2021年高中数学必修4第三章单元测试题及答案数学必修4第三章

合集下载

高中人教A版数学必修4:第三章 章末检测 Word版含解析

高中人教A版数学必修4:第三章 章末检测 Word版含解析

第三章章末检测班级____ 姓名____ 考号____ 分数____ 本试卷满分150分,考试时间120分钟.一、选择题:本大题共12题,每题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.sin68°sin67°-sin23°cos68°的值为( )A .-22 B.22C.32D .1 答案:B解析:原式=sin68°cos23°-cos68°sin23°=sin(68°-23°)=sin45°=22.2.已知sin α=23,则cos(π-2α)等于( )A .-53B .-19C.19D.53 答案:B解析:cos(π-2α)=-cos2α=-(1-2sin 2α)=2sin 2α-1=2×49-1=-19.3.已知M =⎩⎨⎧⎭⎬⎫x ⎪⎪ sin x =12,N =⎩⎨⎧⎭⎬⎫x ⎪⎪cos2x =12,则( ) A .M =N B .M ⊆N C .N ⊆M D .M ∩N =∅ 答案:B解析:由cos2x =1-2sin 2x =12,得sin x =±12,故选B.4.已知sin θ2=-45,cos θ2=35,则角θ终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:C解析:∵sin θ=2sin θ2cos θ2=-2425<0,cos θ=cos 2θ2-sin 2θ2=-725<0,∴θ终边在第三象限.5.函数f (x )=lg (sin 2x -cos 2x )的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 2k π-3π4<x <2k π+π4,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4<x <2k π+5π4,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π-π4<x <k π+π4,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π4<x <k π+3π4,k ∈Z 答案:D解析:∵f (x )=lg (sin 2x -cos 2x )=lg (-cos2x ),∴-cos2x >0,∴cos2x <0,∴2k π+π2<2x <2k π+3π2,k ∈Z ,∴k π+π4<x <k π+3π4,k ∈Z . 6.若函数f (x )=sin ax +cos ax (a >0)的最小正周期为1,则它的图象的一个对称中心为( )A.⎝⎛⎭⎫-π8,0 B .(0,0) C.⎝⎛⎭⎫-18,0 D.⎝⎛⎭⎫18,0 答案:C解析:由条件得f (x )=2sin ⎝⎛⎭⎫ax +π4,又函数的最小正周期为1,故2πa=1,∴a =2π,故f (x )=2sin ⎝⎛⎭⎫2πx +π4.将x =-18代入得函数值为0. 7.tan20°+tan40°+3(tan20°+tan40°)等于( )A.33B .1 C. 3 D. 6 答案:C解析:tan60°=tan20°+tan40°1-tan20°·tan40°,∴3-3tan20°tan40°=tan20°+tan40°, ∴tan20°+tan40°+3tan20°tan40°= 3.8.关于x 的方程sin x +3cos x -a =0有实数解,则实数a 的范围是( ) A .[-2,2] B .(-2,2) C .(-2,0) D .(0,2) 答案:A解析:sin x +3cos x -a =0,∴a =sin x +3cos x=2⎝⎛⎭⎫12sin x +32cos x =2sin ⎝⎛⎭⎫x +π3,-1≤sin ⎝⎛⎭⎫x +π3≤1,∴-2≤a ≤2. 9.若α,β为锐角,sin α=2 55,sin(α+β)=35,则cos β等于( )A.2 55B.2 525C.2 55或2 525 D .-2 525答案:B解析:cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α,∵α为锐角cos α= 1-2025=55,∴sin(α+β)=35<sin α,∴α+β>π2.∴cos(α+β)=- 1-925=-45,∴cos β=-45×55+2 55×35=2 525.10.函数y =sin x 2+3cos x2的图象的一条对称轴方程为( )A .x =113πB .x =53πC .x =-53πD .x =-π3答案:C解析:y =sin x 2+3cos x2=2sin ⎝⎛⎭⎫x 2+π3,又f ⎝⎛⎭⎫-53π=2sin ⎝⎛⎭⎫-56π+π3 =2sin ⎝⎛⎭⎫-π2=-2, ∴x =-53π为函数的一条对称轴.11.已知θ为第三象限角,若sin 4θ+cos 4θ=59,则sin2θ等于( )A.2 23 B .-2 23C.23 D .-23 答案:A解析:由sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59,知sin 2θcos 2θ=29,又θ为第三象限角,∴sin θ·cos θ=23,sin2θ=2 23.12.设动直线x =a 与函数f (x )=2sin 2⎝⎛⎭⎫π4+x 和g (x )=3cos2x 的图象分别交于M ,N 两点,则|MN |的最大值为( )A. 2B. 3 C .2 D .3 答案:D解析:f (x )=1-cos ⎝⎛⎭⎫π2+2x =1+sin2x . |MN |=|f (a )-g (a )|=|1+sin2a -3cos2a |=|2sin ⎝⎛⎭⎫2a -π3+1|≤3. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.cos π5cos 25π的值是________.答案:14解析:原式=12sin π5·2sin π5cos π5·cos 2π5=14sin π5·2sin 2π5cos 25π=14sinπ5sin 45π=14.14.已知sin α=12+cos α,且α∈⎝⎛⎭⎫0,π2,则cos2αsin ⎝⎛⎭⎫α-π4的值为________. 答案:-142解析:∵sin 2α+cos 2α=1,sin α=12+cos α,∴⎝⎛⎭⎫12+cos α2+cos 2α=1,∴2cos 2α+cos α-34=0, ∴cos α=-1±74,∵α∈⎝⎛⎭⎫0,π2,∴cos α>0, ∴cos α=7-14,∴sin α=12+cos α=7+14,∴cos2αsin ⎝⎛⎭⎫α-π4=cos 2α-sin 2α22(sin α-cos α)=-2(sin α+cos α)=-2⎝ ⎛⎭⎪⎫7+14+7-14=-142.15.已知cos α=13,cos(α+β)=-13,且α,β∈⎝⎛⎭⎫0,π2,则cos(α-β)的值为________. 答案:2327解析:∵cos α=13,α∈⎝⎛⎭⎫0,π2, ∴sin α=2 23,∴sin2α=4 29,cos2α=-79.又cos(α+β)=-13,α+β∈(0,π),∴sin(α+β)=2 23.∴cos(α-β)=cos[2α-(α+β)] =cos2αcos(α+β)+sin2αsin(α+β)=⎝⎛⎭⎫-79×⎝⎛⎭⎫-13+4 29×2 23=2327. 16.函数f (x )=3cos(3x -θ)-sin(3x -θ)是奇函数,则tan θ等于________. 答案:- 3解析:∵f (x )是奇函数,∴f (0)=0,∴3cos(-θ)-sin(-θ)=0,∴3cos θ+sin θ=0,∴tan θ=- 3.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知sin α+cos αsin α-cos α=3,tan(α-β)=2,求tan(β-2α)的值.解:∵sin α+cos αsin α-cos α=tan α+1tan α-1=3,∴tan α=2,∵tan(α-β)=2,∴tan(β-α)=-2,∴tan(β-2α)=tan[(β-α)-α]=tan (β-α)-tan α1+tan (β-α)tan α=-2-21+(-2)×2=43.18.(12分)已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=2 55,求cos(α-β)的值.解:∵a =(cos α,sin α),b =(cos β,sin β), ∴a -b =(cos α-cos β,sin α-sin β), ∴|a -b |=(cos α-cos β)2+(sin α-sin β)2=2-2cos (α-β)=2 55,∴cos(α-β)=35.19.(12分)已知函数f (x )=-2 3sin 2x +sin2x + 3.(1)求函数f (x )的最小正周期和最小值;(2)在给出的直角坐标系中,画出函数y =f (x )在区间[0,π]上的图象.解:(1)f (x )=3(1-2sin 2x )+sin2x=sin2x +3cos2x =2sin ⎝⎛⎭⎫2x +π3, 所以f (x )的最小正周期T =2π2=π,最小值为-2.(2)列表:x 0 π12 π3 7π125π6 π 2x +π3 π3 π2 π 3π22π 7π3 f (x ) 32 0 -2 0320.(12分)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈⎝⎛⎭⎫0,π2. (1)求sin θ和cos θ的值;(2)若sin(θ-φ)=1010,0<φ<π2,求cos φ的值.解:(1)∵a ⊥b ,∴sin θ×1+(-2)×cos θ=0⇒sin θ=2cos θ.∵sin 2θ+cos 2θ=1,∴4cos 2θ+cos 2θ=1⇒cos 2θ=15.∵θ∈⎝⎛⎭⎫0,π2,∴cos θ=55,sin θ=2 55. (2)解法一:由sin(θ-φ)=1010得,sin θcos φ-cos θsin φ=1010⇒sin φ=2cos φ-22,∴sin 2φ+cos 2φ=5cos 2φ-2 2cos φ+12=1⇒5cos 2φ-2 2cos φ-12=0.解得cos φ=22或cos φ=-210,∵0<φ<π2,∴cos φ=22.解法二:∵0<θ,φ<π2,∴-π2<θ-φ<π2.所以cos(θ-φ)=1-sin 2(θ-φ)=31010.故cos φ=cos[(θ-(θ-φ)]=cos θcos(θ-φ)+sin θsin(θ-φ)=55×3 1010+2 55×1010=22. 21.(12分)已知函数f (x )=2sin x +2cos(x -π). (1)求函数f (x )的最小正周期和值域;(2)若函数f (x )的图象过点⎝⎛⎭⎫α,65,π4<α<3π4,求f ⎝⎛⎭⎫π4+α的值. 解:(1)由题意得,f (x )=2sin x +2cos(x -π)=2sin x -2cos x =2sin ⎝⎛⎭⎫x -π4,因为-1≤sin ⎝⎛⎭⎫x -π4≤1,所以函数f (x )的值域为[-2,2],函数f (x )的周期为2π. (2)因为函数f (x )过点⎝⎛⎭⎫α,65, 所以f (α)=65⇒2sin ⎝⎛⎭⎫α-π4=65⇒ sin ⎝⎛⎭⎫α-π4=35,因为π4<α<3π4, 所以0<α-π4<π2⇒cos ⎝⎛⎭⎫α-π4>0⇒cos ⎝⎛⎭⎫α-π4=1-sin 2⎝⎛⎭⎫α-π4=45, 所以f ⎝⎛⎭⎫π4+α=2sin α=2sin ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4 =2sin ⎝⎛⎭⎫α-π4cos π4+2cos ⎝⎛⎭⎫α-π4sin π4⇒f ⎝⎛⎭⎫π4+α=725.22.(12分)在△ABC 中,f (B )=4cos B ·sin 2⎝⎛⎭⎫π4+B 2+3cos2B -2cos B . (1)若f (B )=2,求角B ;(2)若f (B )-m >2恒成立,求实数m 的取值范围.解:(1)f (B )=4cos B ·1-cos ⎝⎛⎭⎫π2+B 2+3cos2B -2cos B =2cos B (1+sin B )+3cos2B -2cos B=sin2B +3cos2B =2sin ⎝⎛⎭⎫2B +π3. ∵f (B )=2,∴2sin ⎝⎛⎭⎫2B +π3=2. ∵B 是△ABC 的内角,∴2B +π3=π2,则B =π12.(2)若f (B )-m >2恒成立,即2sin ⎝⎛⎭⎫2B +π3>2+m 恒成立. ∵0<B <π,∴π3<2B +π3<73π,∴2sin ⎝⎛⎭⎫2B +π3∈[-2,2], ∴2+m <-2,即m <-4.。

高一数学必修4第三章综合检测题

高一数学必修4第三章综合检测题

第三章综合检测题、选择题(本大题共12个小题,每小题5分,共60分)1. si门2右一cos2;n的值为(C )B.2 D. ,3~2[解析]原式=-(cos2^- sin^F - cos62.函数f(x)= sin2x—cos2x的最小正周期是(B )nA.q3 B . n C . 2 n D . 4 n[解析]f(x) = sin2x—cos2x= , 2sin(2x—4),故T=今=冗13.已知cos 0= 3,(0,n )则cos(32 + 2 0 = ( C )4;29D.9[解析]cos(3n + 2 0= sin2 A 2sin 0os0= 2X 屮3=普44.若tan a= 3, ta n B= 3,则tan (a— 3 等于(D )C. 3D.13 —4tan a—tan 3 3 1[解析]tan(a—®=■—o= = 3.1 + tan dt an B〔+ 3X4 335. COS275°+COS215°+COS75°C OS15的值是(A )5 6 3 2A.4B.〒eq D. 1 +可2 21 5 [解析]原式=sin215°+ cos 15° + sin15 6os15°= 1 + ?sin30 = 4.6. y= cos2x—sin2x+ 2sinxcosx的最小值是(B )A. 2 B2 C. 2 D2_ n _[解析]y= cos2x+ si n2x= 2si n( 2x+ 4),.,.y max=— 2.7.若tan a= 2, tan(B— M= 3,贝U tan(B—2 0)= ( D )A. —1B. —5C.7D.1tan p- a—tan a 3 —2 i[解析]tan( p—2 a = tan[( p— a) —a = = =千1 + tan p—a tan a 1 + 68.已知点P(cos a, sin M, Q(cos p, sin®,贝U |PQ| 的最大值是(B )A. 2[解析] PQ = (cos® —cos a, sin p—si n a ,贝U |PQ| = p cos®—cos a2+ sin p- sin a2='2—2cos a— p,故|PQ|的最大值为2.cos2x+ sin2x”^「十厂9.函数y= cos2x —sin2x的最小正周期为(C )n nA. 2 nB. nC.qD.41 + tan2x n n[解析]y= =tan(2x+ 4),.T=2.1 —tan2x 4 210. 若函数f(x) = sin2x —*x€ R),则f(x)是(D )A .最小正周期为訓勺奇函数B .最小正周期为n的奇函数C.最小正周期为2 n的偶函数 D .最小正周期为n的偶函数1 12 12[解析]f(x)= sin2x—2= —2(1 —2sin2x) = —^cos2x,.f(x)的周期为n的偶函数.n11. y= sin(2x —3)—sin2x 的一个单调递增区间是(B )n n n 7^ r 5 1^ _ _ _ n 5 nA . [—6, 3] B.[石,石n]c.[匚n 石n ] D . [3,石!5 n n n n n[解析] y = sin(2x — 3) — sin2x = sin2xcos^ — coshes% — sin2x =- (sin2xcos^ + cos2xsin^)=—sin(2x + 3),其增区间是函数y = sin(2x +3)的减区间,即2k n+㊁三2x + 3W 2k n+~2,「k nn7 n 「 r 「 n 7 n+12= x <k n+12,当 k = 0 时,x € [乜,乜].12. 已知 sin(a+ 3 = 2,sin(a- 3 = £,则 log • 5(器 等于 (C . 41 sin a os 3+ cos a in 23得 1sin a os 3— cos a in 3= 313. (1+ tan 17 )(1 + tan28 °tan 17 ° tan28[解析] 原式=1 + tan 17 + tan28 °tan 17 °tan28 ;又 tan(17 +28°) = ------------- =1 — tan17 )an28 0 tan45 = 1,Atan17 + tan28 = 1— tan 17 °tan28 )14. (2012全国高考江苏卷)设a 为锐角,若cosn a+6=5,贝U sin 2 a+ 的值为弋^2.n n 2 n n [解析]Ta 为锐角,.「6<a+ 6<3,v cos a- 6 =4 5, n 3 sin a+ 6 = 5;n n n 24.••sin 2 a+ 3 = 2sin a+ 6 cos a+ 6 = 25,n n 2 .2 n 7cos(2 a+ 3) = cos( a+ g) 一 sin ( a+ g) =25 . n n n . n .•sin 2 a+ 12 = sin 2 + 3— 4 = sin 2 a — 3 ncos4—cosc n . n 1A /2 2a+3 sin 4= 50 .115.已知 cos2a= 3,贝U sin 4 a+ cos 4a=[解析]由sin(a+ 3 = 2, sin(a- a 5sin ocos 3=12.tan a 1,• °tan 3cos a i n 3=徨=5,「•log ‘5(眯沪 g 552 = 4.、填空题(本大题共4个小题, 每小题5分,共20分)代入原式可得结果为2.521 2 2 2[解析]cos2o a 2cos a—1= 3 得cos a 3,由cos2o a 1 —2s in a得sin2a 3(或据sin2a2 2 1 , + cos a 1得Sin a= 3),代入计算可得.3 1 n n16.设向量a=(刃sin0, b= (cos0 3),其中0€ (0,刃,若a / b,贝U 0= ___41 n [解析]若a//b,贝U sin 0cos A2,即卩2sin(Cos B= 1 ,:sin2 A1,又(0,㊁),n 4.三、解答题(本大题共6个小题,共70分,写出文字说明,证明过程或演算步骤3 - 3 sin2 a+ 2sin a,17.(本题满分10分)已知cos a—sin a= 5^,且na^n 求—1 —t an a—的值.[解析]因为cos a—sin aa%"2,所以1 —2si n a cos a=卷,所以2si n«cos a= £又a€ ( n "2),故sin a+ CoS a=-冷 1 + 2sin0cos a= —誉,2 2sin2 a+ 2sin a 2sin a cos a+ 2sin a cos a 2sin a cos a cos a+ sin a所以=1 —tan a COS a—sin a COS a—sin aZ x4/225x一 55 28 75.18.(本题满分12分)设x€ [0 , 3],求函数y= cos(2x-3) + 2sin(x—力的最值.n n n n[解析]y = cos(2x—3) + 2si n(x—6)= cos2(x—6)+ 2sin(x—石)2n n n 1 2 3=1 —2sin (x—舌)+ 2sin(x —6)= —2[sin(x—$) —2 + 21 1 3 1 • x€ [0 , 3], —x—g[一6,6].• °sin(x—g) € [一?, 2] ,^ymax a2,ymin= —2*19.(本题满分12分)已知tan2a2tan2a+ 1,求证:cos20+ sin2a= 0.十卄2cos20- sin20 2 1 —tan20 2—2tan2a[证明] cos2 0+ sin a= 2 2 + sin a= 2 + sin a= 2cos20+ sin20 1 + tan20 1 + 2tan2a+ 1+ si n2a=.2—sin a 2 + sin a= COS a+ Sin a 2 o—sin a+ sin a 0.3x . 3xx . x »亠12分)已知向量 a = (cos^, sin_2), b = (co^,— sin^), c = (.3— 1),其中 x €R.(1)当a 丄b 时,求x 值的集合; ⑵求a —ci 的最大值.3x x 3x xk n n [解析](1)由 a 丄b 得 a b = 0,即卩 cos^cos^ —sin-^sin^a 0,贝Ucos2x = 0,得x a ^ + 4(kk n n€ Z), Ax 值的集合是{x|x = 2 + 4, « Z}.2 3x1- 2 3x 2 o 3x t -3x o 3x 3x(2)|a — c| = (cos 刁—.3) + (sin_2 + 1) = cos"^ — 2.3cos^ + 3+ sin + 2sin^ + 1=5+ 2sin^x —2 ,3。

高一数学必修4:第三章章末检测Word版含解析

高一数学必修4:第三章章末检测Word版含解析
一、选择题:本大题共 项是符合题目要求的.
第三章章末检测 本试卷满分 150 分,考试时间 120 分钟. 12 题,每题 5 分,共 60 分.在下列各题的四个选项中,只有一个选
1. sin68 s°in67 -°sin23 c°os68 °的值为 ( )
2
2
A .2sin2α)=
2sin2α-
1


4- 9
1
=-
1 9.
1 3.已知 M = x sinx= 2
,N=
x
1 cos2x= 2
,则 (
)
A.M= N B. M? N C.N? M D . M∩ N= ? 答案: B
解析:

cos2x=
1

2sin
2x=
1 2
,得
sinx= ±1,故选 2
B.
4.已知 sinθ2=- 45, cosθ2= 35,则角 θ终边所在象限是 (

+32π,
k∈
Z ,∴
kπ+
π 4<
x< kπ+
34π,
k∈
Z.
6.若函数 f (x)= sinax+ cosax(a>0) 的最小正周期为 1,则它的图象的一个对称中心为
()
A. - π8, 0 B . (0,0)
C.
- 1, 0 8
D. 1, 0 8
答案: C
解析: 由条件得 f( x)= 2sin ax+4π,又函数的最小正周期为
)
A .第一象限 B.第二象限
C.第三象限 D.第四象限 答案: C
解析:
∵ sinθ= 2sinθ2cosθ2=-
24 25<0,cosθ=

人教版高中数学必修4第三章单元综合测试

人教版高中数学必修4第三章单元综合测试

高中数学学习材料金戈铁骑整理制作单元综合测试三时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.对任意的锐角α,β,下列不等关系中正确的是( ) A .sin(α+β)>sin α+sin β B .sin(α+β)>cos α+cos β C .cos(α+β)<sin α+sin βD .cos(α+β)<cos α+cos β解析:当α=β=30°时可排除A ,B ;当α=β=15°时,代入C 得0<cos30°<2sin15°,平方得34<4sin 215°=4×1-cos30°2=2-3≈0.268,矛盾.故选D.答案:D2.化简cos 2(π4-α)-sin 2(π4-α)得到( ) A .sin2α B .-sin2α C .cos2αD .-cos2α解析:原式=cos2(π4-α)=cos(π2-2α)=sin2α.答案:A3.3-sin70°2-cos 210°=( ) A.12 B.22 C .2D.32解析:原式=3-sin70°2-1+cos20°2=2(3-sin70°)3-cos20°=2.答案:C4.已知tan α=12,tan(α-β)=-25,那么tan(β-2α)的值为( ) A .-34 B .-112 C .-98D.98解析:tan(β-2α)=tan[(β-α)-α]=-112. 答案:B5.已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈ZB.⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12,k ∈ZC.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈ZD.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3,k ∈Z解析:f (x )=3sin ωx +cos ωx =2sin(ωx +π6),由已知得周期T =π. ∴ω=2,即f (x )=2sin(2x +π6).由2k π-π2≤2x +π6≤2k π+π2(k ∈Z )得k π-π3≤x ≤k π+π6(k ∈Z ). 答案:C6.在△ABC 中,sin A sin B <cos A cos B ,则△ABC 为( ) A .直角三角形 B .钝角三角形 C .锐角三角形D .等腰三角形解析:sin A sin B <cos A cos B ,即sin A sin B -cos A cos B <0, -cos(A +B )<0,所以cos C <0,从而角C 为钝角,△ABC 为钝角三角形.答案:B7.2sin2α1+cos2α·cos 2αcos2α等于( ) A .tan α B .tan2α C .1D.12解析:原式=2sin2α1+2cos 2α-1·cos 2αcos2α=2sin α·cos αcos 2α-sin 2α=2tan α1-tan 2α=tan2α. 答案:B8.若cos2θ+cos θ=0,则sin2θ+sin θ=( ) A .0 B .±3 C .0或 3D .0或±3解析:由cos2θ+cos θ=0得2cos 2θ-1+cos θ=0, 所以cos θ=-1或12.当cos θ=-1时,有sin θ=0; 当cos θ=12时,有sin θ=±32.于是sin2θ+sin θ=sin θ(2cos θ+1)=0或3或- 3. 答案:D9.已知等腰三角形顶角的余弦值等于45,则这个三角形底角的正弦值为( )A.1010 B .-1010 C.31010D .-31010解析:设等腰三角形的底角为α(0<α<π2),则其顶角为π-2α.由已知cos(π-2α)=45,∴cos2α=-45.故1-2sin 2α=-45,sin 2α=910. 又0<α<π2,∴sin α=31010. 答案:C10.已知sin2α=35(π2<2α<π),tan(α-β)=12,则tan(α+β)=( ) A .-2 B .-1 C .-211D.211解析:由sin2α=35,且π2<2α<π, 可得cos2α=-45,∴tan2α=-34, ∴tan(α+β)=tan[2α-(α-β)] =tan2α-tan (α-β)1+tan2αtan (α-β)=-2.答案:A11.已知向量a =(cos2α,sin α),b =(1,2sin α-1),α∈(π2,π),若a ·b =25,则tan(α+π4)=( )A.13 B.27 C.17D.23解析:由题意,得cos2α+sin α(2sin α-1)=25, 解得sin α=35.又α∈(π2,π), 所以cos α=-45,tan α=-34, 则tan(α+π4)=tan α+tan π41-tan αtan π4=17.答案:C12.将函数f (x )=12sin2x sin π3+cos 2x cos π3-12sin(π2+π3)的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,则函数g (x )在[0,π4]上的最大值和最小值分别为( )A.12,-12B.14,-14C.12,-14D.14,-12解析:f (x )=12×32sin2x +12cos 2x -12sin 5π6 =34sin2x +12cos 2x -14=34sin2x +12×1+cos2x 2-14=12sin(2x +π6), 所以g (x )=12sin(4x +π6).因为x ∈[0,π4],所以4x +π6∈[π6,7π6],所以当4x +π6=π2时,g (x )取得最大值12;当4x +π6=7π6时,g (x )取得最小值-14.答案:C第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知α,β为锐角,且cos(α+β)=sin(α-β),则tan α=________. 解析:∵cos(α+β)=sin(α-β),∴cos αcos β-sin αsin β=sin αcos β-cos αsin β. ∴cos α(sin β+cos β)=sin α(sin β+cos β). ∵β为锐角,∴sin β+cos β≠0,∴cos α=sin α, ∴tan α=1. 答案:114.已知cos(α-π6)+sin α=453,则sin(α+7π6)的值为________. 解析:由已知得32cos α+32sin α=453, 所以12cos α+32sin α=45, 即sin(α+π6)=45,因此,sin(α+7π6)=-sin(α+π6)=-45. 答案:-4515.已知0<x <π2,化简:lg(cos x ·tan x +1-2sin 2x 2)+lg[2cos(x -π4)]-lg(1+sin2x )=________.解析:原式=lg(sin x +cos x )+lg(sin x +cos x )-lg(sin x +cos x )2=0. 答案:016.设函数f (x )=2cos 2x +3sin2x +a ,已知当x ∈[0,π2]时,f (x )的最小值为-2,则a =________.解析:f (x )=1+cos2x +3sin2x +a =2sin(2x +π6)+a +1.∵x ∈[0,π2],∴2x +π6∈[π6,7π6]. ∴sin(2x +π6)∈[-12,1],∴f (x )min =2×(-12)+a +1=a .∴a =-2.答案:-2三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知cos(x -π4)=210,x ∈(π2,3π4). (1)求sin x 的值; (2)求sin(2x +π3)的值.解:(1)∵x ∈(π2,3π4),∴x -π4∈(π4,π2), ∵cos(x -π4)=210,∴sin(x -π4)=7210. ∴sin x =sin[(x -π4)+π4] =sin(x -π4)cos π4+cos(x -π4)sin π4 =7102×22+210×22=45. (2)由(1)可得cos x =-35, ∴sin2x =-2425,cos2x =-725, ∴sin(2x +π3)=sin2x cos π3+cos2x sin π3 =-24+7350.18.(12分)已知cos α=17,cos(α-β)=1314,且0<β<α<π2. (1)求tan2α的值; (2)求β的值.解:(1)∵0<α<π2且cos α=17, ∴sin α=1-cos 2α=437, ∴tan α=sin αcos α=4 3.tan2α=2tan α1-tan 2α=2×431-(43)2=-8347. (2)∵0<β<α<π2,∴0<α-β<π2, 由cos(α-β)=1314.得sin(α-β)=1-cos 2(α-β)=3314, ∴sin β=sin[α-(α-β)] =sin αcos(α-β)-cos αsin(α-β) =437×1314-17×3314=32, ∵0<β<π2 ∴β=π3.19.(12分)已知函数f (x )=2cos(x -π12),x ∈R . (1)求f (-π6)的值;(2)若cos θ=35,θ∈(3π2,2π),求f (2θ+π3). 解:(1)f (-π6)=2cos(-π6-π12) =2cos(-π4)=2cos π4=1. (2)f (2θ+π3)=2cos(2θ+π3-π12)=2cos(2θ+π4) =cos2θ-sin2θ.因为cos θ=35,θ∈(3π2,2π),所以sin θ=-45.所以sin2θ=2sin θcos θ=-2425,cos2θ=cos 2θ-sin 2θ=-725. 所以f (2θ+π3)=cos2θ-sin2θ=-725-(-2425)=1725.20.(12分)已知函数f (x )=sin(x -π6)+cos(x -π3),g (x )=2sin 2x2. (1)若α是第一象限角,且f (α)=335,求g (α)的值; (2)求使f (x )≥g (x )成立的x 的取值集合. 解:f (x )=sin(x -π6)+cos(x -π3) =32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=2sin 2x2=1-cos x ,(1)由f (α)=335,得sin α=35,又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x ,即3sin x +cos x ≥1. 于是sin(x +π6)≥12.从而2k π+π6≤x +π6≤2k π+5π6,k ∈Z ,即2k π≤x ≤2k π+2π3,k ∈Z .故使f (x )≥g (x )成立的x 的取值集合为{x |2k π≤x ≤2k π+2π3,k ∈Z }.21.(12分)点P 在直径为AB =1的半圆上移动,过点P 作圆的切线PT ,且PT =1,∠P AB =α,问α为何值时,四边形ABTP 的面积最大?解:如图,因为AB 为直径,PT 切圆于P 点,所以∠APB =90°,P A =cos α,PB =sin α,S 四边形ABTP =S △P AB +S △TPB=12P A ·PB +12PT ·PB sin α=12sin αcos α+12sin 2α=14sin2α+1-cos2α4=14(sin2α-cos2α)+14 =24sin(2α-π4)+14.因为0<α<π2,因为-π4<2α-π4<3π4,所以当2α-π4=π2,即α=3π8时,四边形ABTP 的面积最大.22.(12分)已知向量a =(3sin2x ,cos2x ),b =(cos2x ,-cos2x ).(1)若x ∈(7π24,5π12)时,a ·b +12=-35,求cos4x 的值;(2)cos x ≥12,x ∈(0,π),若方程a ·b +12=m 有且仅有一个实根,求实数m 的值.解:(1)∵a ·b =3sin2x cos2x -cos 22x∴a ·b +12=3sin2x cos2x -cos 22x +12 =32sin4x -1+cos4x 2+12 =32sin4x -12cos4x=sin(4x -π6)=-35,∵x ∈(724π,512π),∴4x ∈(76π,53π),4x -π6∈(π,32π),∴cos(4x -π6)=-45,∴cos4x =cos[(4x -π6)+π6]=cos(4x -π6)cos π6-sin(4x -π6)sin π6=(-45)×32-(-35)×12=3-4310.(2)因为cos x ≥12,又余弦函数在(0,π)上是减函数,所以0<x ≤π3,令f (x )=a ·b +12=sin(4x -π6),g (x )=m ,在同一坐标系中作出两个函数的图象,由图可知m =1或m =-12.。

2021秋新版高中数学北师大版必修4习题:第三章三角恒等变形3.3.2版含解析数学

2021秋新版高中数学北师大版必修4习题:第三章三角恒等变形3.3.2版含解析数学

第2课时半角公式及其应用课时过关·能力提升1.cos α =−35,且π<α<3π2,则cosα2的值等于()A.√55B.−√55C.2√55D.−2√55解析:∵π<α<3π2,∴π2<α2<3π4.∴co sα2=−√1+cosα2=−√55.答案:B2.设5π<θ<6π,co sθ2=a,则sinθ4的值等于()A.−√1+a2B.−√1-a2C.−√2+2a2D.−√2-2a2解析:∵5π<θ<6π,∴5π2<θ2<3π,5π4<θ4<3π2,∴sinθ4=−√1-cosθ22=−√1-a2=−√2-2a2.答案:D3.设α∈(π,2π),则√1-cos(π+α)2=()A.si nα2B.cosα2C. -si nα2D.−cosα2解析:∵α∈(π,2π),∴α2∈(π2,π),∴√1-cos(π+α)2=√1+cosα2=√cos2α2=−cosα2.答案:D4.设a=12cos 6°−√32sin 6°,b=2tan13°1+tan213°,c=√1-cos50°2,则有()A.a>b>cB.a<b<cC.a<c<bD.b<c<a解析:a=12cos 6°−√32sin 6° =sin 24°,b=2tan13°1+tan213°=sin 26°,c=√1-cos50°2=sin 25°.利用正弦函数的性质可知选C.答案:C★5.设α∈(0,π2),β∈(0,π2),且tan α=1+sinβcosβ,则()A.3α -β=π2B.2α−β=π2C.3α +β=π2D.2α+β=π2解析:tan α=1+sinβcosβ=1+cos(π2-β)sin(π2-β)=2cos2(π4-β2)2sin(π4-β2)cos(π4-β2)=cot(π4-β2)=ta n[π2-(π4-β2)]=tan(π4+β2),∴α =kπ+(π4+β2),k∈Z,∴2α -β =2kπ+π2,k∈Z.当k =0时,满足2α -β=π2,故选B.答案:B6.假设cos α =−45,α是第三象限的角,则1+tanα21-tanα2=.解析:由题意,得sin α =−35,则ta nα2=1-cosαsinα=1+45-35=−3,所以1+tanα21-tanα2=−12.答案:−127.3-sin70°2-cos210°=.解析:3-sin70°2-cos210°=3-sin70°2-1+cos20°2=2(3-cos20°)3-cos20°=2.答案:28.化简sin4x1+cos4x ·cos2x1+cos2x·cosx1+cosx=.解析:原式=2sin2xcos2x2cos22x ·cos2x1+cos2x·cosx1+cosx=sin2x1+cos2x·cosx1+cosx=2sinxcosx2cos2x·cosx1+cosx=sinx1+cosx=tanx2.答案:ta n x29.等腰三角形的顶角的余弦值等于513,求这个三角形底角的正弦、余弦和正切值.解设等腰三角形的顶角为α,底角为θ,那么cos α=513,α+2θ=π,θ∈(0,π2),∴cos 2θ =−513,∴sin θ=√1-cos2θ2=√1+5132=3√1313,cos θ=√1+cos2θ2=√1-5132=2√1313,tan θ=sinθcosθ=32.故这个三角形底角的正弦、余弦和正切值分别为3√1313,2√13 13,32.10.在△ABC中,假设sin A sin B =cos2C2,试判断△ABC的形状.解sin A sin B =cos2C2=1+cosC2=1-cos(A+B)2,即2sin A sin B +cos(A +B) =1,∴2sin A sin B +cos A cos B -sin A sin B=cos A cos B +sin A sin B =cos(A -B) =1.∵ -π<A -B<π,∴A -B =0,即A =B.∴△ABC是等腰三角形.11.在△ABC 中,f (B ) =4cos B ·sin 2(π4+B 2)+√3cos 2B −2cos B.(1)假设f (B ) =2,求角B ;(2)假设f (B ) -m>2恒成立,求实数m 的取值范围.解(1)由题意,得f (B ) =4cos B ·1-cos (π2+B )2+√3cos 2B -2cos B=2cos B (1 +sin B )+√3cos 2B -2cos B=sin 2B +√3cos 2B =2si n (2B +π3).∵f (B ) =2,∴2si n (2B +π3)=2. ∵角B 是△ABC 的内角,∴2B +π3=π2,则B =π12. (2)假设f (B ) -m>2恒成立,即2si n (2B +π3)>2+m 恒成立.∵0<B<π,∴π3<2B +π3<7π3,∴2si n (2B +π3)∈[ -2,2],∴2 +m< -2,∴m< -4.★12.已知OA ⃗⃗⃗⃗⃗ =(1,sin x −1),OB ⃗⃗⃗⃗⃗ =(sin x +sin xcos x,sin x),f(x)=OA⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ (x ∈R ).求: (1)函数f (x )的最||大值和最||小正周期;(2)函数f (x )的递增区间.解(1)f (x )=OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =sin x +sin x cos x +sin 2x -sin x =12sin 2x +1-cos2x 2=√22sin (2x -π4)+12,最小正周期为π,令2x −π4=π2+2kπ(k ∈Z ),可得当x =k π+3π8(k ∈Z )时,f (x )取得最||大值1+√22.(2)当2k π−π2≤2x −π4≤2k π+π2(k ∈Z ),即k π−π8≤x ≤k π+3π8(k ∈Z )时,原函数为增加的,∴函数f (x )的递增区间是[kπ-π8,kπ+3π8](k ∈Z ).。

(2021年整理)人教版数学必修四-第三章单元练习(附答案)

(2021年整理)人教版数学必修四-第三章单元练习(附答案)

人教版数学必修四-第三章单元练习(附答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版数学必修四-第三章单元练习(附答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版数学必修四-第三章单元练习(附答案)的全部内容。

必修四 第三章一、选择题:1.Sin165º等于 ( )A .21B .23C .426+D . 426-2.Sin14ºcos16º+sin76ºcos74º的值是( )A .23 B .21 C .23 D .-213.sin12π-3cos 12π的值是. ( ) A .0 B . -2 C . 2 D . 2 sin 125π4。

△ABC 中,若2cosBsinA=sinC 则△ABC 的形状一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形5.函数y=sinx+cosx+2的最小值是 ( )A .2—2B .2+2C .0D .16.已知cos (α+β)cos(α-β)=31,则cos 2α-sin 2β的值为( )A .-32B .-31C .31D .327.在△ABC 中,若sin A sin B =cos 22C,则△ABC 是( )A .等边三角形B .等腰三角形C .不等边三角形D .直角三角形8.sin α+sin β=33(cos β-cos α),且α∈(0,π),β∈(0,π),则α-β等于( )人教版数学必修四-第三章单元练习(附答案)A .-3π2B .-3πC .3πD .3π29.已知sin (α+β)sin (β-α)=m ,则cos 2α-cos 2β等于( )A .-mB .mC .-4mD .4m二、填空题.10.15tan 115tan 1+-=__________________________.11.如果cos θ= -1312 )23,(ππθ∈,那么 cos )4(πθ+=________.12.已知βα,为锐角,且cos α=71 cos )(βα+= -1411, 则cos β=_________.13.tan20º+tan40º+3tan20ºtan40º的值是____________. 14.函数y=cosx+cos (x+3π)的最大值是__________. 三、解答题.15.若βα,是同一三角形的两个内角,cos β= - 31 ,cos ()βα+=—294。

【精品习题】高中人教A版数学必修4:第三章 章末检测 Word版含解析

【精品习题】高中人教A版数学必修4:第三章 章末检测 Word版含解析

第三章章末检测班级____ 姓名____ 考号____ 分数____ 本试卷满分150分,考试时间120分钟.一、选择题:本大题共12题,每题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.sin68°sin67°-sin23°cos68°的值为( )A .-22 B.22C.32D .1 答案:B 解析:原式=sin68°cos23°-cos68°sin23°=sin(68°-23°)=sin45°=22. 2.已知sin α=23,则cos(π-2α)等于( )A .-53 B .-19C.19D.53 答案:B解析:cos(π-2α)=-cos2α=-(1-2sin 2α)=2sin 2α-1=2×49-1=-19.3.已知M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪sin x =12,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪cos2x =12,则( ) A .M =N B .M ⊆NC .N ⊆MD .M ∩N =∅ 答案:B解析:由cos2x =1-2sin 2x =12,得sin x =±12,故选B.4.已知sin θ2=-45,cos θ2=35,则角θ终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:C解析:∵sin θ=2sin θ2cos θ2=-2425<0,cos θ=cos 2θ2-sin 2θ2=-725<0,∴θ终边在第三象限.5.函数f (x )=lg (sin 2x -cos 2x )的定义域是( ) A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π-3π4<x <2k π+π4,k ∈ZB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4<x <2k π+5π4,k ∈ZC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ k π-π4<x <k π+π4,k ∈ZD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪k π+π4<x <k π+3π4,k ∈Z答案:D解析:∵f (x )=lg (sin 2x -cos 2x )=lg (-cos2x ),∴-cos2x >0,∴cos2x <0,∴2k π+π2<2x <2k π+3π2,k ∈Z ,∴k π+π4<x <k π+3π4,k ∈Z .6.若函数f (x )=sin ax +cos ax (a >0)的最小正周期为1,则它的图象的一个对称中心为( )A.⎝ ⎛⎭⎪⎫-π8,0 B .(0,0) C.⎝ ⎛⎭⎪⎫-18,0 D.⎝ ⎛⎭⎪⎫18,0 答案:C解析:由条件得f (x )=2sin ⎝⎛⎭⎪⎫ax +π4,又函数的最小正周期为1,故2πa =1,∴a =2π,故f (x )=2sin ⎝⎛⎭⎪⎫2πx +π4.将x =-18代入得函数值为0. 7.tan20°+tan40°+3(tan20°+tan40°)等于( )A.33 B .1 C. 3 D. 6 答案:C解析:tan60°=tan20°+tan40°1-tan20°·tan40°,∴3-3tan20°tan40°=tan20°+tan40°, ∴tan20°+tan40°+3tan20°tan40°= 3.8.关于x 的方程sin x +3cos x -a =0有实数解,则实数a 的范围是( ) A .[-2,2] B .(-2,2) C .(-2,0) D .(0,2) 答案:A解析:sin x +3cos x -a =0,∴a =sin x +3cos x=2⎝ ⎛⎭⎪⎫12sin x +32cos x =2sin ⎝ ⎛⎭⎪⎫x +π3,-1≤sin ⎝ ⎛⎭⎪⎫x +π3≤1,∴-2≤a ≤2.9.若α,β为锐角,sin α=2 55,sin(α+β)=35,则cos β等于( )A.2 55B.2 525C.2 55或2 525 D .-2 525 答案:B解析:cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α,∵α为锐角cos α= 1-2025=55,∴sin(α+β)=35<sin α,∴α+β>π2.∴cos(α+β)=-1-925=-45, ∴cos β=-45×55+2 55×35=2 525.10.函数y =sin x 2+3cos x2的图象的一条对称轴方程为( )A .x =113πB .x =53πC .x =-53πD .x =-π3答案:C解析:y =sin x 2+3cos x 2=2sin ⎝ ⎛⎭⎪⎫x 2+π3, 又f ⎝ ⎛⎭⎪⎫-53π=2sin ⎝ ⎛⎭⎪⎫-56π+π3=2sin ⎝ ⎛⎭⎪⎫-π2=-2, ∴x =-53π为函数的一条对称轴.11.已知θ为第三象限角,若sin 4θ+cos 4θ=59,则sin2θ等于( )A.2 23 B .-2 23 C.23 D .-23 答案:A 解析:由sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59,知sin 2θcos 2θ=29,又θ为第三象限角,∴sin θ·cos θ=23,sin2θ=2 23.12.设动直线x =a 与函数f (x )=2sin 2⎝ ⎛⎭⎪⎫π4+x 和g (x )=3cos2x 的图象分别交于M ,N两点,则|MN |的最大值为( )A. 2B. 3 C .2 D .3 答案:D解析:f (x )=1-cos ⎝ ⎛⎭⎪⎫π2+2x =1+sin2x . |MN |=|f (a )-g (a )|=|1+sin2a -3cos2a |=|2sin ⎝⎛⎭⎪⎫2a -π3+1|≤3. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.cos π5cos 25π的值是________.答案:14解析:原式=12sin π5·2sin π5cos π5·cos 2π5=14sin π5·2sin 2π5cos 25π=14sinπ5sin 45π=14.14.已知sin α=12+cos α,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos2αsin ⎝⎛⎭⎪⎫α-π4的值为________. 答案:-142解析:∵sin 2α+cos 2α=1,sin α=12+cos α,∴⎝ ⎛⎭⎪⎫12+cos α2+cos 2α=1,∴2cos 2α+cos α-34=0,∴cos α=-1±74,∵α∈⎝⎛⎭⎪⎫0,π2,∴cos α>0,∴cos α=7-14,∴sin α=12+cos α=7+14, ∴cos2αsin ⎝ ⎛⎭⎪⎫α-π4=cos 2α-sin 2α22sin α-cos α=-2(sin α+cos α)=-2⎝ ⎛⎭⎪⎫7+14+7-14=-142.15.已知cos α=13,cos(α+β)=-13,且α,β∈⎝⎛⎭⎪⎫0,π2,则cos(α-β)的值为________.答案:2327解析:∵cos α=13,α∈⎝⎛⎭⎪⎫0,π2,∴sin α=2 23,∴sin2α=4 29,cos2α=-79.又cos(α+β)=-13,α+β∈(0,π),∴sin(α+β)=2 23.∴cos(α-β)=cos[2α-(α+β)]=cos2αcos(α+β)+sin2αsin(α+β) =⎝ ⎛⎭⎪⎫-79×⎝ ⎛⎭⎪⎫-13+4 29×2 23=2327. 16.函数f (x )=3cos(3x -θ)-sin(3x -θ)是奇函数,则tan θ等于________.答案:- 3解析:∵f (x )是奇函数,∴f (0)=0,∴3cos(-θ)-sin(-θ)=0,∴3cos θ+sin θ=0,∴tan θ=- 3.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知sin α+cos αsin α-cos α=3,tan(α-β)=2,求tan(β-2α)的值.解:∵sin α+cos αsin α-cos α=tan α+1tan α-1=3,∴tan α=2,∵tan(α-β)=2,∴tan(β-α)=-2,∴tan(β-2α)=tan[(β-α)-α]=tan β-αtan α1+tan β-αtan α=-2-2122=43.18.(12分)已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=2 55,求cos(α-β)的值.解:∵a =(cos α,sin α),b =(cos β,sin β), ∴a -b =(cos α-cos β,sin α-sin β),∴|a -b |=cos α-cos β2sin α-sin β2=2-2cos α-β=2 55,∴cos(α-β)=35.19.(12分)已知函数f (x )=-2 3sin 2x +sin2x + 3.(1)求函数f (x )的最小正周期和最小值;(2)在给出的直角坐标系中,画出函数y =f (x )在区间[0,π]上的图象.解:(1)f (x )=3(1-2sin 2x )+sin2x=sin2x +3cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π3, 所以f (x )的最小正周期T =2π2=π,最小值为-2.(2)列表:20.(12分)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈⎝⎛⎭⎪⎫0,π2.(1)求sin θ和cos θ的值;(2)若sin(θ-φ)=1010,0<φ<π2,求cos φ的值.解:(1)∵a ⊥b ,∴sin θ×1+(-2)×cos θ=0⇒sin θ=2cos θ.∵sin 2θ+cos 2θ=1,∴4cos 2θ+cos 2θ=1⇒cos 2θ=15.∵θ∈⎝ ⎛⎭⎪⎫0,π2,∴cos θ=55,sin θ=2 55.(2)解法一:由sin(θ-φ)=1010得, sin θcos φ-cos θsin φ=1010⇒sin φ=2cos φ-22, ∴sin 2φ+cos 2φ=5cos 2φ-2 2cos φ+12=1⇒5cos 2φ-2 2cos φ-12=0.解得cos φ=22或cos φ=-210, ∵0<φ<π2,∴cos φ=22.解法二:∵0<θ,φ<π2,∴-π2<θ-φ<π2.所以cos(θ-φ)=1-sin2θ-φ=31010. 故cos φ=cos[(θ-(θ-φ)]=cos θcos(θ-φ)+sin θsin(θ-φ)=55×3 1010+2 55×1010=22. 21.(12分)已知函数f (x )=2sin x +2cos(x -π). (1)求函数f (x )的最小正周期和值域;(2)若函数f (x )的图象过点⎝ ⎛⎭⎪⎫α,65,π4<α<3π4,求f ⎝ ⎛⎭⎪⎫π4+α的值. 解:(1)由题意得,f (x )=2sin x +2cos(x -π)=2sin x -2cos x =2sin ⎝⎛⎭⎪⎫x -π4,因为-1≤sin ⎝⎛⎭⎪⎫x -π4≤1,所以函数f (x )的值域为[-2,2],函数f (x )的周期为2π.(2)因为函数f (x )过点⎝⎛⎭⎪⎫α,65, 所以f (α)=65⇒2sin ⎝⎛⎭⎪⎫α-π4=65⇒ sin ⎝⎛⎭⎪⎫α-π4=35,因为π4<α<3π4, 所以0<α-π4<π2⇒cos ⎝ ⎛⎭⎪⎫α-π4>0⇒cos ⎝⎛⎭⎪⎫α-π4=1-sin 2⎝⎛⎭⎪⎫α-π4=45,所以f ⎝ ⎛⎭⎪⎫π4+α=2sin α=2sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α-π4+π4 =2sin ⎝ ⎛⎭⎪⎫α-π4cos π4+2cos ⎝ ⎛⎭⎪⎫α-π4sin π4⇒f ⎝ ⎛⎭⎪⎫π4+α=725.22.(12分)在△ABC 中,f (B )=4cos B ·sin 2⎝ ⎛⎭⎪⎫π4+B 2+3cos2B -2cos B .(1)若f (B )=2,求角B ;(2)若f (B )-m >2恒成立,求实数m 的取值范围.解:(1)f (B )=4cos B ·1-cos ⎝ ⎛⎭⎪⎫π2+B 2+3cos2B -2cos B =2cos B (1+sin B )+3cos2B-2cos B=sin2B +3cos2B =2sin ⎝ ⎛⎭⎪⎫2B +π3. ∵f (B )=2,∴2sin ⎝⎛⎭⎪⎫2B +π3=2. ∵B 是△ABC 的内角,∴2B +π3=π2,则B =π12.(2)若f (B )-m >2恒成立,即2sin ⎝⎛⎭⎪⎫2B +π3>2+m 恒成立. ∵0<B <π,∴π3<2B +π3<73π,∴2sin ⎝⎛⎭⎪⎫2B +π3∈[-2,2], ∴2+m <-2,即m <-4.。

人教A版数学必修四第三章测试.docx

人教A版数学必修四第三章测试.docx

高中数学学习材料马鸣风萧萧*整理制作第三章测试(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin105°cos105°的值为( ) A.14 B .-14 C.34D .-34解析 原式=12sin210°=-12sin30°=-14. 答案 B2.若sin2α=14,π4<α<π2,则cos α-sin α的值是( ) A.32 B .-32 C.34D .-34解析 (cos α-sin α)2=1-sin2α=1-14=34. 又π4<α<π2,∴cos α<sin α,cos α-sin α=-34=-32.答案 B3.已知180°<α<270°,且sin(270°+α)=45,则tan α2=( ) A .3 B .2 C .-2 D .-3答案 D4.在△ABC 中,∠A =15°,则 3sin A -cos(B +C )的值为( ) A. 2 B.22 C.32D. 2 解析 在△ABC 中,∠A +∠B +∠C =π, 3sin A -cos(B +C ) =3sin A +cos A =2(32sin A +12cos A )=2cos(60°-A )=2cos45°= 2. 答案 A5.已知tan θ=13,则cos 2θ+12sin2θ等于( ) A .-65 B .-45 C.45D.65解析 原式=cos 2θ+sin θcos θcos 2θ+sin 2θ=1+tan θ1+tan 2θ=65.答案 D6.在△ABC中,已知sin A cos A=sin B cos B,则△ABC是() A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形解析∵sin2A=sin2B,∴∠A=∠B,或∠A+∠B=π2.答案 D7.设a=22(sin17°+cos17°),b=2cos213°-1,c=32,则()A.c<a<b B.b<c<a C.a<b<c D.b<a<c解析a=22sin17°+22cos17°=cos(45°-17°)=cos28°,b=2cos213°-1=cos26°,c=32=cos30°,∵y=cos x在(0,90°)内是减函数,∴cos26°>cos28°>cos30°,即b>a>c.答案 A8.三角形ABC中,若∠C>90°,则tan A·tan B与1的大小关系为()A.tan A·tan B>1 B. tan A·tan B<1C.tan A·tan B=1 D.不能确定解析在三角形ABC中,∵∠C>90°,∴∠A,∠B分别都为锐角.则有tan A>0,tan B>0,tan C<0.又∵∠C =π-(∠A +∠B ),∴tan C =-tan(A +B )=-tan A +tan B1-tan A ·tan B <0,易知1-tan A ·tan B >0, 即tan A ·tan B <1. 答案 B9.函数f (x )=sin 2⎝ ⎛⎭⎪⎫x +π4-sin 2⎝ ⎛⎭⎪⎫x -π4是( )A .周期为π的奇函数B .周期为π的偶函数C .周期为2π的奇函数D .周期为2π的偶函数解析 f (x )=sin 2⎝ ⎛⎭⎪⎫x +π4-sin 2⎝ ⎛⎭⎪⎫x -π4 =cos 2⎝ ⎛⎭⎪⎫π4-x -sin 2⎝ ⎛⎭⎪⎫x -π4=cos 2⎝⎛⎭⎪⎫x -π4-sin 2⎝ ⎛⎭⎪⎫x -π4 =cos ⎝⎛⎭⎪⎫2x -π2=sin2x . 答案 A10.y =cos x (cos x +sin x )的值域是( ) A .[-2,2]B.⎣⎢⎡⎦⎥⎤1+22,2 C.⎣⎢⎡⎦⎥⎤1-22,1+22 D.⎣⎢⎡⎦⎥⎤-12,32 解析 y =cos 2x +cos x sin x =1+cos2x 2+12sin2x=12+22⎝ ⎛⎭⎪⎫22sin2x +22cos2x=12+22sin(2x +π4).∵x ∈R ,∴当sin ⎝ ⎛⎭⎪⎫2x +π4=1时,y 有最大值1+22;当sin ⎝ ⎛⎭⎪⎫2x +π4=-1时,y 有最小值1-22.∴值域为⎣⎢⎡⎦⎥⎤1-22,1+22. 答案 C11.2cos10°-sin20°sin70°的值是( ) A.12 B.32 C. 3D. 2解析 原式=2cos (30°-20°)-sin20°sin70° =2(cos30°·cos20°+sin30°·sin20°)-sin20°sin70° =3cos20°cos20°= 3. 答案 C12.若α,β为锐角,cos(α+β)=1213,cos(2α+β)=35,则cos α的值为( )A.5665B.1665C.5665或1665D .以上都不对解析 ∵0<α+β<π,cos(α+β)=1213>0, ∴0<α+β<π2,sin(α+β)=513. ∵0<2α+β<π,cos(2α+β)=35>0, ∴0<2α+β<π2,sin(2α+β)=45. ∴cos α=cos[(2α+β)-(α+β)]=cos(2α+β)cos(α+β)+sin(2α+β)sin(α+β) =35×1213+45×513=5665. 答案 A二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上)13.已知α,β为锐角,且cos(α+β)=sin(α-β),则tan α=________. 解析 ∵cos(α+β)=sin(α-β),∴cos αcos β-sin αsin β=sin αcos β-cos αsin β. ∴cos α(sin β+cos β)=sin α(sin β+cos β).∵β为锐角,∴sin β+cos β≠0,∴cos α=sin α,∴tan α=1. 答案 114.已知cos2α=13,则sin 4α+cos 4α=________. 解析 ∵cos2α=13, ∴sin 22α=89.∴sin 4α+cos 4α=(sin 2α+cos 2α)2-2sin 2αcos 2α=1-12sin 22α=1-12×89=59. 答案 5915.sin (α+30°)+cos (α+60°)2cos α=________. 解析 ∵sin(α+30°)+cos(α+60°)=sin αcos30°+cos αsin30°+cos αcos60°-sin αsin60°=cos α,∴原式=cos α2cos α=12. 答案 1216.关于函数f (x )=cos(2x -π3)+cos(2x +π6),则下列命题: ①y =f (x )的最大值为2; ②y =f (x )最小正周期是π;③y =f (x )在区间⎣⎢⎡⎦⎥⎤π24,13π24上是减函数;④将函数y =2cos2x 的图象向右平移π24个单位后,将与已知函数的图象重合.其中正确命题的序号是________. 解析 f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+cos ⎝ ⎛⎭⎪⎫2x +π6=cos ⎝ ⎛⎭⎪⎫2x -π3+sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x +π6=cos ⎝ ⎛⎭⎪⎫2x -π3-sin ⎝ ⎛⎭⎪⎫2x -π3=2·⎣⎢⎡⎦⎥⎤22cos ⎝ ⎛⎭⎪⎫2x -π3-22sin ⎝ ⎛⎭⎪⎫2x -π3=2cos ⎝ ⎛⎭⎪⎫2x -π3+π4 =2cos ⎝ ⎛⎭⎪⎫2x -π12, ∴y =f (x )的最大值为2,最小正周期为π,故①,②正确.又当x ∈⎣⎢⎡⎦⎥⎤π24,13π24时,2x -π12∈[0,π],∴y =f (x )在⎣⎢⎡⎦⎥⎤π24,13π24上是减函数,故③正确.由④得y =2cos2⎝⎛⎭⎪⎫x -π24=2cos ⎝⎛⎭⎪⎫2x -π12,故④正确.答案 ①②③④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知向量m =⎝ ⎛⎭⎪⎫cos α-23,-1,n =(sin x,1),m 与n为共线向量,且α∈⎣⎢⎡⎦⎥⎤-π2,0.(1)求sin α+cos α的值; (2)求sin2αsin α-cos α的值.解 (1)∵m 与n 为共线向量,∴⎝⎛⎭⎪⎫cos α-23×1-(-1)×sin α=0,即sin α+cos α=23.(2)∵1+sin2α=(sin α+cos α)2=29, ∴sin2α=-79.∴(sin α-cos α)2=1-sin2α=169.又∵α∈⎣⎢⎡⎦⎥⎤-π2,0,∴sin α-cos α<0. ∴sin α-cos α=-43. ∴sin2αsin α-cos α=712.18.(12分)求证:2-2sin ⎝ ⎛⎭⎪⎫α+3π4cos ⎝ ⎛⎭⎪⎫α+π4cos 4α-sin 4α=1+tan α1-tan α. 证明 左边=2-2sin ⎝ ⎛⎭⎪⎫α+π4+π2cos ⎝ ⎛⎭⎪⎫α+π4(cos 2α+sin 2α)(cos 2α-sin 2α)=2-2cos 2⎝ ⎛⎭⎪⎫α+π4cos 2α-sin 2α=1-cos ⎝ ⎛⎭⎪⎫2α+π2cos 2α-sin 2α=1+sin2αcos 2α-sin 2α=(sin α+cos α)2cos 2α-sin 2α =cos α+sin αcos α-sin α=1+tan α1-tan α. ∴原等式成立.19.(12分)已知cos ⎝ ⎛⎭⎪⎫x -π4=210,x ∈⎝ ⎛⎭⎪⎫π2,3π4. (1)求sin x 的值; (2)求sin ⎝ ⎛⎭⎪⎫2x +π3的值.解 (1)解法1:∵x ∈⎝ ⎛⎭⎪⎫π2,3π4,∴x -π4∈⎝ ⎛⎭⎪⎫π4,π2,于是sin ⎝ ⎛⎭⎪⎫x -π4= 1-cos 2⎝⎛⎭⎪⎫x -π4=7210. sin x =sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -π4+π4=sin ⎝ ⎛⎭⎪⎫x -π4cos π4+cos ⎝ ⎛⎭⎪⎫x -π4sin π4 =7210×22+210×22 =45.解法2:由题设得 22cos x +22sin x =210, 即cos x +sin x =15. 又sin 2x +cos 2x =1,从而25sin 2x -5sin x -12=0, 解得sin x =45,或sin x =-35,因为x ∈⎝ ⎛⎭⎪⎫π2,3π4,所以sin x =45.(2)∵x ∈⎝ ⎛⎭⎪⎫π2,3π4,故cos x =-1-sin 2x =-1-⎝ ⎛⎭⎪⎫452=-35. sin2x =2sin x cos x =-2425. cos2x =2cos 2x -1=-725.∴sin ⎝ ⎛⎭⎪⎫2x +π3 =sin2x cos π3+cos2x sin π3 =-24+7350.20.(12分)已知向量a =⎝⎛⎭⎪⎫cos 3x 2,sin 3x 2,b =⎝ ⎛⎭⎪⎫cos x 2,-sin x 2,c =(3,-1),其中x ∈R .(1)当a ⊥b 时,求x 值的集合;(2)求|a -c |的最大值.解 (1)由a ⊥b 得a ·b =0,即cos 3x 2cos x 2-sin 3x 2sin x 2=0,则cos2x =0,得x =k π2+π4(k ∈Z ),∴x 值的集合是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π2+π4,k ∈Z . (2)|a -c |2=⎝ ⎛⎭⎪⎫cos 3x 2-32+⎝⎛⎭⎪⎫sin 3x 2+12 =cos 23x 2-23cos 3x 2+3+sin 23x 2+2sin 3x 2+1=5+2sin 3x 2-23cos 3x 2=5+4sin ⎝ ⎛⎭⎪⎫3x 2-π3, 则|a -c |2的最大值为9.∴|a -c |的最大值为3.21.(12分)某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 cm ,求割出的长方形桌面的最大面积(如图).解连接OC ,设∠COB =θ,则0°<θ<45°,OC =1. ∵AB =OB -OA =cos θ-AD =cos θ-sin θ, ∴S 矩形ABCD =AB ·BC =(cos θ-sin θ)·sin θ=-sin 2θ+sin θcos θ=-12(1-cos2θ)+12sin2θ=12(sin2θ+cos2θ)-12 =22cos ⎝ ⎛⎭⎪⎫2θ-π4-12. 当2θ-π4=0,即θ=π8时,S max =2-12(m 2). ∴割出的长方形桌面的最大面积为2-12 m 2.22.(12分)已知函数f (x )=sin(π-ωx )cos ωx +cos 2ωx (ω>0)的最小正周期为π.(1)求ω的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在区间⎣⎢⎡⎦⎥⎤0,π16上的最小值.解 (1)因为f (x )=sin(π-ωx )cos ωx +cos 2ωx .所以f (x )=sin ωx cos ωx +1+cos2ωx 2=12sin2ωx +12cos2ωx +12 =22sin ⎝ ⎛⎭⎪⎫2ωx +π4+12. 由于ω>0,依题意得2π2ω=π.所以ω=1.(2)由(1)知f (x )=22sin ⎝⎛⎭⎪⎫2x +π4+12. 所以g (x )=f (2x )=22sin ⎝ ⎛⎭⎪⎫4x +π4+12. 当0≤x ≤π16,π4≤4x +π4≤π2. 所以22≤sin ⎝ ⎛⎭⎪⎫4x +π4≤1. 因此1≤g (x )≤1+22.故g (x )在区间⎣⎢⎡⎦⎥⎤0,π16上的最小值为1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 命题人:吴亮 检测人: 李丰明
第Ⅰ卷
一、选择题(本大题共10小题,每小题5分,共50分) 1.已知4cos()5αβ+=
,4
cos()5αβ-=-,则cos cos αβ的值为( ) A.0
B.45 C.0或45 D.0或45
±
2. 如果
sin()sin()m n αβαβ+=-,那么tan tan β
α
等于( )
A.m n m n -+
B.m n m n +-
C.n m n m -+
D.n m n m
+-
3.sin163°sin223°+sin253°sin313°等于( )
A .-12 B.12 C .-32 D.3
2
4.化简:
ππcos sin 44ππcos sin 44x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭的值为( ) A.tan 2
x
B.tan 2x
C.tan x -
D.cot x
5.在△ABC 中,如果sinA =2sinCcosB ,那么这个三角形是
A .锐角三角形
B .直角三角形
C .等腰三角形
D .等边三角形
6.若β∈(0,2π),且1-cos 2β+1-sin 2β=sinβ-cosβ,则β的取值范围是
A .[0,π2]
B .[π2,π]
C .[π,3π2]
D .[π
2,2π]
7.若A B ,为锐角三角形的两个锐角,则tan tan A B 的值( ) A.不大于1
B.小于1
C.等于1
D.大于1
8.已知θ为第四象限角,sinθ=-3
2
,则tanθ等于( ) A.
33 B .-33 C .±3
3
D .-3
9.已知sinα+sinβ+sinγ=0,cosα+cosβ-cosγ=0,则cos(α-β)的值是 A .-1 B .1 C .-12 D.1
2
10.已知sin(α-β)=
1010,α-β是第一象限角,tanβ=1
2
,β是第三象限角,则cosα的值等于 A.7210 B .-7210 C.22 D .-2
2
二、填空题(本大题共6小题,每小题5分,共30分)
把答案填第Ⅱ卷题中横线上
11.若0<α<π2,0<β <π2且tanα=17,tanβ=3
4,则α+β的值是________.
12.已知函数f(x)=(sinx -cosx)sinx ,x ∈R ,则f(x)的最小正周期是________. 13.若π3
sin 25
α⎛⎫+=
⎪⎝⎭,则cos2α=______. 14. 函数]),0[)(26
sin(
2ππ
∈-=x x y 为增函数的区间是 。

15.把函数4cos()3
y x π
=+
的图象向左平移ϕ个单位,所得的图象对应的函数为偶函数,则ϕ的最小正值为________________
16.给出下面的3个命题:(1)函数|)32sin(|π
+
=x y 的最小正周期是2π
;(2)函数)2
3sin(π-=x y 在区间
)23,[ππ上单调递增;(3)45π=x 是函数)2
52sin(π+=x y 的图象的一条对称轴.其中正确命题的序号
是 .
第Ⅱ卷
二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)
11.________________________ 12._______________________
13._________________________ 14.______________________
15._________________________ 16._______________________
三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)
17.(14分)已知函数2
1
cos cos1()
22
y x x x x
=++∈R,求函数的最大值及对应自变量x的
集合.
18. (14分) 已知函数f(x)=cos(2x-
π
3)+2sin(x-
π
4)sin(x+
π
4).
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[-
π
12,
π
2]上的值域
19.(14分) 已知cosα=1
7,cos(α-β)=
13
14,且0<β<α<
π
2.
(1)求tan2α的值;
(2)求β的值.
20.(14分)已知函数x
x
b
x
a
x
f cos
sin
cos
2
)
(2+
=,且
2
3
2
1
)
3
(
,2
)0(+
=
=
π
f
f。

(1)求)(x f 的最大值与最小值;
(2)若)(Z k k ∈≠-πβα,且)()(βαf f =,求)tan(βα+的值
21(14分)已知函数,3cos 22sin 3)(2b a x a x a x f ++--=]4
3,4[π
π∈x ,是否存在常数Q b a ∈,,
其中Q 为有理数集,使得)(x f 的值域为]13,3[--,若存在,求出对应的b a ,的值;若不存在,请说明理由。

相关文档
最新文档