一元二次方程导学案教案

合集下载

人教版九年级数学上册(RJ)第21章 一元二次方程 导学案 一元二次方程的根与系数的关系

人教版九年级数学上册(RJ)第21章 一元二次方程 导学案 一元二次方程的根与系数的关系

第二十一章一元二次方程21.2 解一元二次方程*21.2.4 一元二次方程的根与系数的关系学习目标:1.探索一元二次方程的根与系数的关系.2.不解方程利用一元二次方程的根与系数的关系解决问题. 重点:探索一元二次方程的根与系数的关系.难点:不解方程利用一元二次方程的根与系数的关系解决问题.一、知识链接1.一元二次方程的求根公式是什么?2.如何用判别式b2-4ac来判断一元二次方程根的情况?算一算解下列方程并完成填空:(1)x2+3x-4=0; (2)x2-5x+6=0; (3)2x2+3x+1=0.想一想方程的两根x1,x2与系数a,b,c有什么关系?二、要点探究探究点1:探索一元二次方程的根与系数的关系猜一猜(1)一元二次方程 (x-x1)(x-x2) = 0 (x1,x2为已知数) 的两根是什么?若将此方程化为x2 + px + q = 0 的形式,你能看出 x1,x2与 p,q 之间的关系吗?(2)通过上表猜想,如果一元二次方程 ax2+bx+c=0(a≠0)的两个根分别是x1、 x2,那么,你可以发现什么结论?证一证:x1 + x2= x1·x2=归纳总结:一元二次方程的根与系数的关系如果ax2+bx+c=0(a≠0)的两个根为x 1、x2,那么12bx xa ,12cx xa.(前提条件是b2-4ac≥0).(1) x2–6x–15 = 0; (2) 3x2+7x-9 = 0; (3) 5x–1 = 4x2.归纳:在求两根之和、两根之积时,先把方程化为一般式,判别Δ≥0,如是则代入 a、b、c的值即可.例2 已知关于x的方程5x2+kx-6=0的一个根是2,求它的另一个根及k 的值.变式题已知关于的值.例3 不解方程,求方程2x2+3x-1=0的两根的平方和、倒数和.练一练设x1,x2为方程x2-4x+1=0的两个根,则:(1) 12x x , (2)12xx ,(3) 2212x x , (4)212()x x .归纳:求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.常见的求值式子如下: 12111.x x +=22122.x x += 12213.=x xx x + 124.(1)(1)x x ++= 125.||=x x -例4 设x 1,x 2是方程 x 2-2(k -1)x + k 2 =0的两个实数根,且2212x x 4,求k 的值.方法总结:根据一元二次方程两实数根满足的条件,求待定字母的值时,务必要注意方程有两实数根的条件,即所求的字母代入方程中,方程应该满足Δ≥0 .2b x a,1c x a.2221212()2x x x x x 2221212)()4x x x x x122121x x x x x......1.如果-1是方程2x 2- = .2.已知一元二次方程x 2+px+q=0的两根分别为-2和1,则p = , q = .3.已知关于 的值.4.已知x 1,x 2是方程2x 2+2kx+k -1=0的两个根,且(x 1+1)(x 2+1)=4.(1)求k的值; (2)求(x1-x2)2的值.5.设x1,x2是方程3x2+4x-3 = 0的两个根.利用根系数之间的关系,求下列各式的值:(1) (x 1 + 1)(x2 + 1); (2)2112.x xx x拓展提升6. 当k为何值时,方程2x2-kx+1=0的两根之差为1.7.已知关于-2=0(1)若方程有实数根,求实数m的取值范围;(2)若方程两根x1,x2满足|x1-的值.242bb ac xa.时,方程有两个相1232课堂探究二、要点探究探究点1:探索一元二次方程的根与系数的关系 猜一猜=b a ,x 1x 2证一证:(注:b221242b b ac x x a +-+=2b b a -+-= 22ba-=.b a =- 1222b b x x a a•-+-⋅=()()22244b b ac a ---=244ac a=.ca =例1 解:(1) a=1 , b= – 6 , c= – 15. Δ = b 2– 4ac =( – 6 )2 – 4 × 1 ×(– 15) = 96 > 0. ∴方程有两个实数根.设方程的两个实数根是x 1,x 2,那么x 1 + x 2 = –( – 6 ) =6,x 1 x 2 = – 15 .(2)a = 3 , b =7, c = –9. Δ= b 2 - 4ac = 72 –4×3×(-9) =157 > 0,∴方程有两个实数根.设方程的两个实数根是x 1,x 2,那么x 1 + x 2 =73, x 1 x 2 =933.(3)方程可化为4x 2–5x +1 =0,a =4,b = – 5,c = 1.Δ = b 2- 4ac =(– 5)2 – 4×4×1=9>0.∴方程有两个实数根.设方程的两个实数根是x 1, x 2,那么x 1 + x 2 =5544,x 1 x 2 =1.4=6.5=3.5+ x 2=2+ 35=.5k 得k=答:方程的另一个根是3,5k=- 解:设方程的两个根分别是+ x 2=1+ x =5 .121231,.22x x x 222121122)2,x xx x x ∴22221212123113()22.224xxx x x x 121212131 3.22x x x x x练一练 (1)4 (2)1 (3)14 (4)12例4 解:由方程有两个实数根,得22221212()2x x x x x = 4(k 222x 4,得 2k +4 =4,解得k 1=0,k 2=4 . 当堂检测1. ;-3.2. 1 ; -2.1161.3c x a 116.3x 12121,.2k x k x x 1()1 4.2kk 解得k = -7;4.-则222121212)()474(4)65.x x x x x12124, 1.3b c x x x aa)+1=441()1.33122221121221212()234.9x x x x x x x x x x x x 12121,.22kx x x 22121212()()4 1.x x x x x x 22141,3,2 3.222k k k7.解:(1)方程有实数根,所以Δ=b 2-4ac=(-2m)2-4·m·(m-2=4m 2-4m 2+8m=8m ≥0.∵m≠0,∴m 的取值范围为m >0. 121222,.m x x x m22121212()()4 1.x x x x x x 22241.m m解得m=8.经检验,解.。

21.2 降次——解一元二次方程(1) 导学案

21.2  降次——解一元二次方程(1)  导学案

21.2 降次——解一元二次方程(第1课时)学习目标1. 能根据平方根的意义解形如x 2=p 及ax 2+p=0的一元二次方程2. 能运用开平方法解形如(mx +n)2=P 的方程3.体会“降次”、“整体”的数学思想教学过程一、情境引入问题:一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?思考1:本题的等量关系是什么?思考2:设正方体的棱长为xdm ,请列出方程并化简.思考3:你能求出方程的解?理由是什么?思考4:问题答案是什么?二、探索新知1.下列各数是否有平方根,如果有请求出该数的平方根?1, 9, 3, 0, -42.你能根据平方根的意义求出下列方程的解?思考:方程x 2=P (P 为常数)的解有几种情况利用平方根的意义直接开平方求一元二次方程的根的方法叫做直接开平方法.三、课堂练习x 2=1 x 2=9 x 2=3 x 2=0 x 2=−4四、变式练习思考:上面解方程过程中体现了那些思想方法?归纳:直接开平方法有几个关键步骤?五、拓展练习六、课堂小结通过本节课学习你收获那些知识?体会到什么思想方法?你还有那些体验?七、课后作业见精准作业单 (1) x 2=7;(2) x 2+2009=0.变式1:2x 2=1 (2x)2=1 变式2:变式3:(x −1)2=9 变式4:(2x −1)2=9 变式5:3(2x −1)2=9 1. 若x 2-2xy +y 2=4,则x -y 的值为( ) 2. A .2 B .-2 C .±2 D .不能确定 2.若实数a ,b 满足(a 2+b 2-3)2=25,则a 2+b 2的值为( ) 3.A .8 B .8或-2 C .-2 D .283.若代数式2x 2+3与2x 2-4的值互为相反数,则x = .。

用因式分解法求解一元二次方程导学案

用因式分解法求解一元二次方程导学案

用因式分解法求解一元二次方程导学案一、学习目标1、理解因式分解法解一元二次方程的概念。

2、掌握用因式分解法解一元二次方程的一般步骤。

3、能够熟练运用因式分解法求解简单的一元二次方程。

二、学习重点1、用因式分解法解一元二次方程的条件。

2、因式分解法解一元二次方程的一般步骤。

三、学习难点1、如何通过观察方程的特点,选择合适的因式分解方法。

2、理解因式分解法解一元二次方程的原理。

四、知识回顾1、什么是一元二次方程?一般形式是什么?一元二次方程是只含有一个未知数,并且未知数的最高次数是 2 的整式方程。

一般形式为:$ax^2 + bx + c = 0$($a ≠ 0$)。

2、我们已经学过哪些解一元二次方程的方法?直接开平方法和配方法。

3、什么是因式分解?把一个多项式化为几个整式的积的形式,叫做因式分解。

五、新课导入我们已经学习了直接开平方法和配方法来解一元二次方程,今天我们将学习一种新的解一元二次方程的方法——因式分解法。

六、探究因式分解法解一元二次方程(一)思考:如果$ab = 0$,那么$a$和$b$的值可能是多少?因为$0$乘以任何数都得$0$,所以当$ab = 0$时,$a = 0$或$b =0$。

(二)观察下面的方程:$(x 2)(x + 3) = 0$因为两个因式的乘积为$0$,所以$x 2 = 0$或$x + 3 = 0$解得$x_1 = 2$,$x_2 =-3$(三)一般地,如果$a \times b = 0$,那么$a = 0$或$b = 0$,这就是说,当一个一元二次方程的一边是$0$,而另一边易于分解成两个一次因式的乘积时,我们就可以用因式分解的方法求解。

这种用因式分解解一元二次方程的方法称为因式分解法。

七、因式分解法解一元二次方程的一般步骤1、将方程右边化为 0。

2、将方程左边因式分解。

3、令每个因式等于 0,得到两个一元一次方程。

4、解这两个一元一次方程,它们的解就是原方程的解。

2.2一元二次方程的解法(2)导学案

2.2一元二次方程的解法(2)导学案

2.2 一元二次方程的解法(2)班级__________________ 姓名__________________〖学习目标〗1.巩固用配方法解一元二次方程的基本步骤;2.会用开平方法解二次项系数的绝对值不为1的一元二次方程。

〖学习重点与难点〗重点:用配方法解二次项系数的绝对值不是1的一元二次方程。

难点:二次项系数为小数或分数时,用配方法解一元二次方程是本节学习的难点。

一、复习引入(把握时间,看看你的复习情况)1.用配方法解下列方程:(1) 162=+x x (2)11342-=x x2.回顾:上个星期学习的配方法解方程有哪些步骤?3.思考:当二次项系数不为1时,我们该怎么办?比如 11052+=x x ,此时二次项系数不为1,你觉得怎么用配方法来解?4.用配方法解二次项系数不为1的一元二次方程,有哪些步骤?跟之前比较,多了哪些步骤?二、例题精讲(先思考,然后和老师一起完成)例3 用配方法解下列一元二次方程:⑴03422=-+x x ⑵03832=--x x⑶x x 353122=-⑷05.01.02=++x x三、巩固练习1.用配方法解方程0122=--x x 时,配方结果正确的是( ) (A )43)21(2=-x (B )43)41(2=-x (C )1617)41(2=-x (D )169)41(2=-x2.用配方法解下列方程:⑴03622=++x x ⑵05722=+-x x四、当堂检测(仔细思考,总结解题的步骤)用配方法解方程: ⑴132)1(=--n n n ⑵02222=--x x⑶02142=++x x ⑷08121432=--x x总结:用配方法解二次项系数不为1的一元二次方程,有哪些步骤?你又掌握了哪些?五、小结这节课,你收获了哪些知识?。

一元二次方程优秀教案

一元二次方程优秀教案

一元二次方程优秀教案•相关推荐一元二次方程优秀教案(通用11篇)作为一名默默奉献的教育工作者,可能需要进行教案编写工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

那么大家知道正规的教案是怎么写的吗?以下是小编整理的一元二次方程优秀教案,仅供参考,大家一起来看看吧。

一元二次方程优秀教案篇1教学目标1.了解整式方程和一元二次方程的概念;2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式,一元二次方程。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学重点和难点:重点:一元二次方程的概念和它的一般形式。

难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。

教学建议:1.教材分析:1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。

2)重点、难点分析理解一元二次方程的定义:是一元二次方程的重要组成部分。

方程,只有当时,才叫做一元二次方程。

如果且,它就是一元二次方程了。

解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合一元二次方程的定义。

(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。

如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。

如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。

教学目的1.了解整式方程和一元二次方程的概念;2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

《一元二次方程》数学教案(优秀5篇)

《一元二次方程》数学教案(优秀5篇)

《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一教学设计思想解一元二次方程有四种方法,直接开平方法、配方法、公式法、因式分解法,这四种方法各有千秋。

直接开平方法很简单,在这里不做过多的介绍。

为保证学生掌握基本的运算技能,教学中进行了一定量的训练,但要避免学生简单的模仿。

我们在探究一元二次方程解法的过程中,要加强思想方法的渗透,发展学生的思维能力。

在解一元二次方程的几种方法中,均需要用到转化的思想方法。

如配方法需要将方程转化为能直接开平方的形式,公式法能根据一元二次方程转化为两个一元一次方程,所有这些均体现了转化的思想。

在教学时老师引导学生在主动进行观察、思考核探究的基础上,体会数学思想方法在其中的作用,充分发展学生的思维能力。

教学目标知识与技能:1.会用配方法、公式法、因式分解法解简单数字系数的一元二次方程。

2.能够根据一元二次方程的特点,灵活选用解方程的方法,体会解决问题策略的多样性。

过程与方法:1.参与对一元二次方程解法的探索,体验数学发现的过程,对结果比较、验证、归纳、理清几种解法之间的关系,并能根据方程的特点灵活选择适当的方法解一元二次方程。

2.在探究一元二次方程的过程中体会转化、降次的数学思想。

情感态度价值观:在解一元二次方程的实践中,交流、总结经验和规律,体验数学活动乐趣。

教学重难点重点:掌握配方法、公式法、因式分解法解一元二次方程的步骤,并熟练运用上述方法解题。

难点:根据方程的特点灵活选择适当的方法解一元二次方程。

教学方法探索发现,讲练结合元二次方程教案篇二一、教学目标1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。

2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。

3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。

二、重点·难点·疑点及解决办法1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。

第二十二章 一元二次方程导学案

第二十二章 一元二次方程导学案

第二十二章 一元二次方程22.1一元二次方程 第1课时 一元二次方程的概念学习目标:1、 正确理解一元二次方程的概念,掌握一元二次方程的一般形式,能将一元二次方程化为一般形式,正确识别二次项系数、一次项系数及常数项。

2、 经历抽象出一元二次方程的过程,体会方程是刻画现实世界中数量关系的一个有效工具。

3、 培养分析问题和解决问题的能力,提高应用意识。

重点:一元二次方程的概念和一般形式难点:正确理解和掌握一般形式中的a ≠0 ,从实际问题中抽象出一元二次方程. 课前预习1:1、你还记得什么叫方程?什么是一元一次方程?它的一般形式是怎样的?2、我们知道了利用一元一次方程可以解决生活中的一些实际问题,你还记得利用一元一次方程解决实际问题的步骤吗?3、一元二次方程的概念:方程的两边都是整式,只含有 未知数(一元),并且未知数的 是2(二次)的方程,叫做一元二次方程。

4、一元二次方程必须同时满足的三个条件: (1) (2) (3) 5、一元二次方程的一般形式:02=++c bx ax,其中 是二次项, 是二次项系数; 是一次项, 是一次项系数; 是常数项。

6、下列方程中是一元二次方程的有:_________(填序号)①(x-1)(2x+1)=3 ②22=+x y ③322=-x ④21=+aa7、一元二次方程5232+=x x 的一般式为_________________,其中二次项系数为_____,一次项系数为________,常数项为________。

8、若关于X 的方程0232=+-x ax是一元二次方程,则a 的取值范围___________。

此内容为课前预习导学提供学生课前展示,不同学生有不同的体会,要尊重学生的个体差异,激发学生主动参与意识,.为每个学生都创造了数学活动中获得活动经验的机会。

课前预习2:一、复习导入:我们已经学习过的方程有一元一次方程、二元一次方程(组)、分式方程,请你分别举一个例子。

一元二次方程复习导学案

一元二次方程复习导学案

解一元二次方程复习一、知识回顾1.一元二次方程的概念:形如:()002≠=++a c bx ax2.一元二次方程的解法:(1)直接开平方法:(2)配方法:(3)因式分解法:(4)公式法:求根公式:()042422≥--±-=ac b aac b b x1、按要求解下列方程:①9)12(2=-x (直接开平方法) ②0432=-+x x (用配方法)③0822=--x x (用因式分解法) (4) 3x 2+5(2x+1)=0(用公式法)3.一元二次方程的根的判别式:(1)当 时,方程有两个不相等.....的实数根; (2)当 时,方程有两个相等....的实数根; (3)当 时,方程没有实数根.....。

如果1x ,2x 是一元二次方程20ax bx c ++=的两根,那么有1212,b c x x x x a a+=-=. 这是一元二次方程根与系数的关系二、基础训练一元二次方程的概念1.下列关于x 的方程: 其中是一元二次方程的有( )A.4个B.3个C.2个D.1个2、关于x 的方程(m+3)x |m|-1-2x+4=0是一元二次方程,则m=解下列方程(1)(2x +3)2-25=0. (2) 02722=--x x .(3)()()2322+=+x x 1)4(,02)3(,53)2(,032)1(223222=+=+-=+=--y x x x x x x x(4)0)52()13(22=+--x x (5)2232)2(y y y =-+根的判别式(1)关于x 的一元二次方程x 2-4x+2m=0无实数根,求m 的取值范围(2)关于x 的一元二次方程mx 2-4x+2=0有实数根,求m 的取值范围.(3)关于x 的方程mx 2-4x+2=0有实数根,求m 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010-2011学年度第一学期初三数学电子备课第四章导学案(总计13教时)备课人:一元二次方程(1)一 、学习目标1 正确理解一元二次方程意义,并能判断一个方程是否是一元二次方程;2 知道一元二次方程的一般形式是c b a c bx ax 、、(02=++是常数,0a ≠) ,能说出二次项及其系数,一次项及其系数和常数项;3 理解并会用一元二次方程一般形式中a ≠0这一条件4 通过问题情境,进一步体会学习和探究一元二次方程的必要性,体会数学知识来源于生活,又能为生活服务,从而激发学习热情,提高学习兴趣。

二 、知识准备:1、只含有____________ 个未知数,且未知数的最高次数是___________的整式方程叫一元一次方程2、方程2(x+1)=3的解是________________3、方程3x+2x=含有_______ 个未知数,含有未知数项的最高次数是_______________ ,它____________ (填“是”或“不是”)一元一次方程。

三 、学习内容1、 根据题意列方程:⑴正方形桌面的面积是2㎡,求它的边长。

设正方形桌面的边长是xm ,根据题意,得方程_______________,这个方程含有_____个未知数,未知数的最高次数是_____。

⑵如图4-1,矩形花园一面靠墙,另外三面所围的栅栏的总长度是19m ,如果花园的面积是24㎡,求花园的长和宽。

设花园的宽是xm,则花园的长是(19-2x )m,根据题意,得:x(19-2x)=24,去括号,得:______________这个方程含有____________个未知数,含有未知数项的最高次数是________。

⑶如图,长5m 距离与梯子顶端向下滑动的距离相等,求梯子滑动的距离。

(3+x )+设梯子滑动的距离是xm ,根据勾股定理,滑动的梯子的顶端离地面4m ,则滑动后梯子的顶端离地面(4-x )m ,梯子的底端与墙的距离是(3+x )m 。

根据题意,得:25x 3422=++-)()(x 去括号,得:_____________________ 移项,合并同类项,得:-_________________此方程含有_____________个未知数,含有未知数项的最高次数是______。

2、概括归纳与知识提升:⑴像0241922=+-x x ,02=-x x ,22=x 这样的方程,只含有一个未知数,且未知数的最高次数是2的方程叫一元二次方程。

〖思考感悟〗判断下列方程是否是一元二次方程并说明理由。

322=+y x ,043132=--x x ,2232x x x =--, 12=x . (2)任何一个关于x 的一元二次方程都可以化成下面的形式:c b a c bx ax 、、(02=++是常数,0a ≠) 这种形式叫做一元二次方程的一般形式,其中c bx ax 、、2分别叫做二次项、一次项和常数项,a 、b 分别叫做二次项系数和一次项系数。

练习:把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项:(1)x (11-x )=30 (2)(20+2x )(40-x )=1200(3))2(2)2(3-=-x x x (4) 32-=+-x x四、 知识梳理含有_____________个未知数,并且含有未知数的最高次数是_____________的整式方程叫一元二次方程,它的一般形式是_______________________,二次项是_________,一次项是_________,常数项是_________。

五 、达标检测1、方程x (4x+3)=3x+1化为一般形式为_____________,它的二次项系数是______________,一次项系数是_______________,常数项是____________________2、(1)方程n nx x +=-72中,有一个根为2,则n 的值.(2)一元二次方程()01122=-+++m x x m 有一个解为0,试求12-m 的解3、根据题意列方程(1)一个矩形纸盒的一个面中长比宽多2㎝,这个面的面积是15㎝2,求这个矩形的长与宽;(2)两个连续正整数的平方和是313,求这两个正整数;(3)两个数的和为6,积为7,求这两个数;(4)一个长方形的周长是30㎝,面积是54㎝2,求这个长方形的长与宽。

教后反思:一元二次方程(2)学习目标1、了解形如())0(2≥=+k k h x 的一元二次方程的解法 —— 直接开平方法。

2、会用直接开平方法解一元二次方程。

3、理解直接开平方法与平方根的定义的关系。

4、使学生了解转化的思想在解方程中的应用,渗透换元思想。

二、知识准备1、把下列方程化为一般形式,并说出各项及其系数。

(1)245x x -=(2)235x =(3)()()()22122-+=+-y y y y 2、要求学生复述平方根的意义。

(3)4 的平方根是 ,81的平方根是 ,100的算术平方根是 。

三、学习内容1、如何解方程042=-x 呢由平方根的定义可知42=x 即此一元二次方程两个根为2,221-==x x 。

我们把这种解一元二次方程的方法叫直接开平方法。

形如方程02=-k x )0(≥k 可变形为)0(2≥=k k x 的形式,用直接开平方法求解。

2、形如())0(2≥=+k k h x 的方程的解法。

说明:(1)解形如())0(2≥=+k k h x 的方程时,可把()h x +看成整体,然后直开平方程。

(2)注意对方程进行变形,方程左边变为一次式的平方,右边是非负常数,(3)如果变形后形如()k h x =+2中的K 是负数,不能直接开平方,说明方程无实数根。

(4)如果变形后形如()k h x =+2中的k=0这时可得方程两根21,x x 相等。

3、试一试解方程(1)042=-x (2)0142=-x(3)(x +1)2-4=0; (4)12(2-x )2-9=0.四、知识梳理1、用直接开平方法解一元二次方程的一般步骤;2、对于形如b k x a =-2)((a ≠0,a b ≥0)的方程,只要把)(k x -看作一个整体,就可转化为n x =2(n ≥0)的形式用直接开平方法解。

3、任意一个一元二次方程都可以用直接开平方法解吗五、达标检测1、解下列方程:(1)x 2=169; (2)45-x 2=0;(3)12y 2-25=0; (4)4x 2+16=02、解下列方程:(1)(x +2)2-16=0 (2)(x -1)2-18=0;(3)(1-3x)2=1; (4)(2x +3)2-25=0教后反思:一元二次方程(3)学习目标1、经历探究将一元二次方程的一般(n ≥0)形式的过程,进一步理解配方法的意义2、使学生掌握配方法的推导过程,熟练地用配方法解一元二次方程。

3、会用配方法解二次项系数为1的一元二次方程,体会转化的思想方法二、知识准备1、请写出完全平方公式。

(a +b )2 = (a -b )2 =2、用直接开平方法解下例方程:(1)5)3(2=+x (2)134)5(2=+-x3、思考:如何解下例方程(1)16442=+-x x (2)925102=+-x x三、学习内容问题1、请你思考方程5)3(2=+x 与0462=++x x 有什么关系,如何解方程0462=++x x 呢问题2、能否将方程0462=++x x 转化为(n m x =+2)的形式呢 0462=++x x先将常数项移到方程的右边,得x 2+6x = -4即 x 2+2·x ·3 = -4在方程的两边加上一次项系数6的一半的平方,即32后,得x 2+2·x ·3 +32 = -4+32 (x +3)2 = 5解这个方程,得x +3 = ±5所以 x 1 = ―3+5 x 2 = ―5由此可见,只要先把一个一元二次方程变形为(x +m )2= n 的形式(其中m 、n 都是常数),如果n ≥0,再通过直接开平方法求出方程的解,这种解一元二次方程的方法叫做配方法。

四、典型例题例1、解下例方程(1)2x -4x +3=0. (2)x 2+3x -1 = 0例2、解下列方程(1)2x -6x -7=0; (2)2x +3x +1=0.四、知识梳理用配方法解一元二次方程的一般步骤:1、把常数项移到方程右边;2、在方程的两边各加上一次项系数的一半的平方,使左边成为完全平方;3、利用直接开平方法解之。

思考:为什么在配方过程中,方程的两边总是加上一次项系数一半的平方五、达标检测1、将下列各式进行配方:⑴2x +8x +_____= ( x + ____ )2 ⑵2x -5x +_____=( x- ____)2(3)2x -62x +_____= ( x - _____ )22、.填空:(1)++x x 62( )=( )2(2)2x -8x +( )=( )2(3)2x +x +( )=( )2 (4)42x -6x +( )=4( )23、用配方法解方程:(1)2x +2x =5; (2)2x -4x +3=0.(3)2x +8x -2=0 (4)2x -5 x -6=0.(5)276x x +=-4、试用配方法证明:代数式x 2+3x-23的值不小于-415。

教后反思:一元二次方程(4)一、 知识目标1、会用配方法二次项系数不为1的一元二次方程2、经历探究将一般一元二次方程化成()0()2≥=+n n m x 形式的过程,进一步理解配方法的意义3、在用配方法解方程的过程中,体会转化的思想。

重点:使学生掌握用配方法解二次项系数不为1的一元二次方程难点:把一元二次方程转化为的(x +m )2= n (n ≥0)形式二、知识准备1、用配方法解下列方程:(1)x 2-6x-16=0; (2)x 2+3x-2=0;2、请你思考方程x 2-25x+1=0与方程2x 2-5x+2=0有什么关系三、学习内容如何解方程2x 2-5x+2=0点拨:对于二次项系数不为1的一元二次议程,我们可以先将两边同时除以二次项系数,再利用配方法求解四、典型例题例1、解方程:01832=++x x例2、-01432=++x x五、知识梳理1、对于二次项系数不为1的一元二次方程,用配方法求解时要注意什么2、用配方法解一元二次方程的步骤是什么系数化一,移项,配方,开方,解一元二次方程六、达标检测1、填空:(1)x 2-31x+ =(x- )2, (2)2x 2-3x+ =2(x- )2. (3)a 2+b 2+2a-4b+5=(a+ )2+(b- )22、用配方法解一元二次方程2x 2-5x-8=0的步骤中第一步是 。

相关文档
最新文档