a 2+a 22a 3+…+a 2n -1a n +a 2n a 1≥a 1+a 2+a 3+…+a n .证明 为了约去a 2k a k +1中的分母,可考虑配上一项a k +1,于是有a 21a 2+a 2≥2a 1,a 22a 3+a 3≥2a 2,…,a 2n -1a n +a n ≥2a n -1,a 2na 1+a 1≥2a n ,当且仅当a 1=a 2=…=a n 时取等号.以上不等式相加,化简,可得原不等式成立.2.从取等号的条件入手配凑在题中约束条件下,各变元将取某个特定值,这就提示我们可考虑用这些值来进行配凑. [典例6] 设a ,b ,c >0,a +b +c =1,求3a +1+3b +1+3c +1的最大值. 解2·3a +1≤2+3a +12=3a +32,2·3b +1≤3b +32,2·3c +1≤3c +32.以上三式相加,并利用a +b +c =1,得2(3a +1+3b +1+3c +1)≤6,故3a +1+3b +1+3c +1的最大值为3 2.四、判别式法在“三个二次”问题中的应用一元二次方程、一元二次不等式与二次函数的关系十分密切,习惯上称为“三个二次”问题.根据判别式法在解一元二次方程中的作用,可见判别式法在“三个二次”问题中的重要性.1.求变量的取值范围[典例7] 不等式(m 2-2m -3)x 2-(m -3)x -1<0对任意x ∈R 恒成立,求实数m 的取值范围.解 (m 2-2m -3)x 2-(m -3)x -1<0对任意x ∈R 恒成立. ①若m 2-2m -3=0,则m =-1或m =3.当m =-1时,不符合题意;当m =3时,符合题意.②若m 2-2m -3≠0,设y =(m 2-2m -3)x 2-(m -3)x -1<0对任意x ∈R 恒成立. 则m 2-2m -3<0,Δ=b 2-4ac =5m 2-14m -3<0, 解得-15<m <3.故实数m 的取值范围是-15<m <3.2.求最值[典例8] 已知正实数a ,b 满足a +2b +ab =30,试求实数a ,b 为何值时,ab 取得最大值.解 构造关于a 的二次方程,应用“判别式法”.设ab =y , ①由已知得a +2b +y =30. ②由①②消去b ,整理得a 2+(y -30)a +2y =0, ③对于③,由Δ=(y -30)2-4×2y ≥0,即y 2-68y +900≥0,解得y ≤18或y ≥50,又y =ab <30,故舍去y ≥50,得y ≤18.把y =18代入③(注意此时Δ=0),得a 2-12a +36=0,即a =6,从而b =3.故当a =6,b =3时,ab 取得最大值18.3.证明不等式[典例9] 已知x ,y ∈R ,证明:2x 2+2xy +y 2-4x +5>0恒成立.证明 不等式可变形为y 2+2xy +2x 2-4x +5>0,将不等式左边看作关于y 的二次函数,令z =y 2+2xy +2x 2-4x +5,则关于y 的一元二次方程y 2+2xy +2x 2-4x +5=0的根的判别式Δ=4x 2-4(2x 2-4x +5)=-4(x -2)2-4<0,即Δ<0.则对于二次函数z =y 2+2xy +2x2-4x +5,其图象开口向上,且在x 轴上方,所以z >0恒成立,即2x 2+2xy +y 2-4x +5>0恒成立.五、含变量的不等式恒成立问题[典例10] 对于满足0≤p ≤4的一切实数,不等式x 2+px >4x +p -3恒成立,试求x 的取值范围.解 原不等式可化为x 2+px -4x -p +3>0, 令y =x 2+px -4x -p +3 =(x -1)p +(x 2-4x +3).由题设得⎩⎪⎨⎪⎧x 2-4x +3>0(p =0),4(x -1)+x 2-4x +3>0(p =4),解得x >3或x <-1.故x 的取值范围是x <-1或x >3.。

高中数学高三第六章不等式一元二次不等式及其解法(教案)

高中数学高三第六章不等式一元二次不等式及其解法(教案)

高三一轮复习 6.2 一元二次不等式及其解法【教学目标】1.会从实际问题的情境中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。

【重点难点】1。

教学重点:会解一元二次不等式并了解一元二次不等式与相应的二次函数、一元二次方程的联系;2。

教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】环节二:意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是________.解析[由题可得f(x)<0对于x∈[m,m+1]恒成立,即错误!解得-错误!〈m〈0.答案错误!知识梳理:知识点1 三个“二次”的关系ΔacΔ〉0Δ=0Δ数+a〉象次有两相异实根有两相等实根没有ax2+bx+c=0(a>0)的根x1,x2(x1<x2)x1=x2=-错误!ax2+bx+c〉0 (a>0)的解集{x|x〈x1或x〉x2}{x|x≠x1}Rax2+bx+c<0 (a〉0)的解集{x|x1〈x<x2}∅∅知识点2 用程序框图表示ax2+bx+c>0(a>0)的求解过程1.必会结论;(1)(x-a)(x-b)〉0或(x-a)(x-b)〈0型不等式解法教师引导学生及时总结,以帮助学生形成完整的认知结构。

由常见问题的解决和总结,使学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) (2)
(3) (4)
2.一元二次方程x2–2x = 0的解是()
A、0B、0或2 C、2 D、此方程无实数解
3.关于x的一元二次方程ax2+bx+c=0,若a+b+c=0则该方程必有一根为()
(A)1(B)—1(C)0(D)2
4.解下列方程
(1)(2x+3)2-25=0.(直接开平方法)(2) (配方法)
A.(x-4)2=9 B.(x+4)2=9; C.(x-8)2=16 D.(x+8)2=57
2.6关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根为0,则a的值为.
3.用配方法将二次函数 写成形如 的形式,则m、n的值分别是()
BA、 B、 C、 D、
4.为了美化城市,经统一规划,将一正方形草坪的南北方向增加3m,东西方向缩短3m,则改造后的长方形草坪面积与原来正方形草坪面积相比( )C
3.每件商品的成本是120元,试销了一阶段后,发现每件售价(元)与产品的日销售量(件)始终存在下表中的数量关系,但每天的盈利(元)却不一样.为找到每件产品的最佳定价,商场经理请一位营销策划员通过计算,在不改变每件售价(元)与日销售量(件)之间数量关系的情况下,每件定价为 元时,每日盈利可达到最佳数1600元.若请你做这位营销策划员, 的值应是几?
(3)(x+2)2=3(x+2)(因式分解法)(4) (公式法)
4.用适当的方法解下列方程:
(1)x(3x+1)=9x+3(2)
(3)(2x+1)2=(x-1)2(4)x2+6x=1
(5)(x-2)(x+3)=66;(6)(x+1)2=3x+2.
【中考聚焦】
1.用配方法解一元二次方程x2+8x+7=0,则方程可变形为( ).
例3.已知:如图,在△ABC中,∠B=900,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?
(2)如果P、Q分别从A、B同时出发,那么几秒后,PQ的长度等于5cm?
解——解出所列的方程
验——将方程的解代入方程中检验,回到实际问题中检验
答——作答下结论
【典型例题】
例1.将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个,问为了赚得8000元的利润,售价应定为多少?这时应进货多少个?
例2.某电脑公司2007年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%,该公司预计2009年经营总收入要达到2160万元,且计划从2007年到2009年,每年经营总收入的年增长率相同,问2008年预计经营总收入为多少万元?
每件售价(元)
130
150
165
每日销售(件)
70
50
35
4.(2006年重庆市)机械加工需要用油进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油量为90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.
(A)只有小敏回答正确 (B)只有小聪回答正确
(C)小敏、小聪回答都正确 (D)小敏、小聪回答都不正确
3.已知关于x的一元二次方程 的一个根是零,求m的值。
4.已知多项式 .试说明:不论x为任何实数,此多项式的值总为正数。
5.用适当的方法解下列方程:
(1) (2)
(3) (4)
【当堂反馈】
1.下列方程中哪些是一元二次方程?试说明理由。
(1)甲车间通过技术革新后,加工一台大型机械设备润滑油用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?
(2)乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%.这样乙车间加工一台大型机械设备的实际耗油量下降到12千克.问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?
5.如图,等腰Rt△ 中, ,动点 从点 出发,沿 向点 移动.通过点 引平行于 、 的直线与 、 分别交于点R、Q,问:AP等于多少厘米时,平行四边形PQCR的面积等于16cm2?
【中考聚焦】
1.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图3-9-4所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为 cm,那么 满足的方程是()
C. D.
3.小娟家有一块矩形花园,他爸爸想把它改建成正方形,这样就必须将长减少3m,宽增加2m,同时面积减少5m2.问改建后的花园面积为m2
4.某百货商店服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六·一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件.要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?
7.观察下表,填表后再解答问题:
(1)试完成下列表格:
序号
1
2
3

图形

的个数
8
24

的个数
1
4

(2)试求第几个图形中“ ”的个数和“ ”的个数相等?
第一轮复习教学案一元二次方程的应用
总第课时
教学过程
个人主页
【知识梳理】
解一元二次方程的数学应用题的一般步骤:
找——找出题中的等量关系
设——设未知数
列——列出方程,即根据找出的等量关系列出含有未知数的等式
(2)配方法:配方法解一元二次方程的步骤:1、把常数项移到方程右边,再在方程的两边同时除以使新方程的二次项系数为1;2、在方程的两边各加上的一半的平方,使左边成为完全平方;3、如果方程的右边整理后是非负数,用直接开平方法解之,如果右边是个负数,则指出原方程无实根。
(3)公式法:一元二次方程 的求根公式。
第一轮复习教学案一元二次方程
总第课时
教学过程
个人主页
【知识梳理】
1.只含有,并且未知数的最高次数是的整式方程叫做一元二次方程).通常可写成如下的一般形式:。其中 叫做, 叫做; 叫做, 叫做, 叫做。
2.一元二次方程的解法
(1)直接开平方法:对于形如 (a≠0,a ≥0)的方程,都可以用直接开平方法解。解法的根据是。要特别注意,由于负数没有平方根,所以括号中规定了范围,否则方程无实数解。
A.增加6m2B.增加9m2C.减少9m2D.保持不变
5.在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为B
A.600m2B.551m2
C.550m2D.500m2
6.解下列方程
(1)3x2-x=0.(2)3x2-5x=2.(3)2x2+x-7=0.
A.x2+130x-1400=0B.x2+65x-350=0
C.x2-130x-1400=0D.x2-长为40米,宽为26米的矩形场地 上修建三条同样宽的甬路,使其中两条与 平行,另一条与 垂直,其余部分种草,若使每一块草坪的面积都为144米2,则甬路的宽度为。
(3)在(1)中,△PBQ的面积能否等于7cm2?说明理由.
【当堂反馈】
1.直角三角形的面积是30,两直角边的和是17,则斜边长为()
A.17 B.26 C.30 D.13
2.某型号的手机连续两次降价,每个售价由原来的1 185元降到了580元.设平均每次降价的百分率为 ,则列出方程正确的是()
A. B.
(4)因式分解法:因式分解法解一元二次方程的根据是:若A·B=0,则A=0或B=0。
【典型例题】
1.等腰三角形的底和腰是方程x2-6x+8=0的两根,则这个三角形的周长为()
A.8 B.10 C.8或10 D.不能确定
2.钟老师出示了小黑板上的题目(如图)后,小敏回答:“方程有一根为1”,小聪回答:“方程有一根为2”。则你认为( )
相关文档
最新文档