第二章 遥感数据采集与存储

合集下载

国家海洋局关于印发国家海域使用动态监视监测管理系统业务化运行职责分工意见及数据资料管理办法的通知

国家海洋局关于印发国家海域使用动态监视监测管理系统业务化运行职责分工意见及数据资料管理办法的通知

国家海洋局关于印发国家海域使用动态监视监测管理系统业务化运行职责分工意见及数据资料管理办法的通知文章属性•【制定机关】国家海洋局•【公布日期】2008.05.19•【文号】•【施行日期】2008.05.19•【效力等级】部门规范性文件•【时效性】现行有效•【主题分类】主权领土正文国家海洋局关于印发国家海域使用动态监视监测管理系统业务化运行职责分工意见及数据资料管理办法的通知沿海省、自治区、直辖市海洋厅(局),监测中心、信息中心、技术中心、中国海监总队:为保障国家海域使用动态监视监测管理系统业务化运行工作的顺利实施,明确各单位职责,规范数据资料管理,我们制定了《关于国家海域使用动态监视监测管理系统业务化运行职责分工的意见》和《国家海域使用动态监视监测管理系统数据资料管理办法》。

现印发给你们,请遵照执行。

附件:1、关于国家海域使用动态监视监测管理系统业务化运行职责分工的意见2、国家海域使用动态监视监测管理系统数据资料管理办法二〇〇八年五月十九日关于国家海域使用动态监视监测管理系统业务化运行职责分工的意见为了明确国家海域使用动态监视监测管理系统(以下简称系统)工作中各有关单位的职责和任务,保证系统的有效运行,依据《国家海域使用动态监视监测管理系统总体实施方案》及其他有关文件,制定本意见。

一、各部门和单位的工作关系国家海域使用动态监视监测管理系统的业务化运行实行统一领导、分级负责的管理体制。

海域管理司负责全国系统业务化运行的统一领导和监督检查工作,沿海省、市海域管理部门负责本地区系统业务化运行的领导和监督检查工作。

国家海域使用动态监管中心(以下简称“国家监管中心”)为系统业务化运行管理的最高执行机构,在业务上对海域管理司负责,并接受海域管理司领导;国家海域使用动态监视监测同步数据中心(以下简称“国家同步数据中心”)和国家海域使用动态监视监测网管中心(以下简称“国家网管中心”)按分工负责专项技术工作,在业务上接受国家监管中心的指导和协调。

计量地理学第二章

计量地理学第二章


述和衡量,这样就产生了不同类型的地理数据



第一节 地理数据的类型
空间数据:描述地理实体、地理要素、地
理现象、地理事件及地理过程产生、存在
和发展的地理位置、区域范围及空间联系

的数据.
、 空
描述空间数据:坐标.一般用经纬度坐标或公里网 来表示。几何坐标;平面直角坐标;极坐标



点。(x,y),空间上不可再分的几何实
地理系统的复杂性
二 、
地理系统要素数目众多,要素之间的关系及 相互作用机制复杂;地理过程对初值的条件

变化具有高度的敏感性;地理现象与地理事 件的发生具有突发性,如赤潮、洪水、沙尘

暴等;地理要素的变化都具有不确定性的特 点


数据误差
不同的数据来源、不同的观测手段、不同的 调查方法、不同的数据采集者的认识与操作 水平等;采用先进的数据采集技术,尽量减 少人为误差;要运用有关方法(包括数学方 法)对各种来源不同的数据进行筛选和处理
着时间的变化情况,每一个数据通过具体的 地理位置、具体的属性含义和具体的时间三 个方面的内容来体现
第三节 地理数据的采集与处理
地理数据的采集 地理数据的处理 地理数据的分布特征值
集中性的代表值 离散性的代表值
一 、 地 理 数 据 的 采 集
观测、测量部门的有关专业数据。如,水文数
…………
计算组中值m
L1下=Xm
in

1 2
h
L1上=L1下 h
L2下=L1上
L2上=L2下 h

m 下限 上限

974.8

「遥感图像分析运用复习重点」

「遥感图像分析运用复习重点」

遥感图像分析运用复习重点第一章遥感影像解译的基本理论1、遥感影像解译:根据影像的几何特征和物理性质,进行综合分析,从而揭示出物体或现象的质量和数量特征,以及它们之间的相互关系,进而研究其发生发展过程和分布规律。

也就是说根据影像特征来识别它们所代表的物体或现象的性质。

2、影像解译(Interpretation) —从影像获取信息。

根据各专业要求,借助一定的技术手段和方法,对遥感影像进行综合分析、比较、推理和判断,识别出地物或测算出某种数量指标的过程。

(1)解译的过程:影像→灰度或色调(物理性质)/形状大小(几何性质)→地物(2)原理:影像特征→电磁波普→影像特征性质(3)解译本质:从影像特征——地物的光谱特征、空间特征和时间特征,判断电磁波的性质和空间分布,进而确定地物的属性,也就是从影像特征识别地物。

(4)解译条件:解译对象基础理论和专业知识、遥感理论知识和分析解译技术、区域地理特征与背景资料(5)影像解译的内容:图像识别、图像量测、图像分析ﻩ其中,图像分析与专题特征提取包括特定地物及状态的提取、物理量的提取、特定指标提取、变化检测3、解译类型:(1)根据解译信息特征:定性解译、定量解译根据解译内容:一般解译、专题解译根据解译技术和方法:目视解译、计算机解译,其中最基本的解译是目视解译。

(2)目视解译就是借助简单的仪器设备,直接由眼睛来识别影像特性,从而提取有用信息。

解译条件:具有解译对象的基础理论和专业知识,掌握遥感技术的基本原理和方法,要有一定的实际工作经验和地面实况资料。

解译质量:解译人员、研究目标、遥感影像三个因素的统一程度。

ﻩ优点:把解译者的专业理论、区域知识、遥感技术及经验介入到图像分析中,根据目标及周围地物的影像特征,以及目标的空间组合规律等,通过地物间的相互关系,经分析比较、逻辑推理、综合判断识别目标。

缺点:解译速度慢、定量精度受到限制,且往往带有解译者的主观随意性。

4、遥感资料的种类影像资料:传感器获得的以影像形式记录下来的均属遥感影像资料,包括黑影像和彩色影像。

如何进行地理信息系统的数据采集与更新

如何进行地理信息系统的数据采集与更新

如何进行地理信息系统的数据采集与更新地理信息系统(Geographic Information System,简称GIS)的数据采集与更新是GIS工作中非常重要的一环。

准确和及时的数据采集和更新对于地理信息系统的应用和决策支持具有关键性影响。

本文将从数据采集方法、数据更新机制以及准确性与及时性等方面,探讨如何进行地理信息系统的数据采集与更新。

一、数据采集方法(1)数字化数据采集在地理信息系统中,数字化数据采集是最为常见和广泛使用的一种方法。

数字化数据采集主要通过地图、卫星影像、无人机影像等图像材料,并借助专业的GIS 软件,将图像中的地理信息进行准确、系统的提取和转换。

数字化数据采集具有高效、精确的特点,可以大大提高数据的质量和处理效率。

(2)全球定位系统(GPS)数据采集GPS数据采集是一种利用全球定位系统技术,获取地理坐标信息的方法。

通过携带GPS设备,可以精确记录某一地点(点数据)、线路(线数据)或面域(面数据)等地理要素的经纬度坐标。

GPS数据采集可以实现实时定位和追踪,对于大范围、复杂地理环境下的数据采集具有重要意义。

(3)遥感数据采集遥感数据采集是一种利用遥感技术获取地理数据的方法。

通过地面、航空或卫星上的传感器获取遥感影像,再经过处理和解译,提取和分析图像中的地理信息。

遥感数据采集特别适用于大范围、难以进入的地理环境下的数据采集,如山区、森林、荒漠等。

二、数据更新机制为了保证地理信息系统数据的准确性和及时性,数据更新机制就显得尤为重要。

数据更新机制主要包括人工更新、自动更新和定期更新三种方式。

(1)人工更新人工更新是指专业人员通过实地勘测、调查和更新知识库等手段,对GIS数据进行定期检查和更新。

这种方式的优势在于准确性高,但更新效率较低、成本较高,适用于数据精度要求较高的场景。

(2)自动更新自动更新是指通过机器学习、模型预测等自动算法,对GIS数据进行实时监测和更新。

自动更新的优势在于效率高,但准确性相对较低,需要结合人工检查进行修正。

地理信息系统考研黄杏元《地理信息系统概论》考点笔记

地理信息系统考研黄杏元《地理信息系统概论》考点笔记

地理信息系统考研黄杏元《地理信息系统概论》考点笔记地理信息系统(Geographic Information System,简称GIS)是一种将地理空间数据与属性数据进行整合、分析和展示的技术系统。

在黄杏元的《地理信息系统概论》中,有一些重要的考点需要我们关注和理解。

以下是我整理的考点笔记,希望能对大家复习和理解地理信息系统有所帮助。

一、地理信息系统的定义与基本概念地理信息系统是一个用于存储、查询、分析、处理和展示地理空间数据的综合系统。

它由硬件系统、软件系统、数据系统和人员系统组成,其中硬件系统包括计算机设备、显示设备等;软件系统包括地理信息系统软件、数据库管理系统等;数据系统包括地理空间数据和属性数据;人员系统包括GIS技术人员和用户。

地理信息系统的基本概念包括地理空间数据、属性数据、地理坐标系统、地理数据模型等。

地理空间数据是指反映地球表面地理实体位置的数据,如点、线、面等;属性数据是描述地理实体特征和属性的数据,如土地利用类型、地形高程等;地理坐标系统是用于确定地理实体位置的系统,常用的有经纬度坐标系统和投影坐标系统;地理数据模型是描述地理实体及其关系的模型,如矢量数据模型和栅格数据模型等。

二、地理数据采集与处理地理数据采集包括遥感数据采集和GPS地理信息采集。

遥感数据采集是通过卫星、航空器等遥感平台获取地球表面信息,可以得到大范围、高分辨率的地理数据;GPS地理信息采集是通过GPS定位系统获取地理实体的坐标信息,可以得到高精度的地理数据。

地理数据的处理包括数据的编辑、清理、转换等,以保证数据的质量和准确性。

三、地理数据存储和管理地理数据的存储和管理包括数据格式与数据模型选择、数据库管理系统的选择、数据组织与索引等。

地理数据格式可以是矢量格式和栅格格式,矢量格式适合表示点、线、面等地理空间数据,栅格格式适合表示连续分布的地理数据。

数据库管理系统可以是关系型数据库管理系统或面向对象数据库管理系统,根据需要选择适合的系统。

GI系统工作方案

GI系统工作方案

GI系统工作方案一、引言。

GI(Geographic Information)系统是一种将地理空间信息与属性信息相结合的信息系统,它可以用来管理、分析和展示地理空间数据。

GI系统在城市规划、自然资源管理、环境保护、农业、交通等领域都有着广泛的应用。

本文将介绍GI系统的工作原理和方案,以及在实际应用中的一些案例。

二、GI系统的工作原理。

1. 数据采集,GI系统的数据主要来自于地理信息系统(GIS)、全球定位系统(GPS)、遥感技术等。

这些数据包括地图、卫星影像、地理位置信息等,都是GI系统的基础数据。

2. 数据存储,GI系统将采集到的数据存储在数据库中,以便后续的管理和分析。

存储的数据可以是矢量数据、栅格数据、属性数据等。

3. 数据处理,GI系统通过数据处理技术,对存储的数据进行分析、计算、模拟等操作,以获取有用的信息。

4. 数据展示,GI系统可以将处理后的数据以地图、图表、报表等形式展示出来,方便用户进行查看和分析。

5. 数据共享,GI系统可以通过网络平台,将处理后的数据共享给其他用户,实现信息的共享和交流。

三、GI系统的工作方案。

1. 数据采集方案。

(1)GIS数据采集,通过GIS软件和GPS设备,采集地图、地理位置信息等数据。

(2)遥感数据采集,利用遥感技术获取卫星影像、航拍影像等数据。

(3)地理位置信息采集,通过移动设备、传感器等采集地理位置信息。

2. 数据存储方案。

(1)建立空间数据库,将采集到的数据存储在空间数据库中,以方便管理和查询。

(2)数据备份,定期对存储的数据进行备份,以防止数据丢失。

(3)数据安全,加强对数据的安全保护,防止数据泄露和损坏。

3. 数据处理方案。

(1)空间分析,利用GIS软件进行空间分析,包括缓冲区分析、叠加分析等。

(2)数据模拟,通过模拟技术,对地理空间数据进行模拟,以获取预测信息。

(3)统计分析,对属性数据进行统计分析,包括数据挖掘、空间统计等。

4. 数据展示方案。

第二章 遥感数字图像的获取和存储

第二章 遥感数字图像的获取和存储
是指传感器区分反射或发射的电磁辐射强度差异的能力,可用量 化位数近似表述。 高辐射分辨率意味着可以区分信号强度的微小差异。
6-bit range
0
63
图像的量化位数 图像的量化位数
255
8-bit range
0
10-bit range
0
1023
23
2.1 遥感图像的获取和数字化
2.1.4 采样和量化
32
2.4 遥感数字图像的级别和数据格式
• 级别 –什么样的数据可以满足你的要求 • 格式 –哪些格式是通用的
33
2.4.1 数据级别 • 0级产品:未经过任何校正的原始图像数据。 • 1级产品:经过了初步辐射校正的图像数据。 • 2级产品:经过了系统级的几何校正。 • 3级产品:经过了几何精校正。
2.1.1 遥感系统
遥感平台
遥感系统
传感器
遥感地面站
3
遥感系统:是一个从地面到空中乃至整个空间,从信息收集、存储、传输、 处理到分析、判读、应用的技术体系。
遥感器
遥感实验
遥感数据 回收传输
遥感平台 辐射条件
信息获取 信息传输 信息处理
总采样面积 图像/数据处理 (目标辩证过程 ) 检测 分辨 识别 瞬时视场 视 场 大气条件
• BSQ(Band Sequential Format ) • 按波段顺序记录的数据格式
ENVI ENVI ER Mapper ER Mapper
先按照波段顺序分块排序,在每 个波段块内,再按照行列顺序排 列。同一波段的像素保存在一个 块中,保证了像素空间位置的连 续性。
37
• BIL(Band Interleaved by Line Format ) • 波段顺序交叉排列的数据格式

遥感与大数据

遥感与大数据

遥感与大数据简介:遥感与大数据是指利用遥感技术获取的大量数据,并通过大数据分析方法进行处理和分析的一种综合应用。

遥感技术通过卫星、飞机等平台获取地球表面的各种信息,包括地形、气象、植被、土地利用等,形成大量的遥感数据。

大数据分析方法可以对这些数据进行存储、处理和分析,从而提取出实用的信息,为决策提供科学依据。

一、遥感数据获取1. 遥感平台:卫星、飞机、无人机等。

2. 遥感传感器:光学传感器、雷达传感器、微波传感器等。

3. 遥感数据类型:地形数据、气象数据、植被数据、土地利用数据等。

4. 遥感数据获取流程:数据采集、数据传输、数据预处理。

二、大数据分析方法1. 数据存储:建立大数据存储系统,包括数据仓库、数据库、分布式文件系统等。

2. 数据处理:数据清洗、数据融合、数据转换等预处理工作。

3. 数据分析:数据挖掘、机器学习、统计分析等方法,提取实用信息。

4. 数据可视化:利用图表、地图等方式展示分析结果,便于理解和决策。

三、遥感与大数据应用案例1. 环境监测:利用遥感数据监测大气污染、水质变化、土壤退化等环境问题。

2. 农业管理:通过遥感数据分析,提供农作物生长状况、土壤湿度等信息,指导农业生产。

3. 城市规划:利用遥感数据获取城市土地利用、交通流量等信息,辅助城市规划决策。

4. 自然灾害监测:利用遥感数据监测地震、洪水、火灾等自然灾害,及时预警和救援。

四、遥感与大数据的优势1. 高效快捷:遥感技术可以远程获取大量数据,大数据分析方法可以高效处理这些数据。

2. 全面准确:遥感数据可以提供全面的地球表面信息,大数据分析可以准确提取实用信息。

3. 实时监测:遥感数据可以实时更新,大数据分析可以对数据进行实时处理和监测。

4. 智能决策:遥感与大数据相结合,可以为决策提供科学依据,提高决策的智能化水平。

五、遥感与大数据的挑战与展望1. 数据质量:遥感数据的质量对大数据分析结果影响较大,需要解决数据质量问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理图像行列划分后,每个小块区域称为像素(pixel)。
– 每个像素包括两个属性:位置和亮度(或色彩)。
• 对灰度图像而言,每个像素的亮度用一个数值(即灰度值)来
表示,通常数值范围在0到255之间,即可用一个字节来表示, 0表示黑、255表示白,而其它表示灰度级别。
数字图像的表示
• 灰度分辨率:灰度 •
量化可分为均匀量化和非均匀量化。
均匀量化是简单地在灰度范围内等间隔量化。 非均匀量化是对像素出现频度少的部分量化 间隔取大,而对频度大的量化间隔取小。
图像数字化--量化噪声
用有限个离散灰度值表示无穷多个连续灰度的量必然引起误 差,称为量化噪声. (1)量化分层越多,则量化误差越小;而分层越多则编码 进入计算机所需比特数越多,相应地影响运算速度及处理 过程。 (2)量化分层的约束来自图像源的噪声,即最小的量化分 层应远大于噪声,否则太细的分层将被噪声所淹没而无法 体现分层的效果。也就是说噪声大的图像,分层太细是没 有意义的。反之要求很细分层的图像才强调极小的噪声, 如某些医用图像系统把减少噪声作为主要设计指标,是因 为其分层数要求2000层以上,而一般电视图像的分层用 200多级已能满足要求。
并能将检测感受到的信息,按一定规律变换成为 电信号或其他所需形式的信息输出,以满足信息 的传输、处理、存储、显示、记录和控制等要求。
传感器的工作原理
• 传感器应用的是物理效应,诸如压电效应,
磁致伸缩现象,离化、极化、热电、光电、 磁电等效应。被测信号量的微小变化都将 转换成电信号。
传感器的一般构成
遥感图像的存储模式--商用数据格式
Erdas Img GeoTiff PIX ENVI
电 磁 波 幅 射
信息 收集
探测器
信息处理
信息输出
传感器组成
收集系统:收集来自目标的辐射,送往检测系统。在紫外 线、可见光、红外波段中,收集系统的主要元件是透 镜或反射镜,在微波中是微波天线。
检测系统(探测系统):将波谱转化为其它形成的能
→电流、电压、化学能等。其核心是感光胶片或光电 敏感元件、固体敏感元件、微波检波器等。 感光胶片:电磁辐射→化学能 其 它:电磁辐射→电流、电压等
红外扫描仪:接受地物的红外辐射能量,并把它传给探测元 件。 ② 多光谱扫描仪(MSS):与红外扫描仪基本类似,其不同之 处是,外加一个分光系统,把来自地物的电磁波信号,分成 若干个不同的波段,同时用多个探测器同步记录相应波段的 信息。而红外扫描仪只在红外波段工作。 ③ 专题制图仪TM:专题制图仪TM的成像原理与MSS一致,与 MSS相比,空间分辨率由80米提高到30米;探测波段由4个增 加到7个。 特点:利用光电探测器解决了各种波长辐射的成像方法。输出的 电学图象数据,存储、传输和处理方面十分方便。但装置庞杂, 高速运动使其可靠性差;在成像机理上,存在着目标辐射能量利 用率低的致命弱点。
多光谱扫描成像
在物镜后加分光装 置,将光分解成多 个光束;或利用响 应不同波段的多感 光层胶片进行多光 谱摄影。
多光谱扫描成像
工作原理:扫描镜在机械驱动下,随遥感平台的前进运 动而摆动,依次对地面进行扫描,地面物体的辐射波 束经扫描镜反射,并经透镜聚焦和分光分别将不同波 长的波段分开,再聚焦到感受不同波长的 探测元件 上。 几种光机扫描仪

线阵扫描仪
成像原理:当飞机或卫星向前飞行时,在相 机焦平面上与航向垂直的狭隙中,对出现 的与航向垂直,且与缝隙等宽的一条地面 影像连续摄影。
© 2002 Space Imaging, LLC. Confidential and Proprietary
Courtesy ASK,SAC
框幅式数码相机
0 160 80 G 255 255 160 0 255 0
80 160 0 B 0 0 240 255 255 255
遥感数字图像的获取
图像数字化
图像数字化
连续图像经采样、分层、量化、编码等 步骤变成数字图像才能进入计算机。
采样间隔效果示意图
300 dpi
50 dpi
采样间隔对图像的影响
图像数字化--量化
采样后的图像只是在空间上被离散化,成为样本的 阵列,每个取样样本称为像素,用 Pixel来表示。 但是由于原f(x,y)是连续图像,因此每个Pixel还 是可能取值为无穷多个值的量。为了进行计算机 处理,必须把无穷多个离散值约简为有限个离散 值,即量化,这样才便于赋予每一个离散值互异 的编码以进入计算机。
成像原理:同普通数码照相机
遥感数据存储
遥感图像的存储模式
• 磁带、磁盘、光盘 • 原格式数据 • 商用格式
遥感图像的存储模式--原格式数据
BIP—按像元波段交叉式,以一对像元为基本 单位进行记录 BIL-按照扫描行为单位,各波段同一扫描行 数据依次记录 BSQ-以波段为单位,每波段所有扫描行依 次记录
低bit量化的伪轮廓现象示意图
均匀量化效果示意图
非均匀量化效果示意图
量化级别对图像的影响
模拟图像数字化的弱点
乳胶片感光技术本身存在着致命的弱点, 它所传感的辐射波段仅限于可见光及其附近; 其次,照相一次成型,图象存储、 传输和处理 都不方便。
遥感数字图像的获取
直接获取数字影像
传感器
• 传感器是一种检测装置,能感受到被测量的信息,

2^k灰度级,k比 特 空间分辨率:矩阵 M×N。 像素
单波段Байду номын сангаас像
每个像素的信息由一个量化的灰度级来描 述的图像,没有彩色信息。
0 150 200 I 120 50 180 250 220 100
多波段图像
每个像素的信息由多个波段构成。
255 240 240 R 255 0 80 0 255 0
信号转化系统:将电流、电压信号放大,再转化为:
可见光,信号显示在屏幕上,即电光转化;
磁信号,信号记录在磁带上,即电磁转化。
记录系统:记录前级送来的信号。
直接记录:将前一级的输出信号直接记录在胶片或荧 光屏上。 间接记录:将信号记录在磁带上,以后用时将磁带回 放,产生电信号,再通过电光转化,显示图象。
图像数字化--采样
将在空间上连续的图像转换成离散的采样点(即 像素)集的操作。由于图像是二维分布的信息, 所以采样是在x轴和y轴两个方向上进行。 模拟图象若在 x 方向采 M 个点, y 方向采 N 个点, 就可得到 M * N个点的数字化图象的形式。采 样是图象进入计算机的第一个处理过程。
图像数字化--采样定理
遥感数据采集与存储
遥感成像与数据处理过程
分析结果、图表 输出
用户应用处理
接收 预处理
由于一切物体,因其种类、特征和环境条件的不同,而具有完全不同的电磁波反射 或发射辐射特征
课程内容
• 数字图像 • 数字影像的获取方式 • 遥感数字影像的存储方式
数字图像
数字图像
Picture element
• 数字图像是指由被称作像素的小块区域组成的二维矩阵。将物
图像数字化--量化
将各个像素所含的明暗信息离散化后,用数字 来表示称为图像的量化,一般的量化值用整数来 表示。 充分考虑到人眼的识别能力之后,目前非特殊用 途的图像均为8bit量化,即用0〜255描述“黑〜 白”。 在3bit以下的量化,会出现伪轮廓现象。
图像数字化--量化
图像数字化--量化技术
相关文档
最新文档