微波电路制作知识

合集下载

射频与微波电路设计介绍-7-功率放大器设计介绍

射频与微波电路设计介绍-7-功率放大器设计介绍

热设计与散热问题解决方案
热设计基本原理
阐述热设计的基本原理,包括热传导、热对流、热辐射等 概念。
散热问题解决方案
探讨散热问题的解决方案,如采用高效散热器、使用热管 技术等,并分析其优缺点。
热设计与散热问题实例分析
给出热设计与散热问题的实例分析,包括热仿真、热测试 等方面。
热设计与散热问题解决方案
热设计基本原理
阐述热设计的基本原理,包括热传导、热对流、热辐射等 概念。
散热问题解决方案
探讨散热问题的解决方案,如采用高效散热器、使用热管 技术等,并分析其优缺点。
热设计与散热问题实例分析
给出热设计与散热问题的实例分析,包括热仿真、热测试 等方面。
05
射频与微波功率放大器仿真与测 试方法
05
射频与微波功率放大器仿真与测 试方法
01
02
03
04
高集成度
随着半导体工艺的发展,射频 与微波电路将实现更高的集成
度,减小体积和重量。
高性能
采用新材料和新技术,提高电 路的性能指标,如更高的工作 频率、更低的噪声系数等。
多功能融合
将不同功能的电路模块集成在 一起,实现多功能融合,满足
复杂应用场景的需求。
智能化
引入人工智能和机器学习技术 ,实现电路的自适应调整和智 能化管理,提高系统性能。
连接测试仪器,设置合 适的测试参数(如频率 、功率等)。
对功率放大器的各项性 能指标进行测试,如输 出功率、增益、效率等 。
通过输入不同幅度和频 率的信号,观察功率放 大器的输出信号是否失 真,评估其线性度性能 。
在长时间工作和不同环 境温度下,测试功率放 大器的稳定性和可靠性 。
测试平台搭建及测试步骤说明

微波电路的工艺原理及应用

微波电路的工艺原理及应用

微波电路的工艺原理及应用1. 引言微波电路是在微波频段进行信号传输、处理和控制的电路系统。

它在通信、雷达、无线电测量以及其他应用中发挥着重要作用。

本文将介绍微波电路的工艺原理及其在各个领域的应用。

2. 微波电路的工艺原理微波电路的工艺原理主要包括材料、设计和制造过程,下面将分别进行讲解。

2.1 材料微波电路的工艺中需要使用一些特殊的材料,以满足高频高速传输的需求。

常用的材料包括: - 陶瓷基片:具有优良的绝缘性能和稳定的电性能,能够实现高频传输。

- 金属化膜:用于制作导线、电极等电路元件。

- 衬底材料:提供电路支撑和封装的基础。

2.2 设计微波电路的设计需要考虑信号的传输、耦合和抗干扰等因素。

设计时需要充分理解电路元件参数和信号传输特性,应用电磁场理论和微波传输线理论进行设计优化。

常用的设计工具有: - 微波仿真软件:用于仿真电路的工作性能,验证设计方案的可行性。

- 条线和微带线:用于传输微波信号,具有低损耗和可靠性。

2.3 制造过程制造微波电路时,需要采用一些特殊的工艺步骤,以保证电路的性能和稳定性。

- 掩膜光刻技术:用于制作电路的导线、电极等元件。

- 焊接技术:将电路元件进行连接,保证信号的传输和耦合。

- 薄膜沉积技术:用于制作微波电路的金属化膜,提高电路的导电性能。

3. 微波电路的应用微波电路在各个领域都有广泛的应用,下面将介绍其在通信、雷达和无线电测量中的应用。

3.1 通信在通信领域,微波电路被广泛应用于无线传输和网络设备中。

它可以实现高速数据传输、信号放大和滤波等功能。

常见的应用包括: - 宽带通信系统:通过微波电路实现高速数据传输,提供稳定的通信连接。

- 无线基站:微波电路用于信号的放大和滤波,提高信号的传输质量和可靠性。

3.2 雷达雷达技术中的微波电路用于发射和接收雷达信号,提供距离、速度和方向等信息。

在雷达系统中,微波电路的应用包括: - 天线:微波电路用于天线的匹配和信号的传输。

微波电路-实验内容

微波电路-实验内容

微波通信概述微波无线通信是以空间电磁波为载体传送信息的一种通信方式,构建微波无线通信时不需要用线缆连接发信端和收信端。

因而在航空航天通信、海运和个人移动通信以及军事通信等方面,微波无线通信是其它通信方式所不可替代的。

微波通信是一种先进的通信方式,它利用微波(载频)来携带信息,通过电波空间同时传送若干相互无关的信息,并且还能再生中继。

由于微波具有频率高、频带宽、信息量大的特点,因此被广泛地应用于各种通信业务中。

如微波多路通信,微波接力通信,散射通信,移动通信和卫星通信等。

同时,用微波各波段的不同特点可实现特殊用途的通信,具体如下:A. S-Ku波段的微波适于进行以地面为基地的通信;B. 毫米波适用于空间与空间之间的通信;C. 毫米波段的60GHz频段的电波大气衰减大,适用于近距离的保密通信;D.90GHz频段的电波在大气中衰减很小,是一个无线电窗口频段,适用于地—空和远距离通信。

E.对于很长距离的通信L波段更适合。

微波通信的主要特点根据所传输基带信号的不同,微波通信又分为两种制式。

用于传输频分多路——调频(FDM-FM)基带信号的系统称作模拟微波通信系统。

用于传输数字基带信号的系统称作数字微波通信系统。

后者又进一步的分为PDH微波和SDH微波通信两种通信体制。

SDH微波通信系统是未来微波通信系统发展的主要方向,利用调制和复用技术,一条微波线路可以传送大量的信息。

这是微波通信的一个主要优点,例如,一个标准的4GHz微波载波,带宽约为10%~20%,可以传送几万条电话信道或几十万条电视信道。

微波通信系统的组成微波通信传输线路的组成形式可以是一条主干线,中间有若干分支,也可以是一个枢纽站向若干方向分支.但不论哪种组合形式,主要是有由微波终端站、中继站和分路站等组成的。

如图所示:终端站中继站再生中继站终端站微波微带电路系统实验设计平台一、适用范围本设计平台主要面向各大中专院校微波通信工程、电子工程、通信工程等专业开设的《微波技术》、《微波电路》、《天线原理》、等课程的实验教学及课程设计、毕业设计而研制的最新产品。

微波炉电路工作原理

微波炉电路工作原理

微波炉电路工作原理
微波炉电路工作原理:
在微波炉电路中,主要包括变压器、整流电路、微波产生器和控制电路。

其工作原理如下:
1. 变压器: 变压器将市电的高电压(通常为220V)转换成微波炉
所需的工作电压(通常为2.5kV)。

这个电压转化的过程通过变
压器的两个线圈完成,其中一个线圈连接到输入电源,另一个线圈连接到微波产生器。

2. 整流电路: 变压器输出的电压经过整流电路进行整流,将交
流电转换为直流电。

整流电路通常由一个二极管和一个电容器组成。

二极管将交流电变为单向流动的直流电,电容器则平滑电压波动。

3. 微波产生器: 经过整流后的直流电通过微波产生器。

微波产
生器主要包括一个磁控管和一个腔体。

当直流电通过磁控管时,产生的热释电子会与磁场交互作用,从而形成聚束电子束。

这些电子束击打腔体内的金属屏蔽,产生微波辐射。

这些微波辐射通过仿真反射和折射的方法传播到整个炉腔。

4. 控制电路: 控制电路主要用来控制微波炉的工作时间和加热
功率。

用户可以通过面板上的按键或旋钮设定烹饪时间和功率等参数。

控制电路接收到用户输入的指令后,会根据预设的程序和需求,控制微波产生器的开关状态,从而控制微波的辐射和加热效果。

综上所述,微波炉电路通过变压器将市电转换为所需的工作电压,经过整流后的直流电通过微波产生器产生微波辐射,并通过控制电路控制微波的辐射和加热效果。

这样就实现了微波炉的正常工作。

微波电路及设计的基础知识

微波电路及设计的基础知识

微波电路及设计的基础知识1. 微波电路的基本常识2. 微波网络及网络参数3. Smith圆图4. 简单的匹配电路设计5. 微波电路的电脑辅助设计技术及常用的CAD软件6. 常用的微波部件及其主要技术指标7. 微波信道分系统的设计、计算和指标分配8. 测试及测试仪器9. 应用电路举例微波电路及其设计1.概述所谓微波电路,通常是指工作频段的波长在10m~1cm(即30MHz~30GHz)之间的电路。

此外,还有毫米波〔30~300GHz〕及亚毫米波〔150GHz~3000GHz〕等。

实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频〔RF〕电路”等等。

由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多独特的地方。

作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工艺、元器件、以及设计技术等方面,都已经发展得非常成熟,并且应用领域越来越广泛。

另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过了1GHz。

在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路的设计技术也已得到了充分的应用。

以往传统的低频电路和数字电路,与微波电路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。

2.微波电路的基本常识2.1 电路分类2.1.1 按照传输线分类微波电路可以按照传输线的性质分类,如:图1 微带线图2 带状线图3 同轴线图4 波导图5 共面波导2.1.2 按照工艺分类微波混合集成电路:采用别离组件及分布参数电路混合集成。

微波集成电路〔MIC〕:采用管芯及陶瓷基片。

微波单片集成电路〔MMIC〕:采用半导体工艺的微波集成电路。

图6微波混合集成电路例如图7 微波集成电路〔MIC〕例如图8微波单片集成电路〔MMIC〕例如2.1.3 微波电路还可以按照有源电路和无源电路分类。

微波电路及其PCB技术设计知识

微波电路及其PCB技术设计知识

微波电路及其PCB技术设计知识微波电路及其PCB技术设计知识随着科技的不断发展,微波技术在通信、雷达、航空航天等领域中逐渐得到广泛应用。

微波电路是微波技术的核心,而微波电路的设计和制作依靠着PCB技术。

本文将从微波电路的基本概念和PCB技术的基本流程入手,介绍微波电路及其PCB 技术的设计知识。

一、微波电路的基本概念微波电路是指在微波频段(1~300GHz)内工作的电路,通常包括射频电路、微波电路和毫米波电路。

微波电路与一般的低频电路相比,有着不同的特点和要求。

微波电路的特点主要有以下几个方面:1.工作频率高,信号波长短。

微波波长在厘米至毫米级别,与低频电路相比要短得多。

因此在微波电路的设计中,需要特别注意电路的尺寸和传输线的特性阻抗等参数。

2.信号传输损耗大。

由于传输线的损耗、元器件的损耗、导体的损耗等原因,微波电路的传输损耗要比低频电路大得多。

因此,在设计微波电路时需要充分考虑信号传输损耗和信噪比问题。

3.信号噪声低。

微波电路的信噪比要求高,因为在微波频段内,信号与噪声的比例要比低频电路低得多。

因此,在设计微波电路时需要考虑降低噪声的影响,提高信号的质量和可靠性。

4.稳定性要求高。

微波电路的稳定性要求比低频电路高,因为微波电路中的元器件往往是高精度、高质量的,其参数变化容易引起整个电路的性能变化甚至发生故障。

二、PCB技术的基本流程PCB(Printed Circuit Board,印刷电路板)技术是目前电子制造领域中使用最广泛的电路板制造技术之一。

在微波电路的制造过程中,PCB技术也占据着至关重要的地位。

下面简要介绍PCB技术的基本流程,以便更好地理解微波电路和PCB技术的设计。

1.设计。

首先需要进行PCB设计,即绘制电路原理图、布局图和走线图。

PCB设计软件有Altium Designer、Cadence Allegro等。

2.制板。

根据设计好的电路图纸,将其转化为PCB板图,然后使用制板机进行制板。

微波炉电路工作原理

微波炉电路工作原理

微波炉电路工作原理引言微波炉是现代厨房中常见的一种烹饪设备,它利用微波能量来加热和烹饪食物。

微波炉的核心是其电路系统,通过复杂的电路工作原理来产生和控制微波能量。

本文将对微波炉电路的工作原理进行详细解析,帮助读者更好地理解微波炉的工作过程。

一、微波炉的基本结构微波炉的主要结构包括高压变压器、微波发生器、微波引导系统和控制电路。

控制电路是微波炉电路的核心部分,它通过对高压变压器和微波发生器的控制来实现对微波能量的产生和加热食物的控制。

整个微波炉电路系统紧密配合,实现了高效的微波加热过程。

二、微波炉的工作原理1. 高压变压器微波炉的高压变压器是将普通市电220V交流电压提升至约2000V以上的高压直流电压的关键部件。

高压变压器的工作原理主要是依靠电磁感应的原理,通过变压器的绝缘绕组和铁芯,将输入的低压交流电转换为高压直流电。

高压变压器的输出接入微波发生器,为其提供足够的高压能量,使其能够正常工作。

2. 微波发生器微波发生器是微波炉电路中最核心的部件,它能够将高压能量转换为微波能量,并将微波能量输送到微波腔。

微波发生器的主要原理是利用磁控管的特性,将高压能量通过磁场和电场的作用转换为微波能量,然后输出到微波腔内。

微波发生器的频率通常为2.45GHz,这是食物分子运动的共振频率,会导致食物分子产生剧烈运动而产生热量,从而实现食物的加热和烹饪。

3. 微波引导系统微波引导系统主要由微波腔、微波发射装置和微波感应器组成,其工作原理是将微波能量传输到食物表面,使食物内部的分子产生热量。

微波腔是一个金属空腔,能够在其中形成驻波场,使微波能够均匀地分布到整个腔内。

微波感应器能够感应到微波照射物体的温度,一旦达到设定的温度就会停止微波能量的输出,以达到控制加热的目的。

4. 控制电路微波炉的控制电路对微波加热过程进行精确控制,保证微波能量的稳定输出和食物的均匀加热。

控制电路通常包括电源控制单元、微波发生器控制单元、传感器控制单元等部件,通过这些部件配合工作,实现对微波能量输出和食物加热过程的精确控制。

《微波电路》课件

《微波电路》课件
高频段、大带宽
随着信息技术的不断发展,微 波电路的工作频率和传输带宽
也在不断增大。
集成化、小型化
随着微电子技术的发展,微波 电路的集成化程度越来越高, 体积越来越小。
多功能化
微波电路正向着多功能化的方 向发展,如同时处理多种信号 、实现多种功能等。
低成本、低功耗
随着市场竞争的加剧,低成本 、低功耗的微波电路成为研究
测试技术
微波电路的测试包括信号源测试、接 收机测试和系统测试等。信号源测试 主要是测试信号源的频率、功率和调 制等特性;接收机测试主要是测试接 收机的灵敏度、动态范围和抗干扰能 力等特性;系统测试主要是将微波电 路与其他系统进行集成测试,验证整 个系统的性能和功能。
05
微波电路的典型应用案例
微波通信系统中的微波电路
微波电路与生物医学工程 的融合
生物医学工程中的无损检测、生物传感器等 技术需要利用微波电路进行信号传输和处理 ,这种交叉融合有助于推动两个领域的共同
发展。
THANKS
感谢观看
系统误差
系统误差是由测量系统的硬件设备、线路损耗、连接器失 配等因素引起的误差。这些误差可以通过校准和修正来减 小。
方法误差
方法误差是由测量方法本身引起的误差,如信号源的频率 稳定度、测量接收机的动态范围等。这些误差可以通过选 择合适的测量方法和条件来减小。
微波电路的调试与测试技术
调试与测试的重要性
新型微波半导体材料
新型微波半导体材料如宽禁带半导体材料(如硅碳化物和氮 化镓)具有高电子迁移率和化学稳定性,为微波电路的发展 提供了新的可能性。
新型微波器件在微波电路中的应用
新型微波电子器件
随着微电子技术的不断发展,新型微波 电子器件如微波晶体管、微波集成电路 等不断涌现,这些器件具有体积小、重 量轻、可靠性高等优点,在雷达、通信 、导航等领域得到广泛应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微波电路及设计的基础知识1. 微波电路的基本常识2. 微波网络及网络参数3. Smith圆图4. 简单的匹配电路设计5. 微波电路的计算机辅助设计技术及常用的CAD软件6. 常用的微波部件及其主要技术指标7. 微波信道分系统的设计、计算和指标分配8. 测试及测试仪器9. 应用电路举例第1章概述所谓微波电路,通常是指工作频段的波长在10m~1cm(即30MHz~30GHz)之间的电路。

此外,还有毫米波(30~300GHz)及亚毫米波(150GHz~3000GHz)等。

实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频(RF)电路”等等。

由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多独特的地方。

作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工艺、元器件、以及设计技术等方面,都已经发展得非常成熟,并且应用领域越来越广泛。

另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过了1GHz。

在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路的设计技术也已得到了充分的应用。

以往传统的低频电路和数字电路,与微波电路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。

第2章微波电路的基本常识2.1 电路分类2.1.1 按照传输线分类微波电路可以按照传输线的性质分类,如:图1 微带线图2 带状线图3 同轴线图4 波导图5 共面波导2.1.2 按照工艺分类微波混合集成电路:采用分离元件及分布参数电路混合集成。

微波集成电路(MIC):采用管芯及陶瓷基片。

微波单片集成电路(MMIC):采用半导体工艺的微波集成电路。

图6微波混合集成电路示例图7 微波集成电路(MIC)示例图8微波单片集成电路(MMIC)示例2.1.3 按源分微波电路还可以按照有源电路和无源电路分类。

其中,有源电路包括放大器、振荡器等;无源电路包括分路器、耦合器、移相器、开关、混频器和滤波器等。

2.2 常用的微波传输线电路元件和不连续性元件图9 传输线段图10 耦合线图11 开路线图12 短路线图13 直角拐弯线图14 阶梯线图15 渐变线图16 缝隙图17 T型结图18 十字结其他还有一些如扇形线、Lange耦合器、交指电容和螺旋电感等等。

2.3 常用的微波元器件这里主要介绍一些常用的贴装无源器件和微波半导体器件。

图19 片状叠层电容及单层电容图20 片状叠层电感及线绕电感图21 片状电阻图22 贴装可调电容图23 贴装电位器图24 微波二极管(封装及芯片)图25 微波三极管和场效应晶体管(封装及芯片)图26 微波单片集成电路(MMIC)(封装及芯片)2.4 常用的微波介质基片我们经常使用的微波介质材料如表1所示。

RT/duroid® Series RO4000® Series TMM® Series图27 Rogers公司生产的几种微波介质基片第3章微波网络及网络参数3.1 具有特定内容(含义)的特殊微波网络3.1.1 平行耦合线定向耦合器图28平行耦合线定向耦合器3.1.2 兰格(Lange)定向耦合器图29 Lange定向耦合器3.1.3 威尔金森(Wilkinson)功分器/合路器3.1.4 阶梯阻抗变换器图31阶梯阻抗变换器3.1.5 微带线低通滤波器图32微带线低通滤波器3.1.6 平行耦合线带通滤波器9101112131415-80-60-40-20freq, GHzd B (S (2,1))d B (S (1,1))图33平行耦合线带通滤波器3.1.7 其它,如交指滤波器、谢夫曼移相器及分支线定向耦合器等,也都具有固定(特定)的网络形式。

3.2 一般网络微波网络是由各种微波元件根据需要组合而成,所以网络的形式具有任意性。

上面介绍的那些特殊网络只是其中一些典型的形式而已。

一般来说,简单的网络通常是窄带的电路,如λg/4线。

这一点,在设计宽带匹配电路时,需要引起注意。

3.3 网络参数我们经常使用S 参数(即散射参数)来描述微波网络。

以下面的二端口网络为例。

图34 二端口微波网络在图34所示的二端口微波网络中,a1和b1分别为端口1的归一化入射电压波和反射电压波;a2和b2分别为端口2的归一化入射电压波和反射电压波。

二端口微波网络的输入和输出之间的关系可以表示为⎭⎬⎫+=+=22212122121111a s a s b a s a s b (1) 即=⎥⎦⎤⎢⎣⎡21b b []⎥⎦⎤⎢⎣⎡21a a S其中 []=S ⎥⎦⎤⎢⎣⎡22211211s s s s (2)式(1)称做散射方程,[]S 叫散射矩阵或散射参数。

由式(1)可以得出二端口网络的S 参数为:S11=211=a a b ,即当端口2匹配时(ZL=Z0),端口1的反射系数;S22=0122=a a b ,即当端口1匹配时(ZS=Z0),端口2的反射系数;S12=0121=a a b , 即当端口1匹配时,端口2到端口1的传输系数;S21=212=a a b ,即当端口2匹配时,端口1到端口2的传输系数。

通过上面的分析我们可以看出,微波网络的S 参数具有确定的物理意义。

实际上,我们以往所经常使用的如Z 参数、Y 参数和H 参数等均可以通过计算与S 参数互相换算。

但在微波频率上,只有S 参数是可以测量出来的,这样也就解决了微波网络参数的测量问题。

另外,对于端口数为N 的多端口网络,我们同样可以得到类似于式(1)的表达式,这时[]S 为N ×N 维的矩阵。

4.史密斯(Smith)圆图Smith圆图是一个非常有用的图形化的匹配电路设计和分析工具,且方便有效,在微波电路设计过程中会经常用到。

另外,Smith圆图有阻抗圆图和导纳圆图两种形式,可以视具体情况选用。

图35 Smith阻抗圆图Z=30+j25Ω图36 Smith圆图的应用示例图37 图解用的Smith圆图标准图纸由图35我们可以看到,在Smith阻抗圆图中存在等电阻圆、等电抗线、纯电阻线、电感平面(jωL)、电容平面(1/ jωC)、开路点、短路点和50Ω点等等。

当然,相对应的在导纳圆图中也存在等电导圆和等导纳线等。

5. 简单的匹配电路设计举例晶体管放大器匹配电路设计示例6.微波电路的计算机辅助设计技术及常用的CAD软件自20世纪70年代以来,微波电路CAD技术已经取得了很大的进步。

一方面是各CAD软件厂商推出了很多通用和专用的微波电路CAD软件产品,包括电原理图输入和微波电路的图形输入、电路的仿真和优化、容差分析、版图生成及输出、与测试仪器接口等功能,并有许许多多的电路模型库、元件库、半导体器件的线性模型库和非线性模型库等可供选择,应该可以说是功能强大、使用方便、应有尽有。

而另一方面,微波电路CAD软件也已被广泛应用于各种微波电路的设计,并成为微波工程师必须掌握的设计工具。

6.1 常用的微波电路CAD软件微波电路的CAD软件大致可以分成下面几类:①线性/非线性微波电路仿真软件;② 2.5D平面电路电磁场仿真软件;③ 3D电磁场仿真软件;④系统仿真软件;⑤专用电路的设计软件。

⑥排版软件6.2 微波电路计算计辅助设计-简介微波电路计算计辅助设计(CAD)技术是电子设计自动化(EDA)技术的一个分支,用于射频及微波电路的计算机仿真和优化设计。

6.2.1 微波电路CAD的特点及主要内容与其它电子EDA技术相比,微波电路CAD软件具有以下几个特点:①必须有精确的传输线模型和各种器件模型;②有时必须采用电磁场仿真等数值仿真工具;③一般都具有S参数分析的功能。

在微波电路CAD技术中,各种传输线及其不均匀区模型、元件之间的寄生耦合模型以及微波有源器件的非线性模型等,在技术上的难度都非常大。

微波电路CAD包括线性微波电路的S参数计算、直流分析、线性/非线性噪声分析、非线性电路的瞬态分析、非线性电路的谐波分析(功率压缩、交调和谐波特性等)、优化设计、容差分析、2.5D及3D电磁场仿真、布线和版图设计等,甚至还可以包括微波器件的建模和参数提取以及计算机辅助测试。

6.2.2 常用的分析方法线性电路:采用等效电路模型和S参数矩阵级联计算。

非线性电路:Spice、谐波平衡法、包络仿真法等。

电磁场仿真:常采用矩量法和有限元法等数值计算方法。

6.2.3 优化给定电路的网络拓扑结构、各个元件的初始值,以及电路的设计指标的目标参数,CAD软件将自动改变各元件值,直到满足要求。

CAD软件通常都具有的,也是最常用的优化方法是随机优化和梯度法。

当然,一些软件还提供了其它的优化方法供选择。

6.2.4 设计步骤微波电路CAD设计的步骤可大致总结如下:①根据技术性能指标的要求,选择半导体器件。

②对于不需要半导体器件的微波无源电路,根据技术性能指标的要求,选择网络拓扑结构。

③根据所选器件的具体参数,设计匹配电路的拓扑结构。

④确定(或计算)电路中各个元件的初始值。

⑤根据技术性能指标的要求,设置优化目标(或参数)。

⑥根据经验或试验性地选择若干优化变量(或元件)。

⑦选择优化方法,并进行优化。

⑧进行容差分析。

⑨进行版图的设计并输出版图。

⑩进行性能指标的复核,进行版图的检查,并提出结构设计的要求。

6.2.5 几点经验和建议①必须保证器件选择、匹配电路或网络拓扑设计的正确性。

②电路中各元件初始值的选择应尽量准确。

这将有利于优化计算的快速收敛,并保证优化设计能够达到全局最优点,而不是局部的极小(或极大)点。

③对于存在多个优化目标参数的一般情况,应根据实际的需要,分出主次或考虑折衷,并进行加权。

④关于优化变量(或元件)的选择,一方面可以根据自己的经验,另一方面也可以先选择其中几个进行试探。

特别是当元件(或变量)较多时,一般不主张都选择为优化变量。

⑤对于优化方法的选择,通常是先随机法,后梯度法,这样将有助于使设计达到全局最优。

⑥在电路设计的过程中,必须要考虑元件标称值的因素。

另外对于分布参数电路,电路参数的取值必须要符合相应的工艺要求。

6.3 设计举例6.3.1 例1: 2GHz低噪声放大器的设计频率范围:1.95~2.05GHz;管子型号:AT-41411,为微波双极晶体管CAD软件:ADS图38 2GHz 低噪声放大器电路0.000200.M 400.M 600.M 800.M 1.00G 1.20G 1.40G 1.60G 1.80G 2.00G 2.20G 2.40G 2.60G 2.80G 3.00G -20.0-16.0 -12.0 -8.00 -4.00 0.000 4.00 8.00 12.0 16.0 20.0 freq, Hzd B (S m a t r i x (2,1))d B (S m a t r i x (1,2))0.000200.M 400.M 600.M 800.M 1.00G 1.20G 1.40G 1.60G 1.80G 2.00G 2.20G 2.40G 2.60G 2.80G 3.00G -35.0-30.0 -25.0 -20.0 -15.0 -10.0 -5.000.000 freq, Hzd B (S m a t r i x (2,2))d B (S m a t r i x (1,1))0.00.20.40.60.81.0 1.2 1.41.6 1.82.02.2 2.4 2.62.83.00.00.40.81.21.62.02.42.83.23.64.0freq, GHzN F 2图38 2GHz 低噪声放大器仿真结果6.3.2 例2: 5GHz 发夹式微带线带通滤波器的设计CAD 软件: Momentum图39 发夹式带通滤波器电路图4.04.55.05.56.06.57.0-60-50-40-30-20-100freq, GHzd B (S (2,1))d B (S (1,1))图40 发夹式带通滤波器仿真结果7. 一些常用的微波部件及其主要技术指标在各种各样的微波电路中,放大器是相对最具有代表性的。

相关文档
最新文档