《相似多边形》教学设计(辽宁省市级优课)

合集下载

相似多边形 优秀教案

相似多边形 优秀教案

相似多边形教学设计教学目标(一)教学知识点经历探究图形的形状、大小,图形的边、角之间的关系,掌握相似多边形的定义以及相似比,并能根据定义判断两个多边形是否是相似多边形.(二)能力训练要求经历探索图形的边、角关系,培养学生的观察能力,分析判断能力.(三)情感与价值观要求通过观察、推断可以获得教学猜想,体验数学活动充满着探索性和创造性.教学重点探索相似多边形的定义,以及用定义去判断两个多边形是否相似.教学难点探索相似多边形的定义的过程.教学方法指导探索法教学过程Ⅰ.创设情境,引入新课类比全等图形,引入相似平面图形:地图,交通信号灯标志,启发引导同学们观察思考生活中的相似多边形。

活动目的:培养学生从图片直观地获得信息的读图能力,并通过亲身体验归纳总结相似图形的共同特点。

而且由此自然引出课题:“相似多边形”。

Ⅱ.新课讲解一、探究相似多边形的定义观察图片,由交通信号灯(四边形),再到地图连线得到任意六边形,初步感受到由特殊到一般的思想方法。

为了研究方便,从一般的六边形中,抽象出正方形,再过渡到矩形,观察思考:在上图两个多边形中,什么变了?什么没变?它们有怎样的变化规律?是否有相等的内角?相等内角的两边是否成比例?活动目的:根据生活经验和直观判断,以问答的形式引导学生逐步深入的思考多边形相似的条件。

问题的设置是帮助学生直观地寻找相似多边形特点。

请学生动手验证一下,同桌交流想法。

学生们可以从度量或者叠合的角度来完成验证。

学生总结归纳,得到:1、各角对应相等、各边对应成比例的两个多边形叫做相似多边形。

2、相似多边形对应边的比叫做相似比。

3、相似用“∽”表示,读作“相似于”。

(这里要提醒学生注意:在用相似符号记两个多边形时,之所以把表示对3 3 2 4.5 应角顶点的字母写在对应位置上,是因为可以一目了然的知道他们的对应边和对应角,与全等形的记法类似)活动目的:此处留给学生充分的时间与空间去想象和思考。

并培养学生对某个问题作出正确判断、合理解决问题的能力。

《相似多边形》示范课教学设计【数学九年级上册北师大】

《相似多边形》示范课教学设计【数学九年级上册北师大】

第四章图形的相似4.3 相似多边形一、教学目标1.了解相似多边形和相似比的概念,会根据条件判断两个多边形是否为相似多边形.2.掌握相似多边形的性质,能根据相似比进行相关的计算.3.在探索相似多边形本质特征的过程中,进一步发展学生观察、操作、归纳、类比等多方面的能力,提高学生的数学思维水平.4.体会团队合作精神,充分认识数学与人类生活的密切联系,体验数学活动充满探索与创造.二、教学重难点重点:会根据条件判断两个多边形是否为相似多边形.难点:掌握相似多边形的性质,能根据相似比进行相关的计算.三、教学用具电脑、多媒体、课件、教学用具等.四、教学过程设计【情境导入】教师活动:教师出示课件,提出问题,学生思考后回答.观察下面两幅图片提问:每组的两个图形形状相同吗?大小相等吗?预设答案:每组的两个图形形状相同,大小相等;满足这种关系的两个图形叫做全等图形.追问:观察这两个图形形状相同吗?大小相等吗?预设答案:这两个图形形状相同,但大小不相等.思考:它们是什么关系呢?【合作探究】教师活动:通过量一量活动,对各种相似图形特点的一个自然感知的过程,学生用自己的语言归纳总结出相似多边形的特点.问题:图中的两个多边形分别是计算机显示屏上的多边形ABCDEF和投影到银幕上的多边形A1B1C1D1E1F1,它们的形状相同吗?(1)在这两个多边形中,是否有对应相等的内角?(2)在这两个多边形中,夹相等内角的两边是否成比例?教师鼓励学生利用量角器和直尺,对各组内角及对边先测量,再计算,数据会有所差异,是因为测量有误差.预设答案:(1)∠A=∠A1=125°,∠B=∠B1=130°,∠C=∠C1=95°,∠D=∠D1=130°,∠E=∠E1=155°,∠F=∠F1=85°(2)AB : A1B1=2 : 3,BC : B1C1=2 : 3,CD : C1D1=2 : 3,DE : D1E1=2 : 3,EF : E1F1=2 : 3,F A : F1A1=2 : 3.思考:通过量一量活动,你发现了什么?预设答案:图中的六边形ABCDEF与六边想一想:(1)任意两个等边三角形相似吗?预设答案:已知等边三角形的每个角都为60°, 三边都相等. 所以满足边数相等,对应角相等,以及对应边的比相等.(2)任意两个正方形相似吗?任意两个正n边形呢?预设答案:和等边三角形一样,任意两个正方形和正n边形都相似.归纳:任意两个边数相等的正多边形都相似.(3)任意两个菱相似吗?任意的两个矩形是否相似?预设答案:任意两个菱形不一定满足对应角相等,任意两个矩形不一定满足对应边的比相等,所以任意的两个菱形和两个矩形不一定相似.【做一做】一块长3 m、宽1.5 m的矩形黑板如下图所示,镶在其外围的木质边框宽7.5 cm.边框的内外边缘所成的矩形相似吗?为什么?【典型例题】 教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例 已知:如图,四边形ABCD 与四边形A′B′C′D′相似,AD ∥BC ,A′D′∥B′C′,∥A =∥A ′,AD =2,A′D′=4,AB =3,B′C′=6. 求A′B′和BC 的长.分析:由相似比的概念可知对应边的比等于相似比.所以相似比为:AD : A′D′=1:2,再根据对应边中的一条边的长度,即可求出另一条边的长度.解:∵四边形ABCD 与四边形A′B′C′D′相似, ∴相似比12AD k A'D'==,∵AB =3,B′C′=6, ∴A′B′=6,BC =3.教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.如图,矩形ABCD∥矩形EFGH,它们的相似比是2 : 3,已知AB=3 cm,BC=5 cm,求EF,FG的长.2.如图所示的两个五边形相似,求a,b,c,d的值.3.如图,一个矩形广场的长60 m,宽为40 m,广场内两条纵向小路的宽均1.5 m,如果设两条横向小路的宽都为x m,那么当x为多少时,小路内外边缘所围成的两个矩形相似?答案:1.解:∵矩形ABCD∥矩形EFGH,且相似比为2 : 3,∥AB : EF=2 : 3,BC : FG=2 : 3,∥AB=3 cm,BC=5 cm,∴EF=92cm,FG=152cm.2.解:∵两个五边形相似,∴523====7.596d ca b,解得:a=3,b=4.5,c=4,d=6.∴a=3,b=4.5,c=4,d=6.3.解:由题意知,小路内边缘所围成的矩形思维导图的形式呈现本节课的主要内容:教科书第88页。

《27.1相似多边形》》优质课一等奖教案

《27.1相似多边形》》优质课一等奖教案

学段:初中学科:数学九年级:〔下册〕
教学过程一,复习旧课
1.什么叫做相似图形?相似图形有什么一样和不同的地方?
形状一样的图形叫做相似图形·
一样点:形状一样.
不同点:大小不同.
2.相似图形有哪些性质?
〔1〕两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到。

〔2〕全等图形可以看成是一种特殊的相似图形,既不仅形状一样,大小也一样。

〔3〕判断两个图形是否相似,就是看两个图形是不是形状一样,与图形的大小,位置无关,这也是相似图形的本质。

二、情境导入,初步认识
这节课我们就来进一步的研究特殊的相似图形——相似多边形
以下图中的两个多边形相似,观察一下,
它们具有哪些特征?
图中的两个大小不同的四边形ABCD和四边形A
1
B
1
C
1
D
1
中,∠A=∠A
1

∠B=∠B
1
,∠C=∠C
1
,∠D=∠D
1

1
1
1
1
1
1
1
1
A
D
DA
D
C
CD
C
B
BC
B
A
AB
=
=
=,因此四边A
D
B C
1
1
2
1.8
A1
B1C1
D1
1.5
1.5
3
2.7
必做:同步练习册三、运用新知,深化理解。

相似多边形 优秀教案

相似多边形 优秀教案

相似多边形【教学目标】一、教学知识点经历探究图形的形状、大小,图形的边、角之间的关系,掌握相似多边形的定义以及相似比,并能根据定义判断两个多边形是否是相似多边形。

二、能力训练要求经历探索图形的边、角关系,培养学生的观察能力,分析判断能力。

三、情感与价值观要求通过观察、推断可以获得教学猜想,体验数学活动充满着探索性和创造性。

【教学重难点】1.探索相似多边形的定义,以及用定义去判断两个多边形是否相似。

2.探索相似多边形的定义的过程。

【教学方法】指导探索法。

【教学准备】投影片两张第一张(记作§4.4 A)第二张(记作§4.4 B)【教学过程】一、创设问题情境,引入新课[师]大家从语文的角度来分析一下“相似”一词的意思。

[生]“相似”就是差不多,但也不是完全相同,既有相同部分也有不同部分。

[师]很好,那“相似多边形”应怎么理解呢?[生]“相似多边形”即为两个边数相同的多边形,并且形状一样、大小可能不同。

[师]大家的分析能力非常棒,究竟“两个相似多边形”需满足什么条件呢?本节课我们将进行探索。

二、新课讲解1.探究相似多边形的定义投影片(§4.4 A)下图中的两个多边形分别是幻灯片上的多边形ABCDEF 和银幕上的多边形A 1B 1C 1D 1E 1F 1,它们的形状相同吗?图4-14(1)在上图的两个多边形中,是否有相等的内角?设法验证你的猜测。

(2)在上图的两个多边形中,相等内角的两边是否成比例? [师]请大家动手验证一下。

[生]在上图中,六边形ABCDEF 与六边形A 1B 1C 1D 1E 1F 1是形状相同的图形,其中∠A 与∠A 1,∠B 与∠B 1,∠C 与∠C 1,∠D 与∠D 1,∠E 与∠E 1,∠F 与∠F 1分别对应相等,AB 与A 1B 1,BC 与B 1C 1,CD 与C 1D 1,DE 与D 1E 1,EF 与E 1F 1,FA 与F 1A 1的比都相等。

辽宁省丹东市八年级数学下册《相似多边形的性质》教案 北师大版

辽宁省丹东市八年级数学下册《相似多边形的性质》教案 北师大版

第十课时 4.8 相似多边形的性质(一)教学目标 1.知识技能:(1)、相似三角形对应高的比(2)、对应角平分线的比和对应中线的比与相似比的关系.2.过程与方法:.经历探索相似三角形中对应线段比值与相似比的关系的过程,理解相似多边形的性质。

利用相似三角形的性质解决一些实际问题.3.情感态度价值观:通过探索相似三角形中对应线段的比与相似比的关系,培养学生的探索精神和合作意识。

通过运用相似三角形的性质,增强学生的应用意识. 教学重点:相似三角形中对应线段比值的推导 教学难点:运用相似三角形的性质解决实际问题. 教学准备:多媒体课件 教学过程:第一环节:情景引入(体会旗杆高度的测量的要点) 通过复习测量旗杆的高度引入新课 第二环节:相似多边形的性质(一)活动内容:钳工小王准备按照比例尺为3∶4的图纸制作三角形零件,如图4-23,图纸上的△ABC 表示该零件的横断面△A ′B ′C ′,CD 和C ′D ′分别是它们的高.(1)B A AB '',C B BC '',C A AC''各等于多少?(2)△ABC 与△A ′B ′C ′相似吗?如果相似,请说明理由,并指出它们的相似比. (3)请你在图4-23中再找出一对相似三角形.(4)D C CD''等于多少?你是怎么做的?与同伴交流.图4-23[生]解:(1)B A AB ''=C B BC ''=C A AC ''=43(2)△ABC ∽△A ′B ′C ′ ∵B A AB ''=C B BC ''=C A AC'' ∴△ABC ∽△A ′B ′C ′,且相似比为3∶4.(3)△BCD ∽△B ′C ′D ′.(△ADC ∽△A ′D ′C ′) ∵由△ABC ∽△A ′B ′C ′得 ∠B =∠B ′∵∠BCD =∠B ′C ′D ′∴△BCD ∽△B ′C ′D ′(同理△ADC ∽△A ′D ′C ′) (4)D C CD ''=43∵△BDC ∽△B ′D ′C ′ ∴D C CD ''= C B BC ''=43 活动目的: (议一议)已知△ABC ∽△A ′B ′C ′,△ABC 与△A ′B ′C ′的相似比为k .(1)如果CD 和C ′D ′是它们的对应高,那么D C CD''等于多少? (2)如果CD 和C ′D ′是它们的对应角平分线,那么D C CD''等于多少?如果CD 和C ′D ′是它们的对应中线呢?活动效果:(请大家互相交流后写出过程).[生甲]从刚才的做一做中可知,若△ABC ∽△A ′B ′C ′,CD 、C ′D ′是它们的对应高,那么D C CD ''=C B BC''=k . [生乙]如4-23’图,△ABC ∽△A ′B ′C ′,CD 、C ′D ′分别是它们的对应角平分线,那么D C CD ''= C A AC ''=k .图4-23’∵△ABC ∽△A ′B ′C ′∴∠A =∠A ′,∠ACB =∠A ′C ′B ′∵CD 、C ′D ′分别是∠ACB 、∠A ′C ′B ′的角平分线. ∴∠ACD =∠A ′C ′D ′ ∴△ACD ∽△A ′C ′D ′ ∴D C CD''= CA AC''=k .[生丙]如图4-23’’中,CD 、C ′D ′分别是它们的对应中线,则D C CD ''= C A AC''=k .图4-23’’∵△ABC ∽△A ′B ′C ′ ∴∠A =∠A ′,C A AC ''= B A AB''=k . ∵CD 、C ′D ′分别是中线∴D A AD ''=B A AB''2121=B A AB ''=k .∴△ACD ∽△A ′C ′D ′ ∴D C CD ''= C A AC''=k . 由此可知相似三角形还有以下性质.相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比.第三环节:合作学习(相似三角形的性质的应用) 活动内容:图4-24如图4-24所示,在等腰三角形ABC 中,底边BC=60 cm,高AD=40 cm ,四边形PQRS 是正方形.(1)△ASR 与△ABC 相似吗?为什么? (2)求正方形PQRS 的边长. 解:(1)△ASR ∽△ABC ,理由是: 四边形PQRS 是正方形SR ∥BC(2)由(1)可知△ASR ∽△ABC.根据相似三角形对应高的比等于相似比,可得BC SRAD AE =设正方形PQRS 的边长为x cm ,则AE=(40-x )cm , 所以604040xx =- 解得: x=24所以,正方形PQRS 的边长为24 cm. 活动目的:要求学生能用相似三角形对应高的比等于相似比的性质来解决生活与生产中的实际问题。

九年级数学上册《相似多边形》优秀教学案例

九年级数学上册《相似多边形》优秀教学案例
4.引导学生运用比较、分析、综合等思维方法,提高解决几何问题的能力。
(三)情感态度与价值观
1.培养学生热爱数学、勇于探究的情感态度,增强他们学习数学的兴趣和自信心。
2.通过解决实际问题,使学生感受到数学知识的价值,培养他们的成就感和责任感。
3.注重培养学生的合作精神,让他们在小组活动中学会相互尊重、相互帮助,提高团队协作能力。
4.引导学生树立正确的价值观,认识到学习数学不仅仅是为了应付考试,更是为了提高自己的思维品质和解决实际问题的能力。
三、教学策略
(一)情景创设
为了让学生更好地理解相似多边形的概念,我将采用生活情景的创设方法,引导学生从现实生活中发现相似多边形的例子。例如,通过展示一组不同大小的矩形或三角形图片,让学生观察并思考它们之间的关系。这种情景创设可以激发学生的学习兴趣,使他们感受到数学与生活的紧密联系。
2.问题导向,培养探究能力
本案例通过设计具有启发性和挑战性的问题,引导学生主动探究相似多边能力,使他们在探究过程中加深对数学知识的理解。
3.小组合作,提高团队协作能力
小组合作是本案例的一大亮点。学生通过小组讨论、交流,共同解决问题,分享学习心得。这种教学策略有助于培养学生的团队协作能力,提高他们在探究过程中的参与度和积极性。
小组合作的主要任务包括:
1.共同探究相似多边形的性质和判定方法。
2.通过讨论、交流,解决教师提出的问题。
3.相互评价,总结小组在解决问题过程中的优点和不足。
4.分享学习心得,促进小组内成员的共同进步。
小组合作有助于培养学生的团队协作能力,提高他们在探究过程中的参与度和积极性。
(四)反思与评价
在课堂的最后阶段,我将组织学生进行反思与评价,以巩固所学知识,提高教学效果。

4.3《相似多边形》教案

4.3《相似多边形》教案
二பைடு நூலகம்核心素养目标
1.培养学生的几何直观与空间想象能力,通过探索相似多边形的性质,使学生能够直观感知图形的相似关系,发展其空间观念。
2.提高学生的逻辑推理与数学论证能力,学会运用严谨的数学语言和逻辑思维,证明相似多边形的判定方法,增强数学推理素养。
3.培养学生的数据分析与问题解决能力,使学生能够运用相似多边形的性质解决实际问题,提高解决几何问题的策略和方法。
4.3《相似多边形》教案
一、教学内容
本节课选自教材第四章第三节《相似多边形》。教学内容主要包括以下两个方面:
1.相似多边形的定义及性质:理解相似多边形的含义,掌握相似多边形对应角相等、对应边成比例的性质。
2.相似多边形的判定方法:学会使用SSS(三边对应成比例)、SAS(两边对应成比例且夹角相等)、ASA(两角对应相等且夹边成比例)等方法判断两个多边形是否相似。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相似多边形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状相似但大小不同的物体?”(如两个不同大小的三角形风筝)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似多边形的奥秘。
4.增强学生的数学应用意识,通过实际案例让学生体会相似多边形在现实生活中的广泛应用,激发学习兴趣,培养数学应用的思维方式。
三、教学难点与重点
1.教学重点
-理解并掌握相似多边形的定义及性质,特别是对应角相等、对应边成比例的特点。
-学会运用SSS、SAS、ASA等判定方法判断两个多边形是否相似。
-能够运用相似多边形的性质解决实际问题,如计算相似多边形的边长、面积等。

相似多边形教案

相似多边形教案

相似多边形教案相似多边形教案教学目标:1. 了解什么是相似多边形;2. 学会如何判断两个多边形相似;3. 学会如何计算相似多边形的边长和面积。

教学重点:1. 判断两个多边形相似的条件;2. 计算相似多边形的边长和面积。

教学难点:1. 判断两个多边形相似的方法;2. 计算相似多边形的边长和面积的公式。

教学准备:1. 尺子;2. 直角三角板;3. 计算器;4. 板书工具。

教学过程:Step 1 引入新知识老师用一张纸上面画出一个多边形,并问学生是否知道这是一个什么图形。

学生回答多边形。

老师进一步引导学生思考,多边形有哪些特点?学生给出答案,如由一系列连线所组成,边数多于3个等等。

老师再进一步问学生是否知道什么是相似多边形?学生可能不知道,老师解释相似多边形是指边与边对应成比例,角与角对应相等的多边形。

Step 2 判断相似多边形的条件老师现在用纸板上画出两个多边形,一个较大,一个较小,让学生观察它们。

然后老师提问,如何判断这两个多边形是否相似?学生可能不知道,老师解释判断相似多边形的条件有两个:1. 其对应的边成比例;2. 其对应的角相等。

Step 3 利用相似多边形的性质计算老师告诉学生,相似多边形的边长和面积可以通过比例关系来计算。

老师写出相似多边形的边长和面积计算公式,并通过几个例子让学生理解。

Step 4 练习与巩固老师让学生进行一些练习,如判断两个多边形是否相似,以及计算相似多边形的边长和面积。

Step 5 拓展老师告诉学生相似多边形的概念不仅可以在平面几何中应用,还可以在立体几何中应用。

老师可以给出一个立体图形,如一个棱台,让学生思考如何判断它与另一个棱台是否相似,以及如何计算相似棱台的边长和体积。

Step 6 总结与展望老师和学生一起总结学过的知识,再次强调相似多边形的判断条件和计算公式。

并展望相似多边形的应用,如在建筑、地图等方面。

Step 7 课堂作业布置一些课堂作业,如判断两个多边形是否相似,以及计算相似多边形的边长和面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似多边形
教学目标
(一)教学知识点
经历探究图形的形状、大小,图形的边、角之间的关系,掌握相似多边形的定义以及相似比,并能根据定义判断两个多边形是否是相似多边形.
(二)能力训练要求
经历探索图形的边、角关系,培养学生的观察能力,分析判断能力.
(三)情感与价值观要求
通过观察、推断可以获得教学猜想,体验数学活动充满着探索性和创造性.
教学重点
探索相似多边形的定义,以及用定义去判断两个多边形是否相似.
教学难点
探索相似多边形的定义的过程.
教学方法
指导探索法.
教具准备
投影片两张
第一张(记作§4.4 A)
第二张(记作§4.4 B)
教学过程
Ⅰ.创设问题情境,引入新课
[师]大家从语文的角度来分析一下"相似"一词的意思.
[生]"相似"就是差不多,但也不是完全相同,既有相同部分也有不同部分.
[师]很好,那"相似多边形"应怎么理解呢?
[生]"相似多边形"即为两个边数相同的多边形,并且形状一样、大小可能不同.
[师]大家的分析能力非常棒,究竟"两个相似多边形"需满足什么条件呢?本节课我们将进行探索.
Ⅱ.新课讲解
1.探究相似多边形的定义
投影片(§4.4 A)
下图中的两个多边形分别是幻灯片上的多边形ABCDEF和银幕上的多边形
A1B1C1D1E1F1,它们的形状相同吗?
图4-14
(1)在上图的两个多边形中,是否有相等的内角?设法验证你的猜测.
(2)在上图的两个多边形中,相等内角的两边是否成比例?
[师]请大家动手验证一下.
[生]在上图中,六边形ABCDEF与六边形A1B1C1D1E1F1是形状相同的图形,其中∠A 与∠A1,∠B与∠B1,∠C与∠C1,∠D与∠D1,∠E与∠E1,∠F与∠F1分别对应相等,AB与
A1B1,BC与B1C1,CD与C1D1,DE与D1E1,EF与E1F1,FA与F1A1的比都相等.
[师]从上可知,幻灯片上的六边形与银幕上的六边形形状相同,只是大小不同,它们的对应角相等、对应边成比例.那么,形状相同的多边形是都有这种关系呢,还是只有六边形才有呢?下面我们继续进行探讨.
[例题]
下列每组图形形状相同,它们的对应角有怎样的关系呢?对应边呢?
(1)正三角形ABC与正三角形DEF;。

相关文档
最新文档