小学经典奥数题50道

合集下载

小学毕业50道奥数题及解答分析

小学毕业50道奥数题及解答分析

小学毕业50道奥数题及解答分析1. 小明有15支红色铅笔和8支蓝色铅笔,请问他一共有多少支铅笔?答案:小明一共有23支铅笔。

解析:将红色铅笔和蓝色铅笔的数量相加即可。

2. 一本书有256页,小明每天读10页,请问他需要多少天才能读完这本书?答案:小明需要读完这本书的时间是256÷10=25.6天。

解析:将书的总页数除以每天能读的页数即可得到所需的天数,注意要考虑到小数。

3. 小王有45支铅笔,他把这些铅笔平均分给他的5个朋友,请问每个朋友能分到几支铅笔?答案:每个朋友能分到的铅笔数量是45÷5=9支。

解析:将铅笔的总数除以朋友的总数即可得到每个朋友能分到的铅笔数量。

4. 一箱苹果有120个,小红拿走了其中的3/4,请问小红拿走了多少个苹果?答案:小红拿走的苹果数量是120×3/4=90个。

解析:将苹果的总数乘以3/4即可得到小红拿走的苹果数量。

5. 一条绳子长12米,小明用了其中的2/3,请问小明用了多长的绳子?答案:小明用的绳子长度是12×2/3=8米。

解析:将绳子的总长度乘以2/3即可得到小明用的绳子长度。

6. 一个长方形的长为15厘米,宽为8厘米,请问它的面积是多少?答案:这个长方形的面积是15×8=120平方厘米。

解析:将长方形的长与宽相乘即可得到面积。

7. 一辆小轿车每小时行驶60千米,请问它行驶100千米需要多少小时?答案:这辆小轿车行驶100千米需要100÷60≈1.67小时。

解析:将需要行驶的距离除以每小时行驶的速度即可得到所需的时间,注意要考虑到小数。

8. 一个豆袋里有120颗红豆和80颗黑豆,小明从中随机取出1颗,请问他取到红豆的概率是多少?答案:他取到红豆的概率是120/(120+80)=0.6。

解析:将红豆的数量除以总豆子的数量即可得到取到红豆的概率。

9. 小华有25本故事书,她要把这些书平均放在5个箱子里,请问每个箱子里应该放几本书?答案:每个箱子里应该放25÷5=5本书。

小学奥数题100道及答案

小学奥数题100道及答案

小学奥数题100道及答案1. 简单加法:3 + 7 = ()答案:102. 简单减法:9 5 = ()答案:43. 简单乘法:4 × 6 = ()答案:244. 简单除法:18 ÷ 3 = ()答案:65. 填空题:5 + ()= 12答案:76. 填空题:20 ()= 9答案:117. 填空题:8 × ()= 48答案:68. 填空题:36 ÷ ()= 6答案:69. 应用题:小明有10个苹果,吃掉了3个,还剩几个?答案:7个10. 应用题:小红有5个橘子,妈妈又买了8个,现在一共有多少个橘子?答案:13个11. 逻辑推理题:小华比小刚高,小刚比小明高,请问谁最高?答案:小华12. 逻辑推理题:小猫比小狗轻,小狗比小猪轻,请问谁最重?答案:小猪答案:选项A答案:选项B15. 数字排列题:将1、2、3、4四个数字排列,使它们组成的四位数最小。

答案:16. 数字排列题:将5、6、7、8四个数字排列,使它们组成的四位数最大。

答案:876517. 数字推理题:1、3、5、7、(),请填写下一个数字。

答案:918. 数字推理题:2、4、8、16、(),请填写下一个数字。

答案:3219. 时间计算题:如果现在是上午9点,再过3小时是几点?答案:中午12点20. 时间计算题:如果现在是下午3点,2小时前是几点?答案:下午1点答案:一组是水果(苹果、橘子),另一组是学习用品和体育用品(书本、铅笔、篮球)。

22. 重量比较题:一个西瓜重5千克,一个菠萝重2千克,哪个更重?答案:西瓜更重。

23. 长度比较题:一根绳子长10米,另一根绳子长15米,哪根绳子更长?答案:15米长的绳子更长。

答案:选项C25. 速度计算题:小明骑自行车,每小时行驶15公里,2小时能行驶多远?答案:30公里26. 温度转换题:摄氏度0度等于华氏度多少度?答案:32度27. 面积计算题:一个长方形的长是8厘米,宽是4厘米,它的面积是多少?答案:32平方厘米28. 体积计算题:一个正方体的边长是3厘米,它的体积是多少?答案:27立方厘米29. 平均数计算题:小明、小红、小华的年龄分别是8岁、10岁、12岁,他们的平均年龄是多少?答案:10岁答案:731. 因数分解题:将数字24分解成两个因数的乘积。

小学必须掌握的50道经典奥数题(含解析)

小学必须掌握的50道经典奥数题(含解析)

小学必须掌握的50道经典奥数题(含解析)1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。

再根据椅子的价钱,就可求得一张桌子的价钱。

答题:解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。

2. 3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

答题:解:5×3+45=15+45=60(千克)答:3箱梨重60千克。

3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。

即可求甲比乙每小时快多少千米。

答题:解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。

4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

答题:解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。

5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

小学六年级奥数题50道及答案

小学六年级奥数题50道及答案

小学六年级奥数题50道及答案1. 三个袋子里放着相同数量的红球,黄球和蓝球,共有 10 粒球。

每袋子里各有几粒?答案:每袋子 3 粒2. 某人有 8 支铅笔,4 支钢笔,用它们排成一排,问最多可以排成几排?答案:两排3. 小明有 12 元钱,用它买了 6 个橘子,每个 1 元,还剩几块钱?答案:还剩 6 元4. 大卫有 3 个朋友,他们共分了 20 个苹果,大卫得到几个?答案:大卫得到 6 个苹果5. 一个游乐场有 5 个火车,每辆火车上有 8 个座位,共有多少个座位?答案:共有 40 个座位6. 一个餐厅共有 6 个桌子,每个桌子可以坐 4 人,共可以容纳多少人?答案:共可以容纳 24 人7. 一共有 10 块砖,每堆 3 块,共有几堆?答案:共有 4 堆8. 一共有 8 支铅笔,4 支钢笔,每支铅笔的价格是钢笔的 2 倍,大卫花了 48 元,买了几支钢笔?答案:买了 4 支钢笔9. 请问把12 个正方形拼成一个大正方形,大正方形有几条边?答案:大正方形有 4 条边10. 一共有 12 个苹果,每袋只能装 4 个,共需要几袋?答案:共需要 3 袋11. 一共有 18 个橘子,每篮可以装 6 个,需要几篮?答案:需要 3 篮12. 一共有 10 块砖头,每袋装 2 块,需要几袋?答案:需要 5 袋13. 一共有 9 张书,每盒可以装 3 张,需要几盒?答案:需要 3 盒14. 一共有 5 个小朋友,一共分了 15 块糖,每个小朋友可以得到几块糖?答案:每个小朋友可以得到 3 块糖15. 一共有 10 支铅笔,每盒装 3 支,需要几盒?答案:需要 4 盒16. 一共有 10 个小球,每篮可以装 4 个,需要几篮?答案:需要 3 篮17. 大卫有 6 元钱,用它买了 4 个橘子,每个 1.5 元,还剩几块钱?答案:还剩 0 元18. 一共有 12 支钢笔,每盒可以装 4 支,需要几盒?答案:需要 3 盒19. 一共有 24 个正方形,每排 6 个,一共有几排?答案:一共有 4 排20. 一共有 12 张牌,每人可以得到 3 张,共有几个人?答案:共有 4 个人21. 一共有 9 块蛋糕,每人可以分得 3 块,共有几个人?答案:共有 3 个人22. 一共有 10 瓶饮料,每袋可以装 5 瓶,需要几袋?答案:需要 2 袋23. 一共有 18 个书,每箱可以装 6 个,需要几箱?答案:需要 3 箱答案:一共有 12 粒食物,每袋装 4 粒,需要几袋?答案:需要 3 袋25. 一共有 5 个孩子,一共分了 15 个糖果,每个孩子可以得到几个糖果?答案:每个孩子可以得到 3 个糖果26. 一共有 8 块砖头,每袋装 2 块,需要几袋?答案:需要 4 袋27. 一共有 6 条链子,每盒可以装 3 条,需要几盒?答案:需要 2 盒28. 一共有 10 把伞,每把伞包一个盒子,一共需要几个盒子?答案:一共需要 10 个盒子29. 一共有 7 个苹果,每篮可以装 3 个,需要几篮?答案:需要 3 篮30. 一共有 14 支钢笔,每筒装 4 支,需要几筒?答案:需要 4 筒31. 一共有 12 块橡皮,每盒装 4 块,需要几盒?答案:需要 3 盒32. 一共有 10 个棋子,每盒可以装 2 个,需要几盒?答案:需要 5 盒33. 一共有 9 块布,每袋装 3 块,需要几袋?答案:需要 3 袋34. 一共有 16 小球,每份可以分 4 个,共有几份?答案:共有 4 份35. 一共有 11 个小朋友,一共分了 33 块糖,每个小朋友可以得到几块糖?答案:每个小朋友可以得到 3 块糖36. 一共有 8 支铅笔,每盒装 2 支,需要几盒?答案:需要 4 盒37. 一共有 12 条鱼,每箱可以装 4 条,需要几箱?答案:需要 3 箱38. 一共有 6 块橡皮,每袋装 2 块,需要几袋?答案:需要 3 袋39. 一共有 9 个正方形,每排 3 个,一共有几排?答案:一共有 3 排40. 一共有 12 张牌,每人可以得到 4 张,共有几个人?答案:共有 3 个人41. 一共有 10 瓶苹果汁,每箱可以装 5 瓶,需要几箱?答案:需要 2 箱42. 一共有 11 条狗,每把笼子可以关住 3 条,需要几个笼子?答案:需要 4 个笼子43. 一共有 6 只鸟,每把笼子可以装 2 只,需要几把笼子?答案:需要 3 把笼子44. 一共有 14 颗橘子,每篮可以装 4 颗,需要几篮?答案:需要 4 篮45. 一共有 8 支毛笔,每筒装 4 支,需要几筒?答案:需要 2 筒46. 一共有 9 条鱼,每盒可以装 3 条,需要几盒?答案:需要 3 盒47. 一共有 10 个姑娘,一共分了 20 个糖果,每个姑娘可以得到几个糖果?答案:每个姑娘可以得到 2 个糖果48. 一共有 12 个龙虾,每袋装 4 个,需要几袋?答案:需要 3 袋49. 一共有 7 个箱子,每排可以放下 3 个,一共有几排?答案:一共有 3 排50. 一共有 5 个孩子,一共分了 15 块巧克力,每个孩子可以得到几块巧克力?答案:每个孩子可以得到 3 块巧克力。

小学数学奥数题50道

小学数学奥数题50道

小学数学奥数题50道1.甲、乙、丙三人在A、B两块地植树。

A地需要植900棵,B地需要植1250棵。

已知甲、乙、丙每天分别能植树24、30、32棵。

甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。

两块地同时开始同时结束。

问乙应在开始后第几天从A地转到B地?2.有三块草地,面积分别为5、15、24亩。

草地上的草一样厚,而且长得一样快。

第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天。

问第三块地可供多少头牛吃80天?3.某工程由甲、乙两队承包。

2.4天可以完成,需支付1800元。

由乙、丙两队承包,3又3/4天可以完成,需支付1500元。

由甲、丙两队承包,2又6/7天可以完成,需支付1600元。

在保证一星期内完成的前提下,选择哪个队单独承包费用最少?4.一个圆柱形内放有一个长方形铁块。

现打开水龙头往中灌水。

3分钟时水面恰好没过长方体的顶面。

再过18分钟水已灌满。

已知的高为50厘米,长方体的高为20厘米。

求长方体的底面面积和底面面积之比。

5.甲、乙两位老板分别以同样的价格购进一种时装。

乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。

两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套。

问甲原来购进这种时装多少套?6.有甲、乙两根水管,分别同时给A、B两个大小相同的水池注水。

在相同的时间里,甲、乙两管注水量之比是7:5.经过2又1/3小时,A、B两池中注入的水之和恰好是一池。

这时,甲管注水速度提高25%,乙管的注水速度不变。

那么当甲管注满A池时,乙管再经过多少小时注满B池?7.XXX上从家步行去学校。

走完一半路程时,爸爸发现XXX的数学书丢在家里。

随即骑车去给XXX送书,追上时,XXX还有3/10的路程未走完。

XXX随即上了爸爸的车,由爸爸送往学校。

这样XXX比独自步行提早5分钟到校。

XXX从家到学校全部步行需要多少时间?8.甲、乙两车都从A地出发经过B地驶往C地,A、B两地的距离等于B、C两地的距离。

小学六年级数学经典奥数题训练50(含答案)

小学六年级数学经典奥数题训练50(含答案)

小学六年级数学经典奥数题训练50(含答案)一、拓展提优试题1.定义新运算“*”:a*b=例如3.5*2=3.5,1*1.2=1.2,7*7=1,则=.2.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.3.张阿姨和李阿姨每月的工资相同,张阿姨每月把工资的30%存入银行,其余的钱用于日常开支,李阿姨每月的日常开支比张阿姨多10%,余下的钱也存入银行,这样过了一年,李阿姨发现,她12个月存入银行的总额比张阿姨少了5880元,则李阿姨的月工资是元.4.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.5.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.6.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.7.王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是19,那么王老师在黑板上共写了39个数,擦去的两个质数的和最大是.8.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.9.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.10.如图所示的“鱼”形图案中共有个三角形.11.已知自然数N的个位数字是0,且有8个约数,则N最小是.12.如图,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC =CD=3厘米,则EF=厘米.13.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?14.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.15.如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.【参考答案】一、拓展提优试题1.解:根据分析可得,,=,=2;故答案为:2.2.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.3.解:(1﹣30%)×(1+10%)=70%×110%,=77%;5880÷12÷[30%﹣(1﹣77%)]=490÷[30%﹣23%],=490÷7%,=7000(元).即李阿姨的月工资是 7000元.故答案为:7000.4.解:据分析可知,沙子的高度为:5+20÷3=11(厘米);答:沙子的高度为11厘米.故答案为:11.5.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.6.解:设计划用x天完成任务,那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,所以,+(185﹣)××=1,+(185﹣)××﹣=1﹣,(185﹣)××=,(185﹣)×÷=÷,185﹣+=x+,x÷=185÷,x=180,答:工程队原计划180天完成任务.故答案为:180.7.解:由剩下的数的平均数是19,即得最大的数约为20×2=40个,又知分母是9,所以剩下的数的个数必含因数9,则推得剩余36个数.原写下了1到39这39个数;剩余36个数的和:19×36=716,39个数的总和:(1+39)×39÷2=780,擦去的三个数总和:780﹣716=64,根据题意,推得擦去的三个数中最小是1,那么两个质数和63=61+2能够成立,61>39不合题意;如果擦去的另一个数是最小的合数4,64﹣4=6060=29+31=23+37,成立;综上,擦去的两个质数的和最大是60.故答案为:39,60.8.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.9.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.10.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.11.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.12.解:如图延长并反向延长AF,BC,DE,分别相交与点G、H、N,因六边形ABCDEF的每个角是120°所以∠G=∠H=∠N=60°所以△GHN,△GAB,△HCD,△EFN都是等边三角形AB=BC=CD=3厘米,△GHN边长是3+3+3=9(厘米)AN=9﹣3=6(厘米)AN=AF+EFDE=六边形ABCDEF的周长﹣AB﹣BC﹣CD﹣(AF+EF)=16﹣3﹣3﹣3﹣6=1(厘米)EF=EN=9﹣3﹣1=5(厘米)答:EF=5厘米.故答案为:5.13.解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)接水口的面积为:10×30=300(平方厘米)接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)所以,图①需要:10×10×30÷(10×10×10)=3(小时)图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)图③需要:2÷2=1(厘米)3.14×1×1×20÷(3.14×1×10)=2(小时)答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.14.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.15.解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.。

小学奥数题及答案 奥数题100道及答案

小学奥数题及答案  奥数题100道及答案

5.观察以下各组图的变化规律,并在方框里画出相关的图形?答案:
答案:
17.都是哪几环吗?
19.把写着1到100这100个号码的牌子,像下面这样一次分给四个人,你知道第73号牌子会落在谁的手里吗?
25.下面两个图形能拼成一个长方体吗?
39.认真观察,找规律填数
41.你能把下边的图形分成2块,使它们的大小、形状都一样吗?试试看。

答案:
47.在下面由火柴棍摆成的算式中,添上或去掉一根火柴棍,使算式成立.
52.把以下图分割成 4 块形状大小一样的图形,使每个图形中都含有一只小猴,你能做到吗?
57.顺序观察下面图形,并按其变化规律在“?〞处填上适宜的图形.
60.根据图中数字的规律,在最上边的空格中填上适宜的数。

67.找规律,在空格里填上适宜的数
77.如以下图所示是一个由小立方体构成的塔,请你数一数并计算出共有多少块?
81.观察下面的图形,并在空白处填上适当的图形答案:
91.看以下图,彤彤做语文作业用几分钟?做数学作业用几分钟?一共用几小时?
92.找规律,在空格里填上适宜的数
99.一块圆形烧饼,切1刀、切2刀、切3刀、切4刀,最多各能切成几块? 答案:。

小学奥数题库全部题型100道及答案(完整版)

小学奥数题库全部题型100道及答案(完整版)

小学奥数题库全部题型100道及答案(完整版)题目1:有一串数1,4,7,10,…,301,求这串数的平均数。

答案:这是一个等差数列,公差为3,首项为1,末项为301。

项数= (301 - 1)÷3 + 1 = 101 。

总和= (1 + 301)×101÷2 = 15251 ,平均数= 15251÷101 = 151 。

题目2:在一个减法算式里,被减数、减数与差的和等于120,而减数是差的 3 倍,那么差等于多少?答案:因为被减数= 减数+ 差,所以被减数+ 减数+ 差= 2×被减数= 120,被减数= 60。

又因为减数是差的3 倍,所以差= 60÷(3 + 1)= 15 。

题目3:两个数的和是682,其中一个加数的个位是0,如果把这个0 去掉,就得到另一个加数。

这两个加数各是多少?答案:一个加数是另一个加数的10 倍。

较小的加数= 682÷(10 + 1)= 62 ,较大的加数= 62×10 = 620 。

题目4:一桶油连桶重16 千克,用去一半后,连桶重9 千克,桶重多少千克?答案:油重= (16 - 9)× 2 = 14 千克,桶重= 16 - 14 = 2 千克。

题目5:某班有40 名学生,其中有15 人参加数学小组,18 人参加航模小组,有10 人两个小组都参加。

那么有多少人两个小组都不参加?答案:参加了至少一个小组的人数= 15 + 18 - 10 = 23 人,两个小组都不参加的人数= 40 - 23 = 17 人。

题目6:有一根木材长8 米,要把它锯成8 段,每锯一段要用3 分钟,共锯了多少分钟?答案:锯成8 段需要锯7 次,共锯了7×3 = 21 分钟。

题目7:已知9 个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是多少?答案:9 个数的总和= 9×72 = 648 ,余下8 个数的总和= 8×78 = 624 ,去掉的数= 648 - 624 = 24 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学经典奥数题50道1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元2、3箱苹果重45千克,一箱梨比一箱苹果多5千克,3箱梨重多少千克3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米相遇,甲比乙速度快,甲每小时比乙快多少千米4、李军的张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强元钱。

每支铅笔多少钱5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需要交换乘客,然后按原路返回各自出发的车站,到站时已是下午两点。

甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米(交换乘客的时间略去不计)6、学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时走3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组7、有甲乙两个仓库,每个仓库平均储存粮食吨。

甲仓库的储存吨数比乙仓库的4倍少5吨。

甲、乙两仓各储存粮食多少吨8、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米9、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元10、一列火车和一列慢车,同时分别从甲乙两地相对开出,快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米11、某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。

运后结算时,共付运费4400元。

问:托运中损坏了多少箱玻璃12、五年级一中队和二中队要到距学校20千米的地方去春游,第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。

第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能遇上一中队13、某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。

这堆煤有多少千克14、妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红元钱。

如果小红却买了8支铅笔和5本练习本,找回元。

求一支铅笔多少元15、学校组织外出参观,参加的师生一共360人。

一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车车载的人数相等。

都乘卡车需要几辆都乘大客车需要要几辆16、某筑路队承担了修一条公路的任务,原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。

这条公路全长多少17、某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。

如果3个纸箱加2个木箱装的鞋同样多。

每个纸箱和每个木箱各装鞋多少双18、某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。

每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完。

而沙子还剩120袋,这批沙子和水泥各多少袋19、学校里买来了5个保温瓶和10个茶杯,共用了90元钱。

每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元20、两数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。

这两数分别是多少21、一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千克22、一桶油连桶重10千克,倒出一半后,连桶还重千克,原来有油多少千克23、用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。

桶里原来有水多少千克24、小红和小华共有故事书36本。

如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本25、有5桶油重量相等,如果从每只桶里取15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。

原来每桶油重多少千克26、把一根木料锯成3段需要9分钟,那么同样的速度把这根木料锯成5段,需要多少分钟27、一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。

原来有男工多少人女工多少人28、李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米29、甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。

如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向乙跑去,这样二人相遇时,狗跑了多少千米30、有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。

三种球各有多少个31、在一根粗钢管上接细钢管。

如果接2根细钢管共长18米,如果接5根细钢管共长33米。

一根粗钢管和一根细钢管各长多少米32、水泥厂原计划12天完成一项任务,由于每天多生产水泥吨,结果10天就完成了任务,原计划每天生产水泥多少吨33、学校举办歌舞晚会,共有80人参加了表演,其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人34、学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没有参加的有5人。

双科都参加的有多少人35、学校买了4张桌子和6把椅子,共用640元。

2张桌子和5把椅子的价钱相等,桌子和椅子的单价各是多少元36、父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁37、有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油38、光明小学举办数学知识竞赛,一共20题,答对一题得5分,答错一题扣3分,不答得0分。

小丽得了79分,她答对几道,答错几道,有几题没答39、甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒40、一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分41、小明从家里到学校,如果每分钟走50米,;则正好到上课时间;如果每分钟走60米,则离上课时间还有2分钟。

问小明从家里到学校有多远42、有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇43、有一个长方形板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米。

这个长方形板原来的面积是多少44、妈妈买苹果和梨各3千克,付出20元找回元。

每千克苹果元,每千克梨多少元45、甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇。

甲的速度是乙的2倍,甲乙两人每小时各行多少千米46、盒子里有同样数目的黑球和白球。

每次取出8个黑球和5个白球,取出几次以后,黑球没有了,白球还剩12个。

一共取了几次盒子里共有多少个球47、上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。

48、父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍49、王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。

问主盒铅笔最少有多少支50、一块平等四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。

求这块平行四边形地原来的面积50道奥数题解答参考1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。

再根据椅子的价钱,就可求得一张桌子的价钱。

解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。

2、想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

解:45+5×3=45+15=60(千克)答:3箱梨重60千克。

3、想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。

即可求甲比乙每小时快多少千米。

解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。

4、想:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强元钱,即可求每支铅笔的价钱。

解:÷[13-(13+7)÷2]=÷[13-20÷2]=÷3=(元)答:每支铅笔元。

5、想:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。

根据两车的速度和行驶的时间可求两车行驶的总路程。

解:下午2点是14时。

往返用的时间:14-8=6(时)两地间路程:(40+45)×6÷2=85×6÷2=255(千米)答:两地相距255千米。

6、想:第一小组停下来参观果园时间,第二小组多行了[ 千米,也就是第一组要追赶的路程。

又知第一组每小时比第二组快( 千米,由此便可求出追赶的时间。

解:第一组追赶第二组的路程:==(千米)第一组追赶第二组所用时间:÷小时)答:第一组小时能追上第二小组。

7、想:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。

若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。

解:乙仓存粮:×2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨)甲仓存粮:14×4-5=56-5=51(吨)答:甲仓存粮51吨,乙仓存粮14吨。

8、想:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。

由此可求出乙队每天修的米数,进而再求两队每天共修的米数。

解:乙每天修的米数:(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)甲乙两队每天共修的米数:40×2+10=80+10=90(米)答:两队每天修90米。

9、想:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。

相关文档
最新文档