新人教版高二数学必修4期末测试题【附答案】

合集下载

新人教版高中数学必修四期末试卷(附答案)

新人教版高中数学必修四期末试卷(附答案)


2
43
4
A. 2
B.1
C. 2 2
D.2
9.已知 tan , tan 是方程 x2 3 3x 4 0 两根,且 , ( , ) ,则 等于( )
22
A. 2
B. 2 或
C. 或 2
D.
3
33
33
3
10.函数 f (x) log 1 (sin 2x cos 2x) 的单调减区间是( )
2

C. 向左平移 个单位
4

D. 向右平移 个单位
4
4.已知是第三象限角且 sin 24 ,则 tan 的值是 ( )
25
2
4
A.
3
3
B.
4
C. 3 4
D. 4 3
5.下列命题正确的是( )
A.若α,β是第一象限角,α>β,则 sinα>sinβ
B.函数 y tan x 的图象的对称中心是 (2k , 0), k Z ; 2
3
A. (k
,
k
)
4
8
C. (k , k 3 )
8
8
(k∈Z) (k∈Z)
B.
(k


,
k

]
(k∈Z)
8
8
D. (k , k 5 ) (k∈Z)
8
8
11.已知 sin

3 , 5


2
,
, tan




1 2
,则
tan

人教版高中第四册数学期末测试卷答案

人教版高中第四册数学期末测试卷答案

人教版高中第四册数学期末测试卷答案成功的曙光属于每一个妥协过的人。

小编为您编辑了人教版高中第四册数学期末测试卷答案,祝大家学习提高。

一、选择题:在每题给出的四个选项中,只要一项为哪一项契合标题要求的1、设集合A= ,B= ,那么A B等于( )A B C{x|x-3} D {x|x1}2、不等式的解集是( )3、假定函数 ,那么f(f(10))=()A.lg101B.2C.1D.04、设,函数在区间上的最大值与最小值之差为,那么( )A. B.4 C. D.25、设,那么使函数的定义域为R且为奇函数的一切的值为( )A. -1,3B.-1,1C. 1,3D.-1,1,36、是上的减函数,那么的取值范围是( )A. B. C. D.7、命题是真命题,那么实数a的取值范围是 ( )A. B. C. D.(1,1)8、设函数是定义在上的奇函数,且对恣意都有,当时,,那么的值为( )A. B. C. 2 D.9、函数,假定互不相等,且,那么的取值范围是( )A. B. C. D.10、给出定义:假定m-①函数y=f(x)的定义域为R,值域为[ 0, ];②函数y=f(x)的图像关于直线x= (kZ)对称;③函数y=f(x)是周期函数,最小正周期为1;④函数y=f(x)在[- , ]上是增函数.其中正确的命题的序号是 ( )A.①B.②③C.①②③D.①④二、填空题:11、选集U ,A ,B ,那么12、x与y之间的一组数据:x0246y1357那么y与x的线性回归方程为y=bx+a必过点 .13、关于的方程的实数解为______________.14、 .函数是R上的偶函数,且在上是增函数,假定 ,那么实数的取值范围是______.15、x [0,1],那么函数y= 的值域是 .三、解答题:解容许写出文字说明、证明进程或演算步骤(16.(本小题总分值13分) 化简求值:(1)(2)0.064 -(-18)0+16 +0.2517.(本小题总分值13分) 且双数 ( 为虚数单位)在复平面内表示的点为那么:(1)当实数取什么值时,双数是纯虚数;(2)当点位于第三象限时,务实数的取值范围.18.(本小题总分值13分)尘肺病是一种严重的职业病,新密市职工张海超开胸验肺的举动惹起了社会的极大关注.据悉尘肺病的发生,与工人临时生活在粉尘环境有直接的关系.下面是一项调查数据:有过粉尘环境任务阅历无粉尘环境任务阅历算计有尘肺病11256168无尘肺病5656112算计168112280请由此剖析我们有多大的掌握以为能否患有尘肺病与能否有过粉尘环境任务阅历有关系.P(K20.500.400.250.150.100.050.0250.0100.0050.001k0.4550.7081.3232.0722.7063.845.0246.6357.87910.83 19.((本小题总分值12分) 定义域为R的函数是奇函数.(1)求的值; (2)证明在上为减函数.(3)假定关于恣意 ,不等式恒成立,求的范围.20.此题总分值12分) 某农科所对夏季昼夜温差大小与某反时节大豆新种类发芽多少之间的关系停止剖析研讨,他们区分记载了12月1日至12月5日的每天昼夜温差与实验室每天每100棵种子中的发芽数,失掉如下资料:日期12月1日12月2日12月3日12月4日12月5日温差x(℃)101113128发芽y(颗)2325302616该农科所确定的研讨方案是:先从这5组数据中选取3组数据求线性回归方程,剩下的2组数据用于回归方程检验.(1)假定选取的是12月1日与12月5日的2组数据,请依据12月2日至12月4日的数据,求出y关于x的线性回归方程 ;(2) 请预测温差为14℃的发芽数。

新人教版高二数学必修四数学-期末测试题【通用版】

新人教版高二数学必修四数学-期末测试题【通用版】

期末测试题一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.1.sin 150°的值等于( ).A .21B .-21 C .23 D .-23 2.已知=(3,0)等于( ). A .2B .3C .4D .53.在0到2范围内,与角-34π终边相同的角是( ).A .6πB .3πC .32πD .34π 4.若cos >0,sin <0,则角 的终边在( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限5.sin 20°cos 40°+cos 20°s in 40°的值等于( ).A .41 B .23 C .21D .436.如图,在平行四边形ABCD 中,下列结论中正确的是( ).A .=B .-=C .+=D .+=7.下列函数中,最小正周期为 的是( ).A .y =cos 4xB .y =sin 2xC .y =sin2x D .y =cos 4x 8.已知向量a =(4,-2),向量b =(x ,5),且a ∥b ,那么x 等于( ).A .10B .5C .-25D .-109.若tan =3,tan =34,则tan(-)等于( ).A .-3B .3C .-31D .3110.函数y =2cos x -1的最大值、最小值分别是( ).A .2,-2B .1,-3C .1,-1D .2,-111.已知△ABC 三个顶点的坐标分别为A (-1,0),B (1,2),C (0,c ),若⊥BC ,那么c 的值是( ).A .-1B .1C .-3D .312.下列函数中,在区间[0,2π]上为减函数的是( ).A .y =cos xB .y =sin xC .y =tan xD .y =sin(x -3π)13.已知0<A <2π,且cos A =53,那么sin 2A 等于( ).C (第6题)A .254 B .257 C .2512 D .2524 14.设向量a =(m ,n ),b =(s ,t ),定义两个向量a ,b 之间的运算“⊗”为a ⊗b =(ms ,nt ).若向量p =(1,2),p ⊗q =(-3,-4),则向量q 等于( ).A .(-3,-2)B .(3,-2)C .(-2,-3)D .(-3,2) 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.已知角 的终边经过点P (3,4),则cos 的值为 . 16.已知tan =-1,且 ∈[0,),那么 的值等于 .17.已知向量a =(3,2),b =(0,-1),那么向量3b -a 的坐标是 . 18.某地一天中6时至14时的温度变化曲线近似满足函数T =A sin(t +)+b (其中2π<<时至14时期间的温度变化曲线如图所示,它是上述函数的半个周期的图象,那么这一天6时至14时温差的最大值是 °C ;图中曲线对应的 函数解析式是________________.(第18题)三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤. 19.(本小题满分8分)已知0<<2π,sin =54.(1)求tan 的值; (2)求cos 2+sin ⎪⎭⎫ ⎝⎛2π + α的值.20.(本小题满分10分)已知非零向量a ,b 满足|a |=1,且(a -b )·(a +b )=21. (1)求|b |; (2)当a ·b =21时,求向量a 与b 的夹角 的值.21.(本小题满分10分)已知函数f (x )=sin x (>0).(1)当 =时,写出由y =f (x )的图象向右平移6π个单位长度后得到的图象所对应的函数解析式;(2)若y =f (x )图象过点(3π2,0),且在区间(0,3π)上是增函数,求的值.期末测试题参考答案一、选择题: 1.A解析:sin 150°=sin 30°=21. 2.B=0+9=3. 3.C解析:在直角坐标系中作出-34π由其终边即知. 4.D解析:由cos >0知,为第一、四象限或 x 轴正方向上的角;由sin <0知,为第三、四象限或y 轴负方向上的角,所以 的终边在第四象限.5.B解析:sin 20°cos 40°+cos 20°sin 40°=sin 60°=23. 6.C解析:在平行四边形ABCD 中,根据向量加法的平行四边形法则知AD +AB =. 7.B 解析:由T =ωπ2=,得 =2.8.D解析:因为a ∥b ,所以-2x =4×5=20,解得x =-10. 9.D解析:tan(-)=βαβαtan tan +1tan -tan =4+134-3=31. 10.B解析:因为cos x 的最大值和最小值分别是1和-1,所以函数y =2cos x -1的最大值、最小值分别是1和-3.11.D 解析:易知=(2,2),=(-1,c -2),由⊥,得2×(-1)+2(c -2)=0,解得c =3.12.A解析:画出函数的图象即知A 正确. 13.D解析:因为0<A <2π,所以sin A =54=cos -12A ,sin 2A =2sin A cos A =2524.14.A解析:设q =(x ,y ),由运算“⊗”的定义,知p ⊗q =(x ,2y )=(-3,-4),所以 q =(-3,-2).二、填空题:15.53.解析:因为r =5,所以cos =53. 16.43π. 解析:在[0,)上,满足tan =-1的角只有43π,故 =43π. 17.(-3,-5).解析:3b -a =(0,-3)-(3,2)=(-3,-5).18.20;y =10sin(8πx +43π)+20,x ∈[6,14].解析:由图可知,这段时间的最大温差是20°C .因为从6~14时的图象是函数y =A sin(x +)+b 的半个周期的图象,所以A =21(-)=10,b =21(30+10)=20.因为21·ωπ2=14-6,所以 =8π,y =10sin ⎪⎭⎫ ⎝⎛ϕ + 8πx +20. 将x =6,y =10代入上式,得10sin ⎪⎭⎫ ⎝⎛⨯ϕ + 68π+20=10,即sin ⎪⎭⎫⎝⎛ϕ + 43π=-1,由于2π<<,可得 =43π. 综上,所求解析式为y =10sin ⎪⎭⎫ ⎝⎛43π + 8πx +20,x ∈[6,14].三、解答题:19.解:(1)因为0<<2π,sin =54, 故cos =53,所以tan =34.(2)cos 2+sin ⎪⎭⎫ ⎝⎛α + 2π=1-2sin2+cos =-2532+53=258. 20.解:(1)因为(a -b )·(a +b )=21,即a 2-b 2=21, 所以|b |2=|a |2-21=1-21=21,故|b |=22.(2)因为cos =ba ba ·=22,故=°.21.解:(1)由已知,所求函数解析式为f (x )=sin ⎪⎭⎫ ⎝⎛6π - x .(2)由y =f (x )的图象过⎪⎭⎫ ⎝⎛0 , 32π点,得sin32π=0,所以32π=k ,k ∈.即 =23k ,k ∈.又>0,所以k ∈N*. 当k =1时,=23,f (x )=sin 23x ,其周期为34π,此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上是增函数;当k ≥2时,3,f (x )=sin x 的周期为ωπ2≤32π<34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上不是增函数. 所以,=23.。

高中数学必修四期末测试题(含答案)

高中数学必修四期末测试题(含答案)

数学必修四试卷一、选择题(本大题共10小题,每小题5分,共50 分)1.下列命题正确的是 5. 给出命题(1) 零向量的长度为零,方向是任意的IIII(2) 若a , b 都是单位向量,则a = b .以上命题中,正确命题序号是6. 如果点P (sin2: , cos2力位于第三象限,那么角 二所在象限是A.矩形B. 菱形C. 正方形D. 直角梯形8.若〉是第一象限角,则sin • cos 〉的值与1的大小关系是A.第一象限角是锐角B. 钝角是第二象限角C.终边相同的角一定相等D.不相等的角,它们终边必不相同2.函数^-2sin (2^7)的周期,兀 C 兀 A. , 2 ,4 4B.4二,-2,上4C.JI4二,2 ,D.42- , 2 ,—43.如果cos (,亠A ) 1=——,那么sin(^ A)=1 1 C.1 1A.D.22224.函数 y 二 sinC20052-2004x)是A.奇函数B. 偶函数C. 非奇非偶函数D.既是奇函数又是偶函数(3) 向量AB 与向量BA 相等.(4) 若非零向量是共线向量,则 A ,D 四点共线.A. (1)B. (2)C. (1 )和(3)D. (1)和(4)A.第一象限B. 第二象限C. 7.在四边形ABCD 中,如果ABlJCD =0 ,第三象限 D. 第四象限 那么四边形ABCD 的形状是C. sin = "cos :D. 不能确定振幅, 初相分别是兀DCA. sin 二'cos芒> 1B. sin 二11cos: =19.在厶ABC中,若sin C =2cosAsin B ,则此三角形必是A.等腰三角形B. 正三角形C. 直角三角形D. 等腰直角三角形10.如图,在△ ABC中,AD、BE、CF分别是BC、CA、AB上的中线,它们交于点G ,则下列各等式中不正确的是 A. BG BE B3C. DG = — AG D2二、填空题(本大题共4小题,每小题5分,共20分)211.设扇形的周长为8cm ,面积为4cm ,则扇形的圆心角的弧度数是312.已知 tan : =2 , tanC --) ,则 tan :=13.已知 a = (3, 1), b = (sin : , cos :),且 a // b ,贝U 4sin_2cos14. 给出命题:以上命题中,正确的命题序号是15. (本小题满分13分)(1)求 cos2=及 cos 〉的值; sin (一x)-sin(: x) 2cos :—亘的锐角 x .10CG =2GF—DA 睨3 35cos‘:亠3sin :(1)在平行四边形ABCD 中,(2) :::0,则厶ABC 是钝角三角形.(3) 在空间四边形ABCD 中,E,F 分别是BC,DA 的中点,贝U 左弓(忌 DC ).三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)已知sin 2〉[签人] [4 '2 ](2)求满足条件在厶ABC 中,若16. (本小题满分13分)已知函数 f(x)=sinx, 3cos- , x^R .2 2(1)求函数f(x)的最小正周期,并求函数f(x)在X. [一2二,2二]上的单调递增区间;(2)函数f (x) =sin x(x ・R)的图象经过怎样的平移和伸缩变换可以得到函数f(x)的图象.17. (本小题满分13分)已知电流I 与时间t 的关系式为I 二Asin(「t •「)•(1)下图是| =Asin (灼t (灼:>0,④c 》)在一个周期内的图象,根据图中数据求2I 二 AsinC ,t •的解析式;1(2)如果t 在任意一段秒的时间内,电流150I二As in C,t •「)都能取得最大值和最小值, 那么,的最小正整数值是多少?18. (本小题满分13分)(1) 若点A, B, C 能够成三角形,求实数 m 应满足的条件;(2) 若厶ABC 为直角三角形,且.A 为直角,求实数 m 的值.19. (本小题满分13分)设平面内的向量 OA=(1,7),OB =(5,1),OM =(2,1),点P 是直线OM 上的一个20. (本小题满分13分)已知向量,sin 3X), b = (cos ;,一 sin 专) ,且 x [-/ ].(1)求 a_b 及 a + b ;已知向量示=(3, 一4) , OS =(6, 一3),OC = (5 _m, _3 _ m )•动点,且的坐标及ZAPB 的余弦值.(2)求函数 f (X )二訂 a ■ b的最大值,并求使函数取得最大值时x 的值.高中数学必修(4)试卷参考答案及评分标准511.212. -1313.14.( 1)( 2)(3)7三、解答题 53 515.解:(1)因为,所以2,:::3二. ............. (2 分)422因此 cos2:n 22 : - - 4 ..................................... ( 4 分) 5亠2VT0由 cos 2: - 2cos - -1,得 cos. .............. ( 8 分)(2)因为 sin (二 x ) -sin (二"x ) 2cos 二因为x 为锐角,所以x31函数y =s in z 单调递增区间是[2k 二,一 2^: ](^ Z ).2 2 1 二 二 x2k 二,10 1010,所以 2cos 二(1 -sin x )二10弔,所以sin1 x =—211 分)13 分)16.解:y =sin°2(1)最小正周期 x cos-22■:=2si n (13). 3分)1 二x —,23JI2k二2 3 25兀兀得4k二乞x 4k二,k Z . ..................................... (5分)3 35応JT5江兀取k = 0,得x ,而[,][-2二,2 二],3 3 3 3x ~ x 5兀兀所以,函数y =si n 3cos—, x,[-2二,2二]得单调递增区间是[,—].2 23 3...................................................... (8 分)JI H(2)把函数y二sin x图象向左平移一,得到函数y =sin(x •—)的图象,…(10分)3 3再把函数y =sin(x )的图象上每个点的横坐标变为原来的2倍,纵坐标不变,得到函数 y=sin(l)的图象, .............................. (11分)2 3然后再把每个点的纵坐标变为原来的 2倍,横坐标不变,即可得到函数X 二、y =2sin( )的图象. .....................................( 13 分)17.解:1 1(1)由图可知 A-300,设 t 1 ........... , t 2,( 2 分)900180 111则周期 T =2(t 2 —tj =2() ,.................. ( 4 分)180 900752兀•150二 ............................................ ( 6 分)11t时,1=0,即 sin[ 150二( )]=0, Sin(「 )=0.900 9006而,•.2 6故所求的解析式为I _300sin(150二t •—). .................... ( 8•••「_300二 942,又•二 N *,故最小正整数/: =943.(13 分)若点代B,C 能构成三角形,则这三点不共线,即AB 与BC 不共线.……(4分)故知 3(1 -m) = 2 - m ,1二实数m时,满足条件 ..........................................(2(若根据点 代B,C 能构成三角形,必须任意两边长的和大于第三边的长,即由• 3(2 -m) (1 -m) =0 , 解得m=7.........................................................................................18.解: (1)已知向量 总=(3, -4),贰(6, -3),OC = (5 -m, -3 - m)AB =(3,1), AC = (2 - m,1 - m)8 分)BC CA去解答,相应给分)(2)若厶ABC 为直角三角形,且-A 为直角,则AB _ AC ,(10 分)(13 分)4 19.解:设OP 二(x, y).3x x . 3x . xc 20.解:(1) 乩b=cos cos sin sin cos2x ,22 2 2(cos 3x cos x )2 (sin 3x sin x )22 2 2 2 3x x 3x x=.2 2(cos — cos — sin —sin —)\ 2 2 2 2•••点P 在直线OM 上,• O P 与 OM 共线,而 OM 二(2,1),••• x—2y=0,即 x=2y ,有 OP=(2y, y).2分) •/ PA=OA _(4分)• PA_PB =(1—2y)(5—2y) (7 —y)(1 —y), 即 PA_PB =5y 2 —20y 12 . 6分)又 PAFB —8 ,• 5y 2 -20y 12 = -8 ,所以 y = 2 , x = 4,此时 OP = (4, 2).8 分)PA=(-3,5),PB =(1,-1).于是PA = 34, PB =、迈,PA L PB = _8.10 分)二 cos APB 二 ALP B-8PB .34 .21713 分)3分)4分)a【本文档内容可以自由复制内容或自由编辑修改内容期待 你的好评和关注,我们将会做得更好】=2 2cos2 x = 2 cosx7 分)二 a +b =(2) f (x)二 a|_b *二 cosx :: 0.■ 2a+b =cos2x —2cos x = 2cos x —2cosx — 1=2(cosx_1)2 _|Hx [,二], T 乞 cosx 乞 0,2•••当 cosx = -1,即 X =二时 f max (x) =3.9分)11 分) 13 分) 15 分)。

最新人教版高中数学必修四期末复习测试A(含答案解析)

最新人教版高中数学必修四期末复习测试A(含答案解析)

最新人教版高中数学必修四期末复习测试A (含答案解析)一、选择题(本大题共12小题,每小题5分,共60分)1.已知sin α=35,则cos 2α的值为( ) A .-2425 B .-725 C.725 D.24252.已知向量a =(1,2),b =(x ,-4),若a ∥b ,则a ·b 等于( )A .-10B .-6C .0D .63.设cos(α+π)=32(π<α<3π2),那么sin(2π-α)的值为( ) A.12 B.32 C .-32 D .-124.已知tan(α+β)=3,tan(α-β)=5,则tan 2α的值为( )A .-47 B.47 C.18 D .-185.下列函数中,最小正周期为π,且图象关于直线x =π3对称的是( ) A .y =sin ⎝⎛⎭⎫2x +π6 B .y =sin ⎝⎛⎭⎫2x -π6 C .y =sin ⎝⎛⎭⎫x 2-π3 D .y =sin ⎝⎛⎭⎫x 2+π6 6.若cos α=-45,α是第三象限的角,则sin(α+π4)等于( ) A .-7210 B.7210 C .-210 D.2107.若向量a =(1,x ),b =(2x +3,-x )互相垂直,其中x ∈R ,则|a -b |等于( )A .-2或0B .25C .2或2 5D .2或108.函数f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4是( ) A .周期为π的偶函数 B .周期为π的奇函数C .周期为2π的偶函数D .周期为2π的奇函数9.把函数f (x )=sin ⎝⎛⎭⎫-2x +π3的图象向右平移π3个单位可以得到函数g (x )的图象,则g ⎝⎛⎭⎫π4等于( )A .-32 B.32C .-1D .1 10.已知向量a =(1,0),b =(cos θ,sin θ),θ∈[-π2,π2],则|a +b |的取值范围是( ) A .[0,2] B .[0,2)C .[1,2]D .[2,2]11.已知|a |=2|b |≠0,且关于x 的方程x 2+|a |x +a·b =0有实根,则a 与b 的夹角的取值范围是( )A.⎣⎡⎦⎤0,π6B.⎣⎡⎦⎤π3,π C.⎣⎡⎦⎤π3,2π3 D.⎣⎡⎦⎤π6,π12.函数f (x )=3cos(3x -θ)-sin(3x -θ)是奇函数,则tan θ等于( ) A.33 B .-33C. 3 D .-3二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量a =(3,1),b =(1,3),c =(k,2),若(a -c )⊥b ,则k =________.14.已知α为第二象限的角,sin α=35,则tan 2α=________. 15.已知A (1,2),B (3,4),C (-2,2),D (-3,5),则向量AB →在CD →上的投影为________.16.已知函数f (x )=sin(ωx +φ)(ω>0,-π2≤φ≤π2)的图象上的两个相邻的最高点和最低点的距离为22,且过点(2,-12),则函数f (x )=________.三、解答题(本大题共6小题,共70分)17.(10分)已知向量a =(sin x ,32),b =(cos x ,-1). (1)当a ∥b 时,求2cos 2x -sin 2x 的值;(2)求f (x )=(a +b )·b 在[-π2,0]上的最大值.18.(12分)设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a 与b -2c 垂直,求tan(α+β)的值;(2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥b .19.(12分)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈(0,π2). (1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.20.(12分)已知函数f (x )=sin(π-ωx )cos ωx +cos 2ωx (ω>0)的最小正周期为π.(1)求ω的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在区间[0,π16]上的最小值.21.(12分)已知函数f (x )=4cos 4x -2cos 2x -1sin (π4+x )sin (π4-x ). (1)求f (-1112π)的值; (2)当x ∈[0,π4)时,求g (x )=12f (x )+sin 2x 的最大值和最小值.22.(12分)已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=255. (1)求cos(α-β)的值;(2)若0<α<π2,-π2<β<0,且sin β=-513,求sin α.参考答案与解析1.C [cos 2α=1-2sin 2α=1-2×(35)2=725.] 2.A [∵a ∥b ,∴1×(-4)-2x =0,x =-2.∴a =(1,2),b =(-2,-4),∴a ·b =(1,2)·(-2,-4)=-10.]3.A [∵cos(α+π)=-cos α=32,∴cos α=-32,∵π<α<3π2,∴α=7π6, ∴sin(2π-α)=-sin α=-sin 76π=12.] 4.A [tan 2α=tan[(α+β)+(α-β)]=tan (α+β)+tan (α-β)1-tan (α+β)tan (α-β)=3+51-3×5=-47.] 5.B [∵T =π,∴ω=2πT =2,排除C 、D.把x =π3分别代入A 、B ,知B 选项函数y =sin(2x -π6)取到最大值1,故选B.] 6.A [∵cos α=-45,α是第三象限角.∴sin α=-35,∴sin(α+π4)=22(sin α+cos α)=-7210.] 7.D [∵a ·b =2x +3-x 2=0.∴x 1=-1或x 2=3.a -b =(-2x -2,2x ).当x =-1时,a -b =(0,-2),|a -b |=2;当x =3时,a -b =(-8,6),则|a -b |=10.]8.B [f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫π4-x =sin 2(x +π4)-cos 2(π4+x )=-cos ⎝⎛⎭⎫2x +π2=sin 2x . ∴T =π,且f (-x )=-f (x ),奇函数.]9.D [f (x )=sin(-2x +π3)向右平移π3个单位后,图象对应函数解析式为f (x -π3)=sin[-2(x -π3)+π3]=sin(-2x +π)=sin 2x .∴g (x )=sin 2x ,g (π4)=sin π2=1.] 10.D [|a +b |=(1+cos θ)2+(sin θ)2=2+2cos θ.∵θ∈[-π2,π2],∴cos θ∈[0,1].∴|a +b |∈[2,2].] 11.B [Δ=|a |2-4a·b =|a |2-4|a||b |cos 〈a ,b 〉=4|b |2-8|b |2cos 〈a ,b 〉≥0.∴cos 〈a ,b 〉≤12,〈a ,b 〉∈[0,π].∴π3≤〈a ,b 〉≤π.] 12.D [f (x )=2[32cos(3x -θ)-12sin(3x -θ)]=2cos(3x -θ+π6). 若f (x )为奇函数,则-θ+π6=k π+π2,k ∈Z ,∴θ=-k π-π3,k ∈Z .∴tan θ=-tan(k π+π3)=-3.]13.0解析 ∵a -c =(3,1)-(k,2)=(3-k ,-1),(a -c )⊥b ,b =(1,3),∴(3-k )×1-3=0,∴k =0.14.-247解析 由于α为第二象限的角,且sin α=35, ∴cos α=-45. ∴tan α=-34, ∴tan 2α=2tan α1-tan 2α=2×(-34)1-(-34)2=-321-916=-247. 15.2105解析 AB →=(2,2),CD →=(-1,3).∴AB →在CD →上的投影|AB →|cos 〈AB →,CD →〉=AB →·CD →|CD →|=2×(-1)+2×3(-1)2+32=410=2105. 16.sin(πx 2+π6) 解析 据已知两个相邻最高及最低点距离为22,可得(T 2)2+(1+1)2=22,解得T =4,故ω=2πT =π2,即f (x )=sin(πx 2+φ),又函数图象过点(2,-12),故f (x )=sin(π+φ)=-sin φ=-12,又-π2≤φ≤π2,解得φ=π6,故f (x )=sin(πx 2+π6). 17.解 (1)∵a ∥b ,∴32cos x +sin x =0, ∴tan x =-32, 2cos 2x -sin 2x =2cos 2x -2sin x cos x sin 2x +cos 2x =2-2tan x 1+tan 2x =2013. (2)f (x )=(a +b )·b =22sin(2x +π4). ∵-π2≤x ≤0,∴-3π4≤2x +π4≤π4, ∴-1≤sin(2x +π4)≤22, ∴-22≤f (x )≤12, ∴f (x )max =12. 18.(1)解 因为a 与b -2c 垂直,所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β=4sin(α+β)-8cos(α+β)=0,因此tan(α+β)=2. (2)解 由b +c =(sin β+cos β,4cos β-4sin β),得|b +c |=(sin β+cos β)2+(4cos β-4sin β)2=17-15sin 2β≤4 2.又当β=-π4时,等号成立, 所以|b +c |的最大值为4 2.(3)证明 由tan αtan β=16得4cos αsin β=sin α4cos β,所以a ∥b . 19.解 (1)∵a ·b =0,∴a ·b =sin θ-2cos θ=0,即sin θ=2cos θ.又∵sin 2θ+cos 2θ=1,∴4cos 2θ+cos 2θ=1,即cos 2θ=15,∴sin 2θ=45. 又θ∈(0,π2),∴sin θ=255,cos θ=55. (2)∵5cos(θ-φ)=5(cos θcos φ+sin θsin φ)=5cos φ+25sin φ=35cos φ, ∴cos φ=sin φ.∴cos 2φ=sin 2φ=1-cos 2φ,即cos 2φ=12. 又∵0<φ<π2,∴cos φ=22. 20.解 (1)因为f (x )=sin(π-ωx )cos ωx +cos 2ωx .所以f (x )=sin ωx cos ωx +1+cos 2ωx 2=12sin 2ωx +12cos 2ωx +12=22sin ⎝⎛⎭⎫2ωx +π4+12. 由于ω>0,依题意得2π2ω=π,所以ω=1. (2)由(1)知f (x )=22sin ⎝⎛⎭⎫2x +π4+12, 所以g (x )=f (2x )=22sin ⎝⎛⎭⎫4x +π4+12. 当0≤x ≤π16时,π4≤4x +π4≤π2, 所以22≤sin ⎝⎛⎭⎫4x +π4≤1. 因此1≤g (x )≤1+22. 故g (x )在区间⎣⎡⎦⎤0,π16上的最小值为1. 21.解 (1)f (x )=(1+cos 2x )2-2cos 2x -1sin (π4+x )sin (π4-x )=cos 22x sin (π4+x )cos (π4+x )=2cos 22x sin (π2+2x ) =2cos 22x cos 2x=2cos 2x , ∴f (-11π12)=2cos(-11π6)=2cos π6= 3. (2)g (x )=cos 2x +sin 2x =2sin(2x +π4). ∵x ∈[0,π4),∴2x +π4∈[π4,3π4). ∴当x =π8时,g (x )max =2,当x =0时,g (x )min =1. 22.解 (1)∵|a |=1,|b |=1,|a -b |2=|a |2-2a ·b +|b |2=|a |2+|b |2-2(cos αcos β+sin αsin β)=1+1-2cos(α-β), |a -b |2=(255)2=45, ∴2-2cos(α-β)=45得cos(α-β)=35.(2)∵-π2<β<0<α<π2,∴0<α-β<π. 由cos(α-β)=35得sin(α-β)=45, 由sin β=-513得cos β=1213. ∴sin α=sin [(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β=45×1213+35×(-513)=3365.。

【人教版】高中数学必修四期末试题及答案

【人教版】高中数学必修四期末试题及答案

一、选择题1.已知10sin 410πα⎛⎫-= ⎪⎝⎭,02πα<<,则tan α的值为( ) A .12-B .12C .2D .12-或2 2.已知4sin cos 3θθ+=,,42ππθ⎛⎫∈ ⎪⎝⎭,则sin cos θθ-的值为( ) A .13-B .13C .23-D .233.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的,弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么sin 2θ的值为( )A .12B .32C .1225D .24254.已知()5cos sin 2cos x x x ϕ-+=+对x ∈R 恒成立,则cos 2ϕ=( ) A .25-B .25C .35D .355.如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且(),OP xOA yOB x y R =+∈,则下列结论正确的个数为( )①当0x =时,[]2,3y ∈②当P 是线段CE 的中点时,12x =-,52y =③若x y +为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段 ④x y -的最大值为1- A .1B .2C .3D .46.已知向量(3,0)a =,(0,1)b =-,(,3)c k =,若(2)a b c -⊥,则k =( ) A .2B .2-C .32D .32-7.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2FP QF =,则||QF =( ) A .8B .4C .6D .38.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56π B .23π C .3π D .6π 9.函数()sin()(0||)2,f x x πωϕωϕ=+><的部分函数图象如图所示,将函数()f x 的图象先向右平移3π个单位长度,然后向上平移1个单位长度,得到函数()g x 的解析式为( )A .()sin 21g x x =-B .()sin 21g x x =+C .()sin(2)13g x x π=-- D .()sin(2)13g x x π=-+10.已知函数()tan()0,2f x x πωϕωϕ⎛⎫=+≠< ⎪⎝⎭,点2,03π⎛⎫⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是其相邻的两个对称中心,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则ϕ=( ) A .6π B .6π-C .3π D .3π-11.设函数()tan 3f x x π=-,()sin 3g x x π⎛⎫=-⎪⎝⎭,则函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是( ) A .4B .5C .12D .1312.已知定义在R 上的函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>≤ ⎪⎝⎭在[]1,2上有且仅有3个零点,其图象关于点1,04⎛⎫⎪⎝⎭和直线14x =-对称,给出下列结论:①122f ⎛⎫=⎪⎝⎭;②函数()f x 在[]0,1上有且仅有3个最值点;③函数()f x 在35,24⎛⎫-- ⎪⎝⎭上单调递增;④函数()f x 的最小正周期是2.其中所有正确结论的个数是( ) A .1B .2C .3D .4二、填空题13.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若3sin 4α=,则()cos αβ-=______. 14.已知tan 3α=-,则cos2=α_____________.15.在半径为2的半圆形钢板上截取一块面积最大的矩形,则最大面积是________. 16.已知向量a ,b 及实数t 满足|(1)(1)|1t a t b ++-=,若22||||1a b -=,则t 的最大值是________.17.在ABC ∆中,1AC BC ==,AB =CE xCA =,CF yCB =,其中(),0,1x y ∈,且41x y +=,若M ,N 分别为线段EF ,AB 中点,当线段MN 取最小值时x y +=__________. 18.若函数()sin (0)4f x x πωωω⎛⎫=-> ⎪⎝⎭取得最值的点到y 轴的最近距离小于6π,且()f x 在711,2020ππ⎛⎫⎪⎝⎭单调递增,则ω的取值范围为_________. 19.实数x ,y 满足121log sin 303yx ⎛⎫+-= ⎪⎝⎭,则cos 24x y +的值为________. 20.在ABC 中,2AB =,32AC =,135BAC ∠=︒,M 是ABC 所在平面上的动点,则w MA MB MB MC MC MA =⋅+⋅+⋅的最小值为________.三、解答题21.已知函数2()22sin f x x x =+.(1)求函数()f x 的单调递减区间;(2)当,312x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的值域. 22.已知函数()2sin cos 144f x x x ππ⎛⎫⎛⎫=+--⎪ ⎪⎝⎭⎝⎭. (1)求函数()f x 的最小正周期;(2)若函数()()2g x f x x =-,求函数()g x 的单调增区间.23.已知(),2A x ,()2,3B ,()2,5C -.(1)若1x =,判断ABC 的形状,并给出证明; (2)求实数x 的值,使得CA CB +最小;(3)若存在实数λ,使得CA CB λ=,求x 、λ的值. 24.已知向量()1,2a =-,()3,1b =-. (1)若()a b a λ+⊥,求实数λ的值;(2)若2c a b =-,2d a b =+,求向量c 与d 的夹角. 25.已知函数27()sin cos 2sin 632x f x x x ππ⎛⎫⎛⎫=-+--⎪ ⎪⎝⎭⎝⎭.(1)求函数()f x 的单调递增区间; (2)求使()0f x <成立的实数x 的取值集合.26.已知函数()sin()2cos(2)f x a x x θθ=+++,其中a R ∈,,22ππθ⎛⎫∈- ⎪⎝⎭. (1)当0a =,6πθ=时,求()f x 在区间[]0,π上的值域;(2)若关于θ的方程()0fπ=有两个不同的实数解,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由同角间的三角函数关系先求得cos()4πα-,再得tan()4πα-,然后由两角和的正切公式可求得tan α. 【详解】∵02πα<<,∴444πππα-<-<,∴cos 4πα⎛⎫-=⎪⎝⎭ ∴sin 14tan 43cos 4παπαπα⎛⎫- ⎪⎛⎫⎝⎭-== ⎪⎛⎫⎝⎭- ⎪⎝⎭, ∴tan tan 44ππαα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦1tan 11432111tan 34παπα⎛⎫-++ ⎪⎝⎭===⎛⎫--- ⎪⎝⎭.故选:C . 【点睛】思路点睛:本题考查三角函数的求值.考查同角间的三角函数关系,两角和的正切公式.三角函数求值时首先找到“已知角”和“未知角”之间的联系,选用恰当的公式进行化简求值.注意三角公式中“单角”与“复角”的区别与联系,它们是相对的.不同的场景充当的角色可能不一样.如题中4πα-在tan tan4tan 41tan tan 4παπαπα-⎛⎫-=⎪⎝⎭+作为复角,但在tan tan 44ππαα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦中充当“单角”角色.2.D解析:D 【分析】首先根据题意得到72sin cos 9θθ=,再计算()22sin cos 9θθ-=,根据,42ππθ⎛⎫∈ ⎪⎝⎭判断出sin cos θθ-的符号再进行开方计算即可得到答案. 【详解】 因为4sin cos 3θθ+=,所以()216sin cos 12sin cos 9θθθθ+=+=, 所以72sin cos 9θθ=, 所以()22sin cos 12sin cos 9θθθθ-=-=, 因为,42ππθ⎛⎫∈⎪⎝⎭,所以sin cos θθ>,即sin θcos θ0,所以sin cos 3θθ-=. 故选:D .【点睛】易错点睛:本题求sin cos θθ-的值时,采用的方法是先对其平方而后再开方,再开方时应注意根据θ的取值范围正确判断sin cos θθ-的符号,从而得到正确的答案.3.D解析:D 【分析】由图形可知三角形的直角边长度差为1,设直角边分别为a ,根据大正方形的边长是直角三角形的斜边长列方程组求出直角边,然后得出sin θ,代入二倍角公式即可得出答案. 【详解】由题意可知小正方形的边长为1,直角边长度差为1,大正方形的面积为25, 边长为5,大正方形的边长是直角三角形的斜边长, 设直角三角形的直角边分别为a ,b 且a b <,则1b a =+,所以()2222125a b a a +=++=,得2120a a +-=,所以3a =或4a =-舍去, 所以4b =,∴3sin 5θ=,4cos 5θ=,24sin 22sin cos 25θθθ==. 故选:D . 【点睛】关键点点睛:本题考查了三角函数值、二倍角公式的计算,解答本题的关键是根据直角三角形的斜边长等于大正方形的边长求出直角三角形的一个直角边,考查了学生的运算求解能力.4.D解析:D 【分析】利用两角和的正弦公式进行展开,结合恒成立可得cos ϕ,最后根据二倍角公式得结果. 【详解】由题可知,cos sin sin 2cos x x x x ϕϕ+=+, 则cosϕ=,sin ϕ=, 所以283cos22cos 1155ϕϕ=-=-=,故选:D. 【点睛】本题主要考查了两角和的余弦以及二倍角公式的应用,通过恒成立求出cos ϕ是解题的关键,属于中档题.5.C解析:C 【分析】利用向量共线的充要条件判断出①错,③正确;利用向量的运算法则求出OP ,求出x ,y 判断出②正确,利用三点共线解得④正确 【详解】当0x =时,OP yOB =,则P 在线段BE 上,故13y ≤≤,故①错 当P 是线段CE 的中点时,13()2OP OE EP OB EB BC =+=++ ()11153(2)32222OB OB AB OB OB OB OA OA OB =+-+=-+-=-+,故②对x y +为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故③对如图,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N , 则:OP ON OM =+;又OP xOA yOB =+;0x ∴≤,1y ≥;由图形看出,当P 与B 重合时:01OP OA OB =⋅+⋅;此时x 取最大值0,y 取最小值1;所以x y -取最大值1-,故④正确 所以选项②③④正确. 故选:C 【点睛】结论点睛:若OC xOA yOB =+,则,,A B C 三点共线1x y ⇔+=.6.B解析:B 【分析】 求出2a b -)3,2=,利用向量垂直数量积为零列方程求解即可.【详解】由(3,0)a =,(0,1)b =-, 得2a b -)3,2=,若(2)c a b -⊥,则(2)?0a b c -=, 3230,2k k +=∴=-.故选B. 【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用12210x y x y -=解答;(2)两向量垂直,利用12120x x y y +=解答.7.D解析:D 【分析】设点()1,P t -、(),Q x y ,由2FP QF =,可计算出点Q 的横坐标x 的值,再利用抛物线的定义可求出QF . 【详解】设点()1,P t -、(),Q x y ,易知点()1,0F ,()2,FP t =-,()1,QF x y =--,()212x ∴-=-,解得2x =,因此,13QF x =+=,故选D. 【点睛】本题考查抛物线的定义,解题的关键在于利用向量共线求出相应点的坐标,考查计算能力,属于中等题.8.B解析:B 【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C . 【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-.()20,,3C C ππ∈∴=.故选:B. 【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.9.D解析:D 【分析】由周期求出ω,由五点法作图求出ϕ的值,可得()f x 的解析式,再根据函数sin()y A x ωϕ=+的图象变换规律,得出结论.【详解】根据函数()sin()(0f x x ωϕω=+>,||)2πϕ<的部分函数图象,1274123πππω⋅=-,2ω∴=. 再根据五点法作图,23πϕπ⨯+=,3πϕ∴=,()sin(2)3f x x π=+.将函数()f x 的图象先向右平移3π个单位长度,可得sin(2)3y x π=-的图象.然后向上平移1个单位长度,得到函数()g x 的解析式为()sin(2)13g x x π=-+,故选:D 【点睛】关键点睛:解答本题的关键在于准确地根据三角函数的图象求出三角函数sin()y A x ωϕ=+的解析式,一般根据周期求出ω的值,根据最值求出A 的值,根据最值点求出ϕ的值.10.A解析:A 【分析】由正切函数的图象性质,得出相邻两个对称中心之间的距离为半个周期,可求出T ,然后由T πω=求出ω,然后再代点讨论满足题意的ϕ,即可得出答案. 【详解】由正切函数图象的性质可知相邻两个对称中心的距离为2T ,得72263T πππ⎛⎫=-= ⎪⎝⎭. 则由1T πω==得1ω=,即得1ω=±. 由2πϕ<,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则可得1ω=-, ∴()()()tan tan f x x x ϕϕ=-+=--. 由2,32k k Z ππϕ-=∈得2,32k k Z ππϕ=-∈,因2πϕ<,可得6π=ϕ或3π-,当3πϕ=-时,()tan +3f x x π⎛⎫=- ⎪⎝⎭, 由+,232k x k k Z πππππ-<<+∈,得5,66k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为5,,66k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由54,63ππ⎛⎫⎪⎝⎭7,66ππ⎛⎫ ⎪⎝⎭⊄,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上不是单调递减,所以3πϕ=-不满足题意;当6π=ϕ时,()tan 6f x x π⎛⎫=-- ⎪⎝⎭,由,262k x k k Z πππππ-<-<+∈,得2,33k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为2,,33k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由25,3354,63ππππ⎛⎫⊂⎛⎫ ⎪⎝ ⎪⎝⎭⎭,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上单调递减, 所以6π=ϕ满足题意; 综上可得:6π=ϕ满足题意. 故选:A.【点睛】关键点睛:正切型函数的对称中心和单调性的问题,通常采用代入检验法,注意正切函数的对称中心为0,2k k Z π⎛⎫∈⎪⎝⎭,. 11.A解析:A 【分析】由题意知函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数,作出两个函数图象,数形结合即可求解. 【详解】令()()()0h x f x g x =-=可得()()f x g x =,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于 函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数. 分别作出()tan 3f x x π=-与()sin 3g x x π⎛⎫=- ⎪⎝⎭图象,由图知两个函数图象在区间[]2,2ππ-上有4个交点,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是4, 故选:A 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点; (2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.12.B解析:B 【分析】由三角函数的图象与性质可得()sin 34f x x ππ⎛⎫=+⎪⎝⎭,代入即可判断①;令03,42()x k k Z ππππ+∈+=,化简即可判断②;令232,242k k x k Z ππππππ-≤+≤+∈+,化简即可判断③;由最小正周期的公式即可判断④. 【详解】∵函数()f x 的图象关于点1,04⎛⎫⎪⎝⎭对称,∴111,4k k Z ωϕπ+=∈,又函数()f x 的图象关于直线14x =-对称,∴221,42k k Z ππωϕ-+=+∈,∴()1221k k ωπ=--⎡⎤⎣⎦,即(21),n n Z ωπ=∈-, ∵函数()sin()f x x ωϕ=+在[]1,2上有且仅有3个零点, ∴24,)201(ππωωω<>≤-,即24πωπ≤<,所以3ωπ=,()()sin 3f x x πϕ=+, ∵104f ⎛⎫=⎪⎝⎭,∴3,4k k Z πϕπ+=∈, 又||2πϕ≤,∴4πϕ=,∴()sin 34f x x ππ⎛⎫=+⎪⎝⎭;对于①,3sin 24122f ππ⎛⎫+ ⎪⎝⎛⎫==-⎪⎭⎝⎭,故①错误; 对于②,令03,42()x k k Z ππππ+∈+=,则01,31(2)Z k x k =+∈, 令101312k ≤+≤,则可取0,1,2k =, ∴0112x =,512,34,即函数()f x 在[]0,1上有且仅有3个最值点,故②正确; 对于③,令232,242k k x k Z ππππππ-≤+≤+∈+,则1212,43123k x k Z k -+≤≤∈+,当2k =-时,195,124⎡⎤--⎢⎥⎣⎦为()f x 的一个递增区间, 而35195,,24124⎛⎫⎡⎤--⊆-- ⎪⎢⎥⎝⎭⎣⎦,∴()f x 在35,24⎛⎫-- ⎪⎝⎭上单调递增,故③正确; 对于④,∵()sin 34f x x ππ⎛⎫=+⎪⎝⎭,∴函数的最小正周期2233T ππ==,故④错误. 综上所述,其中正确的结论的个数为2个. 故选:B. 【点睛】本题考查了三角函数解析式的确定及三角函数图象与性质的应用,考查了运算求解能力,属于中档题.二、填空题13.;【分析】根据角的终边关于轴对称得到以及两角差的余弦公式即可求出【详解】因为角与角均以为始边它们的终边关于轴对称所以所以故答案为:【点睛】本题主要考查了三角函数定义的应用两角差的余弦公式同角三角函数解析:18; 【分析】根据角的终边关于y 轴对称得到cos cos ,sin sin αβαβ=-=,以及两角差的余弦公式即可求出. 【详解】因为角α与角β均以Ox 为始边,它们的终边关于y 轴对称, 所以3cos cos ,sin sin 4αβαβ=-==, 所以()22cos cos cos sin sin sincos αβαβαβαα-=+=-22sin 1α=-92116=⨯- 18= 故答案为:18【点睛】本题主要考查了三角函数定义的应用,两角差的余弦公式,同角三角函数的关系,属于中档题.14.【分析】由题意根据二倍角公式同角三角函数的基本关系求得的值【详解】故答案为:【点睛】本题主要考查二倍角公式同角三角函数的基本关系在三角函数化简求值中的应用属于基础题解析:45-【分析】由题意,根据二倍角公式、同角三角函数的基本关系求得2cos α的值. 【详解】3tan α=-,222222cos sin 1tan 1942cos sin 1tan 195cos ααααααα---∴====-+++. 故答案为:45-.【点睛】本题主要考查二倍角公式、同角三角函数的基本关系在三角函数化简求值中的应用,属于基础题.15.4【分析】做出图像由三角函数定义设其中一个顶点坐标从而表示矩形的长与宽进而表示面积求出最大值【详解】由题可构建图像根据三角函数的定义可知所以矩形的面积当时故答案为:4【点睛】本题考查三角函数定义的实解析:4 【分析】做出图像,由三角函数定义设其中一个顶点坐标,从而表示矩形的长与宽,进而表示面积,求出最大值. 【详解】 由题可构建图像根据三角函数的定义,可知()2cos ,2sin A αα 所以矩形的面积4cos 2sin 4sin2S ααα=⋅= 当4πα=时,max 4sin 244S π⎛⎫=⋅= ⎪⎝⎭故答案为:4 【点睛】本题考查三角函数定义的实际应用,注意建模,再借助三角函数求最值,属于中档题.16.【分析】根据整理为再两边平方结合得到然后利用基本不等式求解【详解】因为所以两边平方得因为即所以而所以解得当且仅当时等号成立所以的最大值是故答案为:【点睛】关键点点睛:本题关键是由这一信息将转化为再遇解析:14【分析】根据|(1)(1)|1t a t b ++-=,整理为()()||1t a b a b ++-=,再两边平方结合22||||1a b -=,得到()()22212t a ba bt ++-=-,然后利用基本不等式求解.【详解】因为|(1)(1)|1t a t b ++-=,所以()()||1t a b a b ++-=,两边平方得()()()()22221t a b t a b a b a b +++-+-=, 因为22||||1a b -=,即()()1a b a b +-=, 所以()()22212t a b a b t ++-=-,而()()()()22222t a b a b t a b a b t ++-≥+⋅-=,所以122t t -≥, 解得14t ≤,当且仅当()()t a b a b +=-时等号成立, 所以t 的最大值是14故答案为:14【点睛】关键点点睛:本题关键是由22||||1a b -=这一信息,将|(1)(1)|1t a t b ++-=,转化为()()||1t a b a b ++-=,再遇模平方,利用基本不等式从而得解.17.【分析】根据平面向量的数量积运算求得的值再利用中线的性质表示出由此求得计算当的最小时的值即可【详解】解:连接如图所示:由等腰三角形中知所以∵是的中线∴同理可得∴又∴故当时有最小值此时故答案为:【点睛 解析:47【分析】根据平面向量的数量积运算求得CA CB 的值,再利用中线的性质表示出CM 、CN ,由此求得MN ,计算当||MN 的最小时x y +的值即可. 【详解】解:连接CM ,CN ,如图所示:由等腰三角形中,1AC BC ==,3AB =120ACB ∠=︒,所以1=2CA CB ⋅-. ∵CM 是CEF ∆的中线,∴()()1122CM CE CF xCA yCB =+=+.同理可得()1=2CN CA CB +. ∴()()111122MN CN CM x CA y CB =-=-+-, ()()()()222111111114224MN x x y y ⎛⎫=-+--⨯-+- ⎪⎝⎭, 又41x y +=, ∴222131424MN y y =-+,(),0,1x y ∈. 故当17y =时,2MN 有最小值,此时3147x y =-=. 故答案为:47. 【点睛】本题考查了平面向量数量积公式及其运算性质问题,也考查了二次函数求最值的应用问题,属于中档题.18.【分析】根据题意可得为的一个零点且且上有且只有一个最值点从而可得再由在单调递增可得解不等式组即可求解【详解】依题意为的一个零点且所以在上有且只有一个最值点可得化简得又则所以解得当时可得又所以故答案为解析:65,53⎛⎤⎥⎝⎦【分析】 根据题意可得,04π⎛⎫⎪⎝⎭为()f x 的一个零点,且45T π≥,且,66ππ⎛⎫- ⎪⎝⎭上有且只有一个最值点,从而可得665ω<<,再由()f x 在711,2020ππ⎛⎫ ⎪⎝⎭单调递增,可得221032210k k ππωπππωπ⎧-+≤⎪⎪⎨⎪+≥⎪⎩,解不等式组即可求解. 【详解】 依题意,04π⎛⎫⎪⎝⎭为()f x 的一个零点且117420205T πππ≥-=, 所以在,66ππ⎛⎫- ⎪⎝⎭上有且只有一个最值点, 可得46446T ππππ-<<+,化简得665ω<<, 又711,2020x ππ⎛⎫∈ ⎪⎝⎭,则3,41010x πωπωπω⎛⎫⎛⎫-∈ ⎪ ⎪⎝⎭⎝⎭所以221032210k k ππωπππωπ⎧-+≤⎪⎪⎨⎪+≥⎪⎩,解得5520203k k ω-+≤≤+,k Z ∈,当0k =时,可得553ω-≤≤,又665ω<<,所以6553ω<≤. 故答案为:65,53⎛⎤⎥⎝⎦【点睛】关键点点睛:本题考查了三角函数的性质,解题的关键是根据三角函数的最值得665ω<<,以及函数的单调递增区间可得5520203k k ω-+≤≤+,k Z ∈,考查了分析、计算能力.19.【分析】由实数满足可得从而求出结果【详解】实数xy 满足且故答案为:【点睛】本题考查函数与方程的关系属于基础题解析:54【分析】由实数满足121log sin 303yx ⎛⎫+-= ⎪⎝⎭可得sin 1,1x y ==-,从而求出结果【详解】实数x ,y 满足121log sin 303yx ⎛⎫+-= ⎪⎝⎭,且120sin 1,log sin 0x x <≤∴≥,121log sin 0,303yx ⎛⎫∴=-= ⎪⎝⎭∴sin 1,1x y ==-,cos 0x ∴=,0cos 1421524414x y -=++=+= 故答案为:54【点睛】本题考查函数与方程的关系,属于基础题20.【分析】以A 为原点AC 所在直线为x 轴建系如图所示根据题意可得ABC 坐标设可得的坐标根据数量积公式可得的表达式即可求得答案【详解】以A 为原点AC 所在直线为x 轴建立坐标系如图所示:因为所以设则所以=当时解析:283-【分析】以A 为原点,AC 所在直线为x 轴,建系,如图所示,根据题意,可得A 、B 、C 坐标,设(,)M x y ,可得,,MA MB MC 的坐标,根据数量积公式,可得w 的表达式,即可求得答案.【详解】以A 为原点,AC 所在直线为x 轴,建立坐标系,如图所示:因为2AB =,32AC =135BAC ∠=︒, 所以(0,0),(2,2),(32,0)A B C -,设(,)M x y ,则(,),(2,2),(32,)MA x y MB x y MC x y =--=---=--, 所以(2)(2)w MA MB MB MC MC MA x x y y =⋅+⋅+⋅=++22)(32)(2)(2)x x y y x x y -++-+=22222222834232263()3()3x x y x y -+--=+-, 当222,33x y ==时,w 有最小值,且为283-, 故答案为:283- 【点睛】解题的关键是建立适当的坐标系,求得点坐标,利用数量积公式的坐标公式求解,考查分析理解,计算化简的能力,属基础题.三、解答题21.(1)()5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)[]1,1-【分析】(1)首先利用二倍角公式和辅助角公式化简函数()2sin 216f x x π⎛⎫=-+ ⎪⎝⎭,再求函数的单调递减区间; (2)先求26x π-的范围,再求函数sin 26x π⎛⎫-⎪⎝⎭的范围,最后求函数的值域. 【详解】(1)因为()21cos 22sin 216f x x x x π⎛⎫=+-=-+ ⎪⎝⎭, 令3222262k x k πππππ+≤-≤+,解得5,36k x k k Z ππππ+≤≤+∈ 所以函数()f x 的单调增区间为()5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2),312x ππ⎡⎤∈-⎢⎥⎣⎦,22,36x ππ⎡⎤∴∈-⎢⎥⎣⎦,52,066x ππ⎡⎤∴-∈-⎢⎥⎣⎦,利用正弦函数的图像与性质知[]sin 21,06x π⎛⎫-∈- ⎪⎝⎭,[]2sin 211,16x π⎛⎫∴-+∈- ⎪⎝⎭所以()f x 的值域为[]1,1-. 【点睛】方法点睛:本题考查三角函数恒等变换和函数性质的综合应用,()sin y A x ωϕ=+的性质:(1)周期2π.T ω=(2)由 ()ππ2x k k +=+∈Z ωϕ求对称轴,由()πx k k ωϕ+=∈Z 求对称中心.(3)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间. 22.(1)最小正周期为π;(2)5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,. 【分析】(1)由三角函数恒等变换化简函数得()sin 2f x x =,由三角函数的周期公式可得答案;(2)由余弦的二倍角公式和辅助角公式得()g x 2sin23x π=-(),再由正弦函数的性质可求得函数的单调增区间. 【详解】 解:(1)函数()22sin cos 12cos 1cos 2sin 24444f x x x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+--=--=⨯-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,所以函数()f x 的最小正周期为22ππ=. (2)()()22sin 22cos 1sin 2g x f x x x x x x =-=-=)2sin 23x π=-(),令222232k x k k Z πππππ-≤-≤+∈,,得51212k x k k Z ππππ-≤≤+∈,, 所以函数()g x 的单调增区间为51212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,,. 【点睛】方法点睛:解决三角函数的周期和单调性等相关问题,先利用三角函数的恒等变换化简函数为一个角一个三角函数,再运用整体思想代入是常用的方法. 23.(1)ABC ∆为直角三角形;(2)5;(3)34,2x λ==. 【分析】(1)根据已知点的坐标求出向量的坐标,然后利用向量数量积为0,即可证明; (2)根据题意可得()6,5CA CB x +=+-,再利用向量的模的运算以及二次函数求得最值;(3)利用向量共线可得方程组,解得即可. 【详解】(1)当1x =时,ABC ∆为直角三角形.证明如下:当1x =时,由()1,2A ,()2,3B ,()2,5C -,则()3,3AC =-,()1,1AB =, 此时31310AC AB ⋅=-⨯+⨯=,即AC AB ⊥,即2A π∠=,所以,ABC ∆为直角三角形.(2)由题意,()2,3CA x =+-,()4,2CB =-,则()6,5CA CB x +=+-, 所以,()6255CA CB x +=++≥,当且仅当6x =-时取等号.故当6x =-时,CA CB +取得最小值为5.(3)由题意,()2,3CA x =+-,()4,2CB =-,因CA CB λ=,所以2432x λλ+=⎧⎨-=-⎩,解得432x λ=⎧⎪⎨=⎪⎩.【点睛】本题考查平面向量的坐标运算及数量积运算,考查了向量共线,训练了利用配方法求函数的最值,属于基础题.24.(1)1;(2)34π. 【分析】 (1)先求得a λb +,然后利用()0a b a λ+⋅=列方程,解方程求得λ的值.(2)求得,c d 的坐标,利用夹角公式计算出c 与d 的夹角的余弦值,由此求得c 与d 的夹角.【详解】(1)由()1,2a =-,()3,1b =-得()13,2a b λλλ+=-+-,因为()a b a λ+⊥,所以()0a b a λ+⋅=,所以()()13220λλ--++-=, 即550λ-+=,解得1λ=;(2)由()1,2a =-,()3,1b =-得 ()25,5c a b =-=-,()25,0d a b =+=,所以25c d ⋅=-,52c =,5d =,设向量c 与d 的夹角为θ,则cos2θ==- 又因为[]0,θπ∈,所以34πθ=, 即向量c 与d 的夹角为34π. 【点睛】本小题主要考查向量垂直的坐标表示,考查向量夹角的计算,考查向量线性运算的坐标表示,属于中档题. 25.(1)22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)422,3x k x k k Z πππ⎧⎫-+<<∈⎨⎬⎩⎭∣. 【分析】(1)化简()f x ,应用整体思想,结合正弦函数的递增区间,即可得出结论; (2)应用整体思想,运用正弦函数图像,建立不等式,即可求解. 【详解】 ()sin coscos sin cos cos sin sin cos 16633f x x x x x x ππππ=-+++-11cos cos cos 1cos 122x x x x x x x =-++-=+-12cos 12sin 126x x x π⎫⎛⎫=+-=+-⎪ ⎪⎪⎝⎭⎝⎭.(1)由22,262k x k k Z πππππ-+++∈,解得222,33k x k k Z ππππ-++∈, 所以()f x 的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. (2)由(1)知()2sin 16f x x π⎛⎫=+- ⎪⎝⎭. 因为()0f x <,即2sin 106x π⎛⎫+-< ⎪⎝⎭.所以1sin 62x π⎛⎫+< ⎪⎝⎭, 所以7+2++2,666k x k k Z πππππ-<<∈. 所以422,3k x k k Z πππ-+<<∈, 所以使()0f x <成立的x 的取值集合为422,3xk x k k Z πππ⎧⎫-+<<∈⎨⎬⎩⎭∣. 【点睛】方法点睛:解决正弦型函数的单调性和不等式的相关问题,运用整体思想,先由三角函数恒等变换,化简解析式为同一角同一三角函数的形式,再运用三角函数的性质以及建立三角不等式求解.26.(1)[]2,1-;(2)22a -<<.【分析】(1) 0a =,6πθ=代入化简函数得()2cos 3f x x π⎛⎫=+ ⎪⎝⎭,根据余弦函数的值域可求得答案;(2) 将问题等价于24sin sin 20a θθ--=关于θ有两个不同的解,sin t θ=换元后由一元二次方程的根的分布建立不等式组可求得a 的取值范围.【详解】(1)当0a =,6πθ=时, ()2cos 3f x x π⎛⎫=+ ⎪⎝⎭在20,3π⎡⎤⎢⎥⎣⎦上单调递减,在2π,π3上单调递增, ∴min 2()()23f x f π==-,max ()(0)1f x f ==, ∴()f x 的值域为[]2,1-.(2)由sin()2cos(2)0a πθπθ+++=,得sin 2cos20a θθ--=,∴24sin sin 20a θθ--=关于θ有两个不同的实数解,设sin t θ=,∵,22ππθ⎛⎫∈- ⎪⎝⎭,∴()1,1t ∈-.∴2420t at --=在()1,1t ∈-有两个不同的实数解,记2()42g t t at =--, 则2320118(1)420(1)420a a g a g a ⎧∆=+>⎪⎪-<<⎪⎨⎪-=+->⎪=-->⎪⎩解得:22a -<<. 【点睛】关键点点睛: 24sin sin 20a θθ--=关于θ有两个不同的实数解换元后可得2420t at --=在()1,1t ∈-有两个不同的实数解,结合二次函数2()42g t t at =--图象和性质列出不等式组求解,转化思想的应用是解题的关键.。

【人教版】高中数学必修四期末试题附答案

【人教版】高中数学必修四期末试题附答案

一、选择题1.已知tan 2α=,则sin cos 2sin cos αααα+=-( )A .1B .1-C .2D .2-2.已知ππ2α<<,且π3sin 45α⎛⎫+= ⎪⎝⎭,则cos α的值为( )AB. CD.10-3.已知()()()ππcos sin 22cos πtan πf ααααα⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=---,则2020π3f ⎛⎫-= ⎪⎝⎭( )A. B .12-C .12D.24.已知A 是函数()3sin(2020))263f x x x ππ=++-的最大值,若存在实数1x ,2x 使得对任意实数x ,总有12()()()f x f x f x ≤≤成立,则12A x x 的最小值为( ) A .2020πB .1010π C .32020πD .20205.已知点G 是ABC 的重心,(),AG AB AC R λμλμ=+∈,若120,2,A AB AC ∠=︒⋅=-则AG 的最小值是( )ABC .12D .236.已知ABC 中,2AB AC ==,120CAB ∠=,若P 是其内一点,则AP AB ⋅的取值范围是( ) A .(4,2)--B .(2,0)-C .(2,4)-D .(0,2)7.在ABC 中,4A π=,3B π=,2BC =,AC 的垂直平分线交AB 于D ,则AC CD ⋅=( )A .1-B .2-C .3-D .38.在ABC ∆中,060BAC ∠=,5AB =,6AC =,D 是AB 上一点,且5AB CD ⋅=-,则BD 等于( )A .1B .2C .3D .49.如果一个函数在给定的区间上的零点个数恰好为8,则称该函数为“比心8中函数”.若函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上的“比心8中函数”,则ω的取值范围是( ) A .4149,66⎡⎫⎪⎢⎣⎭B .4953,66⎡⎫⎪⎢⎣⎭C .3741,66⎡⎫⎪⎢⎣⎭D .[8,9)10.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( ) A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C11.已知函数()tan()0,2f x x πωϕωϕ⎛⎫=+≠< ⎪⎝⎭,点2,03π⎛⎫⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是其相邻的两个对称中心,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则ϕ=( ) A .6π B .6π-C .3π D .3π-12.设函数()tan 3f x x π=-,()sin 3g x x π⎛⎫=-⎪⎝⎭,则函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是( ) A .4B .5C .12D .13二、填空题13.给出下列命题:①()72cos 22f x x π⎛⎫=--⎪⎝⎭是奇函数;②若α、β都是第一象限角,且αβ>,则tan tan αβ>;③38x π=-是函数33sin 24y x π⎛⎫=-⎪⎝⎭的图像的一条对称轴;④已知函数()23sin12xf x π=+,使()()f x c f x +=对任意x ∈R 都成立的正整数c 的最小值是2.其中正确命题的序号是______.14________.15.已知函数()sin 3cos f x x x =+,则下列命题正确的是_____.(填上你认为正确的所有命题序号) ①函数()0,2f x x π⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭的单调递增区间是06,π⎡⎤⎢⎥⎣⎦; ②函数()f x 的图像关于点,06π⎛⎫-⎪⎝⎭对称; ③函数()f x 的图像向左平移(0)m m >个单位长度后,所得的图像关于y 轴对称,则m 的最小值是6π; ④若实数m 使得方程()f x m =在[0,2]π上恰好有三个实数解123,,x x x ,则12373x x x π++=. 16.如图,已知四边形ABCD ,AD CD ⊥,AC BC ⊥,E 是AB 的中点,1CE =,若//AD CE ,则AC BD ⋅的最小值为___________.17.在AOB 中,已知1OA =,3OB =2AOB π∠=.若点C ,D 满足971616OC OA OB =-+,()12CD CO CB =⋅+,则CD CO ⋅的值为_______________. 18.在ABC △中,已知4CA =,3CP =23ACB π∠=,点P 是边AB 的中点,则CP CA ⋅的值为_____.19.已知函数()3sin(2)cos(2)(||)2f x x x πϕϕϕ---<的图象关于y 轴对称,则()f x 在区[6π-,5]12π上的最大值为__.20.已知定义在R 上的函数()f x 满足3()2f x f x ⎛⎫=-+⎪⎝⎭,且(2)3f -=,则(2020)f =________.三、解答题21.已知函数()f x 满足:()()()22f x f x a a R +=+∈,若()12f =,且当(]2,4x ∈时,()22611f x x x =-+.(1)求a 的值;(2)当(]0,2x ∈时,求()f x 的解析式;并判断()f x 在(]0,4上的单调性(不需要证明);(3)设()24log 231x g x ⎛⎫=+⎪-⎝⎭,()2cos cos 2,22h x x m x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ≥⎡⎤⎡⎤⎣⎦⎣⎦,求实数m 的值.22.已知函数())2cos sin 3f x x x x x R π⎛⎫=++∈ ⎪⎝⎭. (1)求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦的最大值和最小值; (2)设函数()g x 对任意x ∈R ,有()2g x g x π⎛⎫+= ⎪⎝⎭,且当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12g x f x =-.求()g x 在区间[],0π-上的解析式. 23.已知函数1()sin 22,23f x x x R π⎛⎫=-+∈ ⎪⎝⎭. (1)求()f x 的最小正周期; (2)求()f x 的单调递减区间; (3)求()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值 24.定义行列式运算法则为:12142334a a a a a a a a =-,已知函数()2cos 2sin x f x x=.(1)求()f x 的最小正周期; (2)若函数()()02g x f x m m π⎛⎫=+<<⎪⎝⎭是偶函数,求不等式()0g x ≤的解集. 25.已知△ABC 中,角A 、B 、C 的对边为a ,b ,c ,向量m (2cossin )2C C =-,, n =(cos2sin )2C C ,,且m n ⊥. (1)求角C ;(2)若22212a b c =+,试求sin()A B -的值 26.在平面直角坐标系xOy 中,已知向量(1,2)a =-,(1,)b k =. (1)若()a a b ⊥+,求实数k 的值;(2)若对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】已知正切值要求正余弦值,可以利用商的关系将“弦化切”,代入数值即可. 【详解】原式分子分母同除以cos α得 原=tan 12112tan 141αα++==--故选:A. 【点睛】已知正切值求正余弦值,通常有两种做法:一是将所求式子分子分母同除cos α或2cos α,化为tan α求解; 二是利用sin tan cos ααα=得sin tan cos ααα=代入消元即可. 2.D解析:D 【分析】根据同角三角函数基本关系得出cos 4πα⎛⎫+ ⎪⎝⎭的值,再用两角差的余弦公式即可解题. 【详解】因为ππ2α<<,所以35,444πππα⎛⎫+∈ ⎪⎝⎭,又3sin 45πα⎛⎫+= ⎪⎝⎭,所以4cos 45πα⎛⎫+=- ⎪⎝⎭, 所以cos cos cos cos sin sin 444444ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭43525210=-⨯+⨯=-. 故选:D 【点睛】方法点睛:该题考查的是有关三角函数求值问题,解题方法如下:(1)利用同角三角函数关系式,结合角的范围,求得cos 4πα⎛⎫+ ⎪⎝⎭的值; (2)凑角,利用差角余弦公式求得结果.3.B解析:B 【分析】根据诱导公式和同角三角函数关系式,化简函数式,最后代值计算即可. 【详解】()()()cos sin 22cos tan f ππαααπαπα⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=--- ()()sin sin 2cos tan πααπαα⎡⎤⎛⎫-⋅-- ⎪⎢⎥⎝⎭⎣⎦=+⋅- ()()sin cos cos tan αααα-⋅-=-⋅-sin cos sin cos cos ααααα⋅=⋅cos α=,所以2020202020201cos cos cos 673cos 333332f ππππππ⎛⎫⎛⎫⎛⎫-=-==+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:B . 【点睛】本题考查利用诱导公式和同角三角函数关系式化简三角函数式并求值,注意三角函数值的符号变化,属于基础题.4.C解析:C 【分析】利用三角恒等变换化()f x 为正弦型函数,由此求出A 、T 以及12x x -的最小值,可得解. 【详解】()3sin(2020))2623f x x x ππ=++-,392020cos 2020cos 2020202044x x x x =+-,320220cos 2020x x =-3sin(2020)6x π=-,∴max ()3A f x ==,又存在实数1x ,2x ,对任意实数x 总有12()()()f x f x f x ≤≤成立, ∴2max ()()2f x f x ==,1min ()()2f x f x ==-, 则12x x -的最小值为函数()f x 的半个最小正周期长度,12min 1122220202020x x T ππ∴-==⨯=∴()12min32020A x x π⋅-=, 故选:C. 【点睛】本题考查三角函数的最值,着重考查两角和与差的正弦与余弦,考查三角恒等变换,突出正弦函数的周期性的考查,属于中档题.5.D解析:D 【分析】先根据重心得到()13AG AB AC =+,设0,0AB x AC y =>=>,利用数量积计算4xy =,再利用重要不等式求解()2219A AGB AC =+的最小值,即得结果. 【详解】点G 是ABC 的重心,设D 为BC 边上的中点,则()2133AG AD AB AC ==+, 因为120,2,A AB AC ∠=︒⋅=-设0,0AB x AC y =>=>,则cos1202xy ︒=-,即4xy =,故()()()222211144249999AG x y x B AC y A =+-≥-=+=,即23AG ≥, 当且仅当2x y ==时等号成立,故AG 的最小值是23. 故选:D. 【点睛】 关键点点睛:本题的解题关键在于通过重心求得向量关系()13AG AB AC =+,利用数量积得到定值,才能利用重要不等式求最值,突破难点,要注意取条件的成立.6.C解析:C 【分析】以A 为坐标原点,以过点A 垂直于BC 的直线为y 轴,建立平面直角坐标系,求出()3,1B --,()3,1C-,设(),P x y ,因为点P 是其内一点,所以3x 3-<<,10y -<<,计算3AP AB x y ⋅=--得最值,即可求解.【详解】建立如图所示的空间直角坐标系:则()0,0A ,因为120CAB ∠=,所以30ABC ACB ∠=∠=, 可得2cos303= ,2sin301,所以()3,1B -- ,()3,1C-,设(),P x y ,因为点P 是其内一点,所以33,10x y <<-<<,()(),3,13AP AB x y x y ⋅=⋅--=--,当3x =1y =-时AP AB ⋅最大为((()3314-⨯--=, 当3,1x y ==-时AP AB ⋅最小为(()3312--=-,所以AP AB ⋅的取值范围是(2,4)-, 故选:C 【点睛】关键点点睛:本题解题的关键点是建立直角坐标系,将数量积利用坐标表示,根据点(),P x y 是其内一点,可求出,x y 的范围,可求最值. 7.C解析:C 【分析】由AC 的垂直平分线交AB 于D ,且4A π=可得ACD △为等腰直角三角形,且4A ACD π∠=∠=,2ADC BDC π∠=∠=;进而由2BC =可求出,,DB CD AC 的长,从而求出AC CD ⋅的值. 【详解】解:因为AC 的垂直平分线交AB 于D 、4A π=,所以ACD △为等腰直角三角形,4A ACD π∠=∠=,2ADC BDC π∠=∠=,在BDC 中,3B π=,2BDC π∠=,2BC =,所以1,3BD CD ==,所以3AD CD ==,26AC CD ==,所以32cos63()342AC CD AC CD π⋅=⋅=⨯⨯-=-.故选:C. 【点睛】本题主要考查平面向量的数量积,考查运算求解能力,属于基础题型.8.C解析:C 【解析】在ABC ∆中,060BAC ∠=,5,6AB AC ==,D 是AB 是上一点,且5AB CD ⋅=-, 如图所示,设AD k AB =,所以CD AD AC k AB AC =-=-, 所以21()2556251552AB CD AB k AB AC k AB AB AC k k ⋅=⋅-=-⋅=-⨯⨯=-=-, 解得25k =,所以2(1)35BD AB =-=,故选C .9.A解析:A 【分析】根据题意问题转化为方程1sin()2x ωπ=在区间[0,1]上有8个解,根据正弦函数的图像与性质可求得1sin()2x ωπ=在区间[0,1]上取第8个解为416x ω=、第9个解为496x ω=,则4149166ωω≤<,解不等式即可. 【详解】根据题意,函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上零点个数为8,即方程1sin()2x ωπ=在区间[0,1]上有8个解, ∴26x k πωππ=+或52,6x k k Z πωππ=+∈, 当0k =时,1sin()2x ωπ=在区间[0,1]上取第1个解16x ω=,取第2个解56x ω=; 当1k =时,1sin()2x ωπ=在区间[0,1]上取第3个解136x ω=,取第4个解176x ω=; 当3k =时,1sin()2x ωπ=在区间[0,1]上取第7个解376x ω=,取第8个解416x ω=; 当4k =时,1sin()2x ωπ=在区间[0,1]上取第9个解496x ω=. 则4149166ωω≤<,解得414966ω≤<. 故选:A10.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==-⎪⎝⎭,2cos 23:C y x π⎛⎫=-⎪⎝⎭, ∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.11.A【分析】由正切函数的图象性质,得出相邻两个对称中心之间的距离为半个周期,可求出T ,然后由T πω=求出ω,然后再代点讨论满足题意的ϕ,即可得出答案. 【详解】由正切函数图象的性质可知相邻两个对称中心的距离为2T ,得72263T πππ⎛⎫=-=⎪⎝⎭. 则由1T πω==得1ω=,即得1ω=±. 由2πϕ<,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则可得1ω=-, ∴()()()tan tan f x x x ϕϕ=-+=--. 由2,32k k Z ππϕ-=∈得2,32k k Z ππϕ=-∈,因2πϕ<,可得6π=ϕ或3π-,当3πϕ=-时,()tan +3f x x π⎛⎫=- ⎪⎝⎭, 由+,232k x k k Z πππππ-<<+∈,得5,66k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为5,,66k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由54,63ππ⎛⎫ ⎪⎝⎭7,66ππ⎛⎫ ⎪⎝⎭⊄,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上不是单调递减, 所以3πϕ=-不满足题意;当6π=ϕ时,()tan 6f x x π⎛⎫=-- ⎪⎝⎭,由,262k x k k Z πππππ-<-<+∈,得2,33k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为2,,33k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由25,3354,63ππππ⎛⎫⊂⎛⎫ ⎪⎝ ⎪⎝⎭⎭,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上单调递减, 所以6π=ϕ满足题意; 综上可得:6π=ϕ满足题意.【点睛】关键点睛:正切型函数的对称中心和单调性的问题,通常采用代入检验法,注意正切函数的对称中心为0,2k k Z π⎛⎫∈⎪⎝⎭,. 12.A解析:A 【分析】由题意知函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数,作出两个函数图象,数形结合即可求解. 【详解】令()()()0h x f x g x =-=可得()()f x g x =,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于 函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数. 分别作出()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象,由图知两个函数图象在区间[]2,2ππ-上有4个交点,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是4, 故选:A 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点;(2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.二、填空题13.①③④【分析】对①化简得可判断;对②取特殊值可说明;对③代入求值可判断;对④化简求出其最小正周期即可判断【详解】对①是奇函数故①正确;对②如但故②错误;对③当时取得最大值故③正确;对④则的最小正周期解析:①③④ 【分析】 对①,化简得()()2sin 2f x x =可判断;对②,取特殊值可说明;对③,代入38x π=-求值可判断;对④,化简()f x ,求出其最小正周期即可判断. 【详解】 对①,()()72cos 22sin 22f x x x π⎛⎫=--= ⎪⎝⎭是奇函数,故①正确; 对②,如7,33ππαβ==,但tan tan αβ=,故②错误; 对③,当38x π=-时,333sin 2384y ππ⎡⎤⎛⎫=⨯--= ⎪⎢⎥⎝⎭⎣⎦,取得最大值,故③正确; 对④,()()2353sin1cos 222xf x x ππ=+=-+,则()f x 的最小正周期为22ππ=,则c 的最小值是2,故④正确. 故答案为:①③④. 【点睛】本题考查三角函数奇偶性的判断,考查三角函数的单调性和对称性以及周期性,解题的关键是正确化简,正确理解三角函数的性质.14.【分析】利用同角三角函数的基本关系式二倍角公式结合根式运算化简求得表达式的值【详解】依题意由于所以故答案为:【点睛】本小题主要考查同角三角函数的基本关系式二倍角公式考查根式运算属于基础题解析:4【分析】利用同角三角函数的基本关系式、二倍角公式,结合根式运算,化简求得表达式的值. 【详解】=4==,由于342ππ<<=故答案为:4 【点睛】本小题主要考查同角三角函数的基本关系式、二倍角公式,考查根式运算,属于基础题.15.①③④【分析】首先利用辅助角公式将函数化简为再根据正弦函数的性质一一验证即可【详解】解:的单调增区间为当增区间为∴①正确;∴②不正确;函数的图像向左平移个单位长度后得由题意得则的最小值是∴③正确;若解析:①③④ 【分析】首先利用辅助角公式将函数化简为()2sin 3f x x π⎛⎫=+ ⎪⎝⎭,再根据正弦函数的性质一一验证即可. 【详解】解:1()sin 2sin 2sin 23f x x x x x x π⎛⎫⎛⎫===+ ⎪ ⎪⎝⎭⎝⎭, ()f x ∴的单调增区间为52,2()66k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦, 当0,2x π⎡⎤∈⎢⎥⎣⎦,增区间为06,π⎡⎤⎢⎥⎣⎦,∴①正确; 2sin 2sin 106636f ππππ⎛⎫⎛⎫-=-+==≠ ⎪ ⎪⎝⎭⎝⎭,∴②不正确;函数()f x 的图像向左平移(0)m m >个单位长度后得()2sin 3f x x m π⎛⎫=++⎪⎝⎭,由题意得32m k πππ+=+,6m k ππ=+,则m 的最小值是6π,∴③正确;若实数m 使得方程()f x m =在[0,2]π上恰好有三个实数解123,,x x x ,结合这两个函数图像可知,必有10x =,32x π=,此时()2sin 33f x x π⎛⎫=+= ⎪⎝⎭,另一个解为23x π=,12373x x x π∴++=,∴④正确. 故答案为:①③④【点睛】本题考查辅助角公式的应用,正弦函数的性质的综合应用,属于中档题.16.【分析】令结合题中已知条件得出通过根据数量积的概念以及二次函数的性质可得结果【详解】令因为所以又因为是的中点所以故可得所以当时取得最小值故答案为:【点睛】关键点点睛:将表示成根据几何关系将所需量用表 解析:1-【分析】令ACD θ∠=,结合题中已知条件得出2CAD πθ∠=-,2CAB πθ∠=-,2sin AC θ=,22sin AD θ=,通过()AC BD AC BA AD ⋅=⋅+,根据数量积的概念以及二次函数的性质可得结果. 【详解】令ACD θ∠=,因为AD CD ⊥,AC BC ⊥,//AD CE , 所以BCE θ∠=,2ACE CAD πθ∠=∠=-,又因为E 是AB 的中点,1CE =,所以2AB =,1CE =,CBA θ∠=,2CAB πθ∠=-,故可得2sin AC θ=,22sin AD θ=,所以()AC BD AC BA AD AC BA AC AD ⋅=⋅+=⋅+⋅2222sin 2cos 2sin 2sin cos 4sin 4sin 22ππθπθθθθθθ⎛⎫⎛⎫=⨯⨯-++⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭2214sin 12θ⎛⎫=-- ⎪⎝⎭,当21sin 2θ=时,AC BD ⋅取得最小值1-,故答案为:1-. 【点睛】关键点点睛:将BD 表示成BA AD +,根据几何关系将所需量用θ表示,将最后结果表示为关于θ的函数.17.【分析】以为基底向量表示再由数量积的运算律定义计算即可【详解】∵∴D 为OB 的中点从而∴∵∴∴故答案为:【点睛】本题考查平面向量的数量积需要根据题意确定基底向量再根据平面向量基本定理表示所求的向量数量解析:1564【分析】以,OA OB 为基底向量表示CD CO ,,再由数量积的运算律、定义计算即可. 【详解】 ∵1()2CD CO CB =+,∴D 为OB 的中点,从而12OD OB =,∴97191161621616CD CO OD OA OB OB OA OB =+=-+=+ ∵1OA =,OB =2AOB π∠=,∴0OA OB ⋅=∴9197()()16161616CD CO OA OB OA OB ⋅=+⋅- 221(817)256OA OB =-1(8173)256=-⨯1564=. 故答案为:1564.【点睛】本题考查平面向量的数量积,需要根据题意确定基底向量,再根据平面向量基本定理表示所求的向量数量积,进而根据数量积公式求解.属于中档题.18.6【分析】根据平方处理求得即可得解【详解】在中已知点是边的中点解得则故答案为:6【点睛】此题考查平面向量的基本运算关键在于根据向量的运算法则求出模长根据数量积的运算律计算求解解析:6 【分析】 根据()12CP CA CB =+,平方处理求得2CB =,()12CP CA CA CB CA ⋅=+⋅即可得解. 【详解】在ABC △中,已知4CA =,3CP 23ACB π∠=,点P 是边AB 的中点, ()12CP CA CB =+ ()222124CP CA CB CA CB =++⋅ 211316842CB CB ⎛⎫⎛⎫=++⨯- ⎪ ⎪⎝⎭⎝⎭,解得2CB = 则()()21111162462222CP CA CA CB CA CA CB CA ⎛⎫⎛⎫⋅=+⋅=+⋅=+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:6 【点睛】此题考查平面向量的基本运算,关键在于根据向量的运算法则求出模长,根据数量积的运算律计算求解.19.【分析】利用辅助角公式化简可得再根据图象关于轴对称可求得再结合余弦函数的图像求出最值即可【详解】因为函数的图象关于轴对称所以即又则即又因为所以则当即时取得最大值故答案为:【点睛】判定三角函数的奇偶性 3【分析】利用辅助角公式化简可得()2sin(2)6f x x πϕ=--,再根据图象关于y 轴对称可求得()2cos2f x x =-,再结合余弦函数的图像求出最值即可.【详解】 因为函数()()()3sin 2cos 2f x x x ϕϕ=---2sin(2)6x πϕ=--的图象关于y 轴对称,所以πππ62k ϕ--=+,即()2ππ,3k k Z ϕ=--∈.又2πϕ<,则π3ϕ=,即()2sin(2)2cos22f x x x π=-=-.又因为π5π612x -≤≤,所以π5π236x -≤≤,则当5π26x =,即5π12x =时,()f x 取得最大值5π2cos6-=.【点睛】判定三角函数的奇偶性时,往往与诱导公式进行结合,如: 若()sin y x ωϕ=+为奇函数,则π,Z k k ϕ=∈;若()sin y x ωϕ=+为偶函数,则ππ+,Z 2k k ϕ=∈; 若()cos y x ωϕ=+为偶函数,则π,Z k k ϕ=∈;若()cos y x ωϕ=+为奇函数,则ππ+,Z 2k k ϕ=∈. 20.3【分析】由已知可得是函数的一个周期所以再由可求得可得答案【详解】由已知可得则有则是函数的一个周期所以又所以所以故答案为:3【点睛】本题考查了函数的周期性及其应用准确理解周期性的定义是解题的关键属于解析:3 【分析】由已知可得,3是函数()f x 的一个周期,所以(2020)(1)f f =,再由(2)3f -=, 可求得()13f =,可得答案. 【详解】由已知可得,3()2f x f x ⎛⎫+=- ⎪⎝⎭,则有333(3)++()222f x f x f x f x ⎛⎫⎛⎫+==-+= ⎪ ⎪⎝⎭⎝⎭,则3是函数()f x 的一个周期, 所以(2020)(67331)(1)f f f =⨯+=, 又(2)3f -=,所以()()123f f =-=, 所以(2020)3f =, 故答案为:3. 【点睛】本题考查了函数的周期性及其应用,准确理解周期性的定义是解题的关键,属于中档题.三、解答题21.(1)7;(2)()2f x x x =+,单调递增;(3)-1.【分析】(1)根据题意可得()()3214f f a a =+=+,再由()311f =即可求解. (2)设2(]0,x ∈,则2(2,4]x +∈,代入()()227f x f x +=+即可得出()2f x x x =+,再由分段函数单调性判断方法即可求解.(3)由(2)知,当4x >时,()21f x ≥,且由条件知,()12f =,根据()g x 的单调性可得()1h x ≥恒成立,设cos [0,1]x t =∈,只需不等式222(1)0mt t m +-+≥在[0,1]t ∈上恒成立,讨论m 的取值范围即可求解. 【详解】(1)由题意()12f =,所以()()3214f f a a =+=+, 又()2323631111f =⨯-⨯+=,因为411a +=,所以7a =; (2)设2(]0,x ∈,则2(2,4]x +∈,所以()2222(2)6(2)11227f x x x x x +=+-++=++,又()()227f x f x +=+,代入解得:()2f x x x =+;显然,()f x 在(0,2],(2,4]上分别是单增函数, 又()26f =,而当2x +→时,7y →, 因为76>,所以()f x 在(0,4]上单调递增; (3)由(2)知,()f x 是区间(0,4]上单调递增, 且(2,4]x ∈时,()419f =,()7f x >,且当4x >时,设(2,22](2,)x n n n n Z ∈+≥∈,则(22)(2,4]x n --∈,()232()2(2)72(4)7(21)2(6)7221f x f x f x f x =-+=-+⋅+=-+⋅++ ()1232[(22)]72221n n n f x n ---=⋅⋅⋅=--+⋅++⋅⋅⋅++ ()123727222121n n n --->⋅+⋅++⋅⋅⋅++≥且由条件知,()12f =; 再看函数()24 log 231x g x ⎛⎫=+ ⎪-⎝⎭, 由420031x x +>⇒>-,即定义域为(0,)+∞, 且4231x y =+-在(0,)+∞上单减, 所以()24log 231xg x ⎛⎫=+ ⎪-⎝⎭在(0,)+∞上单减,又发现()12g =,所以()()()1f h x g h x h x ≥⇒≥⎡⎤⎡⎤⎣⎦⎣⎦恒成立, 即()22cos 2cos 11x m x +-≥在,22x ππ⎡⎤∈-⎢⎥⎣⎦上恒成立, 设cos [0,1]x t =∈,则不等式222(1)0mt t m +-+≥在[0,1]t ∈上恒成立,①当0m =时,不等式化为210t -≥,显然不满足恒成立; ②当0m >时,当0t =代入得()10m -+≥,矛盾;③当0m <时,只需(1)01122(1)01m m m m m m ⎧-+≥≤-⎧⇒⇒=-⎨⎨+-+≥≥-⎩⎩, 综上,实数m 的值为-1. 【点睛】关键点点睛:本题考查了换元法求函数的解析式,函数的单调性,解题的关键是根据函数的单调性得出()1h x ≥,转化为二次不等式恒成立,考查了分类讨论的思想.22.(1)最大值为14,最小值为12-;(2)()11sin 2,0223211sin 2,2232x x g x x x πππππ⎧⎛⎫+--≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪---≤< ⎪⎪⎝⎭⎩.【分析】(1)利用两角和的正弦公式,二倍角公式以及辅助角公式将()f x 化简,再由三角函数的性质求得最值;(2)利用0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12g x f x =-,对x 分类求出函数的解析式即可. 【详解】(1)()2cos sin 3f x x x x ⎛⎫ ⎪⎝⎭π=++2cos sin cos cos sin 334x x x x ππ⎛⎫=++⎪⎝⎭1sin 2244x x =- 1sin 223x π⎛⎫=- ⎪⎝⎭, 因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以52,366x πππ⎡⎤-∈-⎢⎥⎣⎦, 则1sin 21,32x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,111sin 2,2324x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 所以()f x 的最大值为14;()f x 的最小值为12-; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时, ()11sin 2223g x x π⎛⎫=-- ⎪⎝⎭, 当,02x ⎡⎤∈-⎢⎥⎣⎦π时,0,22x ππ⎡⎤+∈⎢⎥⎣⎦, ()11sin 22223g x g x x ππ⎛⎫⎛⎫=+=+- ⎪ ⎪⎝⎭⎝⎭, 当,2x ππ⎡⎫∈--⎪⎢⎣⎭时,0,2x ππ⎡⎫+∈⎪⎢⎣⎭; ()()11sin 2223g x g x x ππ⎛⎫=+=-- ⎪⎝⎭, 综上:()g x 在区间[],0π-上的解析式为:()11sin 2,0223211sin 2,2232x x g x x x πππππ⎧⎛⎫+--≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪---≤< ⎪⎪⎝⎭⎩. 【点睛】关键点睛:本题考查了三角函数中的恒等变换应用,三角函数的周期性及其求法.熟练掌握两角和的正弦公式,二倍角公式以及辅助角公式是解决本题的关键.23.(1)π;(2)()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(3)最小值为32;最大值为94. 【分析】(1)利用正弦型函数的周期公式可求得函数()f x 的最小正周期;(2)解不等式()3222232k x k k Z πππππ+≤-≤+∈,可得出函数()f x 的单调递减区间; (3)由44x ππ-≤≤求出23x π-的取值范围,利用正弦函数的基本性质可求得函数()f x 的最小值和最大值.【详解】 (1)因为1()sin 2223f x x π⎛⎫=-+ ⎪⎝⎭,所以函数()f x 的最小正周期22T ππ==; (2)由()3222232k x k k Z πππππ+≤-≤+∈,得()5111212k x k k Z ππππ+≤≤+∈. 即函数()f x 的单调递减区间为()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (3)因为44x ππ-≤≤,所以52636πππ-≤-≤x ,所以, 当232x ππ-=-即12x π=-时,函数()f x 取最小值,()min 13sin 2222f x π⎛⎫=-+= ⎪⎝⎭; 当236x ππ-=即4x π=时,函数()f x 取最大值,()max 19sin 2264f x π=+=. 【点睛】 方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤:第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).24.(1)π;(2),,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. 【分析】(1)先利用题中定义计算化简行列式,再利用周期的公式计算即可;(2)先利用()g x 是偶函数计算参数m ,再结合余弦函数图象与性质解不等式即可.【详解】解:(1)依题意得,()22cos 2sin cos 2sin x f x x x x x ==-2sin 2x x =-2cos 26x π⎛⎫=+ ⎪⎝⎭ 故()f x 的最小正周期为:22T ππ==; (2)函数()()2cos 22cos 2266g x x m x m ππ⎡⎤⎛⎫=++=++ ⎪⎢⎥⎣⎦⎝⎭ 故2,6m k k Z ππ+=∈,即,122k m k Z ππ=-+∈,又02m π<<可知,1k =时512m π=,故5()2cos 222cos 2126g x x x ππ⎛⎫=+⋅+=- ⎪⎝⎭.故不等式()0g x ≤,即2cos 20x -+≤,即cos 2x ≥, 结合余弦函数图象与性质可知,222,66k x k k Z ππππ-+≤≤+∈, 解得,1212k x k k Z ππππ-+≤≤+∈. 故不等式的解集为,,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. 【点睛】关键点点睛: 本题解题关键在于读懂新定义中行列式的计算法则,才能结合三角函数的图象与性质突破难点.25.(1)60C =︒;(2. 【分析】(1)利用两个向量垂直的性质,两个向量数量积公式以及二倍角公式,求得cos C 的值,可得C 的值.(2)利用两角差的正弦公式,正弦定理和余弦定理化简,可得结果.【详解】(1)由题意知,0m n =,即222cos 2sin 02C C -=,21cos 2(1cos )0C C +--=, 22cos cos 10C C +-=,即cos 1C =-,或1cos 2C =, 因为0C π<<,所以60C =︒.(2)2222221122a b c a b c =+⇒-=, 222222sin()sin cos sin cos 2222a a c b b b c a A B A B B A R ac R bc+-+--=-=- ()222214442a b c c sinC cR cR R -=====. 【点睛】本题主要考查两个向量数量积公式,两角差的正弦公式,正弦定理和余弦定理的应用,属于中档题.26.(1)2k =-;(2)2k ≠-.【分析】(1)根据向量垂直,其数量积等于0,利用向量数量积公式得到对应的等量关系式,求得结果;(2)平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,其等价结果为向量(1,2)a =-和向量(1,)b k =是两个不共线向量,根据坐标关系得到结果.【详解】(1)若()a a b ⊥+,则有()0a a b ⋅+=,即20a a b +⋅=,又因为(1,2)a =-,(1,)b k =,所以222[(1)2](1)120a a b k +⋅=-++-⋅+=,即5120k -+=,解得2k =-;(2)对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,所以向量(1,2)a =-和向量(1,)b k =是两个不共线向量,所以121k -⋅≠⋅,即2k ≠-,所以实数k 的取值范围是2k ≠-.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量垂直的坐标表示,平面向量基本定理,一组向量可以作为基底的条件,属于基础题目.。

新人教版高二数学必修4期末测试题【附答案】(提升练习)

新人教版高二数学必修4期末测试题【附答案】(提升练习)

高中数学必修4期末测试题【附答案】一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.1.sin 150°的值等于( ).A .21B .-21 C .23 D .-23 2.已知=(3,0)等于( ). A .2B .3C .4D .53.在0到2范围内,与角-34π终边相同的角是( ).A .6πB .3πC .32πD .34π 4.若cos >0,sin <0,则角 的终边在( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限5.sin 20°cos 40°+cos 20°s in 40°的值等于( ).A .41 B .23 C .21D .436.如图,在平行四边形ABCD 中,下列结论中正确的是( ).A .=B .-=C .+=D .+=7.下列函数中,最小正周期为 的是( ).A .y =cos 4xB .y =sin 2xC .y =sin2x D .y =cos 4x 8.已知向量a =(4,-2),向量b =(x ,5),且a ∥b ,那么x 等于( ).A .10B .5C .-25D .-109.若tan =3,tan =34,则tan(-)等于( ).A .-3B .3C .-31D .3110.函数y =2cos x -1的最大值、最小值分别是( ).A .2,-2B .1,-3C .1,-1D .2,-111.已知△ABC 三个顶点的坐标分别为A (-1,0),B (1,2),C (0,c ),若⊥BC ,那么c 的值是( ).A .-1B .1C .-3D .312.下列函数中,在区间[0,2π]上为减函数的是( ).A .y =cos xB .y =sin xC .y =tan xD .y =sin(x -3π)13.已知0<A <2π,且cos A =53,那么sin 2A 等于( ).C (第6题)A .254 B .257 C .2512 D .2524 14.设向量a =(m ,n ),b =(s ,t ),定义两个向量a ,b 之间的运算“⊗”为a ⊗b =(ms ,nt ).若向量p =(1,2),p ⊗q =(-3,-4),则向量q 等于( ).A .(-3,-2)B .(3,-2)C .(-2,-3)D .(-3,2) 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.已知角 的终边经过点P (3,4),则cos 的值为 . 16.已知tan =-1,且 ∈[0,),那么 的值等于 .17.已知向量a =(3,2),b =(0,-1),那么向量3b -a 的坐标是 . 18.某地一天中6时至14时的温度变化曲线近似满足函数T =A sin(t +)+b (其中2π<<时至14时期间的温度变化曲线如图所示,它是上述函数的半个周期的图象,那么这一天6时至14时温差的最大值是 °C ;图中曲线对应的 函数解析式是________________.(第18题)三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤. 19.(本小题满分8分)已知0<<2π,sin =54.(1)求tan 的值; (2)求cos 2+sin ⎪⎭⎫ ⎝⎛2π + α的值.20.(本小题满分10分)已知非零向量a ,b 满足|a |=1,且(a -b )·(a +b )=21. (1)求|b |; (2)当a ·b =21时,求向量a 与b 的夹角 的值.21.(本小题满分10分)已知函数f (x )=sin x (>0).(1)当 =时,写出由y =f (x )的图象向右平移6π个单位长度后得到的图象所对应的函数解析式;(2)若y =f (x )图象过点(3π2,0),且在区间(0,3π)上是增函数,求的值.期末测试题参考答案一、选择题: 1.A解析:sin 150°=sin 30°=21. 2.B=0+9=3. 3.C解析:在直角坐标系中作出-34π由其终边即知. 4.D解析:由cos >0知,为第一、四象限或 x 轴正方向上的角;由sin <0知,为第三、四象限或y 轴负方向上的角,所以 的终边在第四象限.5.B解析:sin 20°cos 40°+cos 20°sin 40°=sin 60°=23. 6.C解析:在平行四边形ABCD 中,根据向量加法的平行四边形法则知AD +AB =. 7.B 解析:由T =ωπ2=,得 =2.8.D解析:因为a ∥b ,所以-2x =4×5=20,解得x =-10. 9.D解析:tan(-)=βαβαtan tan +1tan -tan =4+134-3=31. 10.B解析:因为cos x 的最大值和最小值分别是1和-1,所以函数y =2cos x -1的最大值、最小值分别是1和-3.11.D 解析:易知=(2,2),=(-1,c -2),由⊥,得2×(-1)+2(c -2)=0,解得c =3.12.A解析:画出函数的图象即知A 正确. 13.D解析:因为0<A <2π,所以sin A =54=cos -12A ,sin 2A =2sin A cos A =2524.14.A解析:设q =(x ,y ),由运算“⊗”的定义,知p ⊗q =(x ,2y )=(-3,-4),所以 q =(-3,-2).二、填空题:15.53.解析:因为r =5,所以cos =53. 16.43π. 解析:在[0,)上,满足tan =-1的角只有43π,故 =43π. 17.(-3,-5).解析:3b -a =(0,-3)-(3,2)=(-3,-5).18.20;y =10sin(8πx +43π)+20,x ∈[6,14].解析:由图可知,这段时间的最大温差是20°C .因为从6~14时的图象是函数y =A sin(x +)+b 的半个周期的图象,所以A =21(-)=10,b =21(30+10)=20.因为21·ωπ2=14-6,所以 =8π,y =10sin ⎪⎭⎫ ⎝⎛ϕ + 8πx +20. 将x =6,y =10代入上式,得10sin ⎪⎭⎫ ⎝⎛⨯ϕ + 68π+20=10,即sin ⎪⎭⎫⎝⎛ϕ + 43π=-1,由于2π<<,可得 =43π. 综上,所求解析式为y =10sin ⎪⎭⎫ ⎝⎛43π + 8πx +20,x ∈[6,14].三、解答题:19.解:(1)因为0<<2π,sin =54, 故cos =53,所以tan =34.(2)cos 2+sin ⎪⎭⎫ ⎝⎛α + 2π=1-2sin2+=-2532+53=258. 20.解:(1)因为(a -b )·(a +b )=21,即a 2-b 2=21, 所以|b |2=|a |2-21=1-21=21,故|b |=22.(2)因为cos =ba ba ·=22,故=°.21.解:(1)由已知,所求函数解析式为f (x )=sin ⎪⎭⎫ ⎝⎛6π - x .(2)由y =f (x )的图象过⎪⎭⎫ ⎝⎛0 , 32π点,得sin32π=0,所以32π=k ,k ∈.即 =23k ,k ∈.又>0,所以k ∈N*. 当k =1时,=23,f (x )=sin 23x ,其周期为34π,此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上是增函数;当k ≥2时,3,f (x )=sin x 的周期为ωπ2≤32π<34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上不是增函数. 所以,=23.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修4期末测试题【附答案】
一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.
1.sin 150°的值等于( ). A .
2
1
B .-
2
1 C .
2
3 D .-
2
3 2.已知=(3,0)
等于( ). A .2
B .3
C .4
D .5
3.在0到2π范围内,与角-3

终边相同的角是( ). A .
6
π B .

C .
3
2π D .
3
4π 4.若cos α>0,sin α<0,则角 α 的终边在( ). A .第一象限
B .第二象限
C .第三象限
D .第四象限
5.sin 20°cos 40°+cos 20°sin 40°的值等于( ). A .
4
1
B .
2
3 C .
2
1 D .
4
3 6.如图,在平行四边形ABCD 中,下列结论中正确的是( ). A .=CD
B .AB -AD =BD
C .+=
D .+=
7.下列函数中,最小正周期为 π 的是( ). A .y =cos 4x
B .y =sin 2x
C .y =sin
2
x D .y =cos
4
x 8.已知向量a =(4,-2),向量b =(x ,5),且a ∥b ,那么x 等于( ). A .10
B .5
C .-
2
5 D .-10
9.若tan α=3,tan β=
3
4
,则tan (α-β)等于( ).
C (第6题)
A .-3
B .3
C .-3
1
D .3
1
10.函数y =2cos x -1的最大值、最小值分别是( ).
A .2,-2
B .1,-3
C .1,-1
D .2,-1 11.已知△ABC 三个顶点的坐标分别为A (-1,0),B (1,2),C (0,c ),若⊥,那么c 的值是( ).
A .-1
B .1
C .-3
D .3
12.下列函数中,在区间[0,2π
]上为减函数的是( ). A .y =cos x B .y =sin x C .y =tan x
D .y =sin (x -
3
π) 13.已知0<A <2π,且cos A =53
,那么sin 2A 等于( ).
A .
25
4
B .
25
7 C .
25
12 D .
25
24 14.设向量a =(m ,n ),b =(s ,t ),定义两个向量a ,b 之间的运算“⊗”为a ⊗b =(ms ,nt ).若向量p =(1,2),p ⊗q =(-3,-4),则向量q 等于( ).
A .(-3,-2)
B .(3,-2)
C .(-2,-3)
D .(-3,2)
二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.已知角 α 的终边经过点P (3,4),则cos α 的值为 . 16.已知tan α=-1,且 α∈[0,π),那么 α 的值等于 .
17.已知向量a =(3,2),b =(0,-1),那么向量3b -a 的坐标是 . 18.某地一天中6时至14时的温度变化曲线近似 满足函数T =A sin (ωt +ϕ)+b (其中
2
π
<ϕ<π),6 时至14时期间的温度变化曲线如图所示,它是上 述函数的半个周期的图象,那么这一天6时至14 时温差的最大值是 °C ;图中曲线对应的 函数解析式是________________.
(第18题)
三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤. 19.(本小题满分8分) 已知0<α<
2
π,sin α=54

(1)求tan α 的值;
(2)求cos 2α+sin ⎪⎭⎫ ⎝

2π + α的值.
20.(本小题满分10分)
已知非零向量a ,b 满足|a |=1,且(a -b )·(a +b )=2
1
. (1)求|b |; (2)当a ·b =2
1
时,求向量a 与b 的夹角 θ 的值.
21.(本小题满分10分)
已知函数f (x )=sin ωx (ω>0).
(1)当 ω=1时,写出由y =f (x )的图象向右平移6
π
个单位长度后得到的图象所对应的函数解析式;
(2)若y =f (x )图象过点(3
π2,0),且在区间(0,3π
)上是增函数,求 ω 的值.
期末测试题
参考答案
一、选择题: 1.A
解析:sin 150°=sin 30°=2
1. 2.B
=0+9=3. 3.C
解析:在直角坐标系中作出-3

由其终边即知. 4.D
解析:由cos α>0知,α 为第一、四象限或 x 轴正方向上的角;由sin α<0知,α 为第三、四象限或y 轴负方向上的角,所以 α 的终边在第四象限.
5.B
解析:sin 20°cos 40°+cos 20°sin 40°=sin 60°=2
3
. 6.C
解析:在平行四边形ABCD 中,根据向量加法的平行四边形法则知+=AC . 7.B 解析:由T =ω
π
2=π,得 ω=2.
8.D
解析:因为a ∥b ,所以-2x =4×5=20,解得x =-10. 9.D
解析:tan (α-β)=βαβαtan tan +1tan -tan =
4+134

3=3
1. 10.B
解析:因为cos x 的最大值和最小值分别是1和-1,所以函数y =2cos x -1的最大值、最小值分别是1和-3.
11.D
解析:易知=(2,2),=(-1,c -2),由⊥,得2×(-1)+2(c -2)=0,解得c =3.
12.A
解析:画出函数的图象即知A 正确. 13.D
解析:因为0<A <2π
,所以sin A =5
4=cos -12A ,sin 2A =2sin A cos A =2524.
14.A
解析:设q =(x ,y ),由运算“⊗”的定义,知p ⊗q =(x ,2y )=(-3,-4),所以 q =(-3,-2).
二、填空题: 15.
5
3
. 解析:因为r =5,所以cos α=5
3. 16.
4
3π. 解析:在[0,π)上,满足tan α=-1的角 α 只有43π,故 α=4
3π. 17.(-3,-5).
解析:3b -a =(0,-3)-(3,2)=(-3,-5). 18.20;y =10sin (
8πx +4

)+20,x ∈[6,14]. 解析:由图可知,这段时间的最大温差是20°C .
因为从6~14时的图象是函数y =A sin (ωx +ϕ)+b 的半个周期的图象,
所以A =
21(30-10)=10,b =21
(30+10)=20. 因为21·ωπ2=14-6,所以 ω=8π,y =10sin ⎪⎭⎫
⎝⎛ϕ + 8πx +20.
将x =6,y =10代入上式,
得10sin ⎪⎭⎫ ⎝⎛⨯ϕ + 68π+20=10,即sin ⎪⎭

⎝⎛ϕ + 43π=-1,
由于2π
<ϕ<π,可得 ϕ=4
3π.
综上,所求解析式为y =10sin ⎪⎭⎫ ⎝⎛43π + 8
π
x +20,x ∈[6,14].
三、解答题:
19.解:(1)因为0<α<
2
π,sin α=54
, 故cos α=53,所以tan α=34.
(2)cos 2α+sin ⎪⎭

⎝⎛α + 2π=1-2sin 2α +cos α=1-2532+53=258.
20.解:(1)因为(a -b )·(a +b )=21,即a 2-b 2=21

所以|b |2=|a |2-
21=1-21=2
1
,故|b |=22.
(2)因为cos θ=
b
a b
a ·=22,故 θ=45°.
21.解:(1)由已知,所求函数解析式为f (x )=sin ⎪⎭⎫ ⎝

6π - x .
(2)由y =f (x )的图象过⎪⎭

⎝⎛0 , 32π点,得sin 32πω=0,所以32π
ω=k π,k ∈Z .
即 ω=
2
3
k ,k ∈Z .又ω>0,所以k ∈N*. 当k =1时,ω=
23,f (x )=sin 23x ,其周期为3
4π, 此时f (x )在⎪⎭
⎫ ⎝
⎛3π ,
0上是增函数; 当k ≥2时,ω≥3,f (x )=sin ωx 的周期为
ω
π
2≤
32π<3
4π, 此时f (x )在⎪⎭
⎫ ⎝

3π ,
0上不是增函数. 所以,ω=2
3
.。

相关文档
最新文档