实验一 材料的铁电性能测量
铁电材料的制备及其铁电性能研究

铁电材料的制备及其铁电性能研究铁电材料是指具有铁电性质的材料,铁电性质是指在外加电场下,材料会发生极性翻转,即正负极性相互转换。
这种性质使铁电材料广泛应用于存储器、传感器、激光器、换能器、电容器等领域。
本文将介绍铁电材料的制备方法及其铁电性能研究。
一、铁电材料的制备方法1.溶胶-凝胶法溶胶-凝胶法是一种低温热处理制备铁电材料的方法。
首先,将合适比例的金属盐溶解在水和有机物的混合液中,然后使之脱水凝固,得到凝胶。
接着,将凝胶热处理干燥,形成透明的玻璃状材料。
该方法制备的铁电材料具有良好的机械性能和化学稳定性。
2.物理气相沉积法物理气相沉积法是一种高温热处理制备铁电材料的方法。
在该方法中,通过激光或者热蒸发等方式将材料原子或分子蒸发,沉积在基底上,形成薄膜结构。
该方法具有工艺简单、生产效率高等优点,可以制备出高质量的铁电薄膜材料。
3.气相沉积法气相沉积法是一种制备铁电材料薄膜的方法,通过气体反应沉积铁电薄膜。
该方法可以制备出大面积、高质量、低成本的铁电薄膜。
在该方法中,可以通过改变反应条件来控制铁电薄膜的性能,如薄膜的微观结构和组分等。
二、铁电材料的铁电性能研究研究铁电材料的铁电性能是了解材料电性能的一种重要手段。
以下是常用的铁电性能研究方法。
1.压电测试压电测试是通过在机械应力下测量铁电材料的电感生成能力来研究铁电性质。
在该测试中,将电极夹在铁电材料两端,给材料施加机械压力后,测量材料中电极间电势差的变化,进而计算出电感。
2.电容测试电容测试是一种测量铁电材料铁电性能的方法。
在该测试中,先将材料置于电场中,并在电场强度不断增大的过程中测量材料的电容变化,进而计算出材料的介电常数与电容变化量之间的关系。
通过电容测试可以了解材料的介电常数、铁电极化强度和耐电压强度等参数。
3.极化测试极化测试是一种研究材料极化行为的方法。
该测试中,通过在外场的作用下,测量材料中电极间电势差,进而计算出铁电极化强度的大小。
铁电体电特性测量实验

片) 电特性参量. 的
关键 词 : 滞 回 线 ; 电体 ; 电 陶 瓷 ; 片 机 接 口 电 铁 压 单
于直径 d, C 《C . 且 x 。 由图 1可知 :
一
由式 ( ) () 4 和 5 即可得 到
v 一 。 CD . () 6
亳 ,
( 1 )
由式 ( ) ( ) 3 和 6 可知 , 与
分别 与 待测 样 品 C 与V
的电场强 度 E、 电位 移 D 成 正 比.若将
测铁 电体 ( 电陶 瓷 片) 电特 性 参 量 , 剩 余极 压 的 如 化强 度 P 、 自发极化 强度 P 及矫 顽场 强 E。 。 等.
1 中
图 1 电 滞 回线 发 生 器 电 路
V≈ E^ . ( ) 2
2 电滞 回线 发 生 器
为 了研究 铁 电体 的电 特性 , 常将 铁 电 体做 通 成 电容器 , 即在 铁 电 体 的上 下 两 面 镀银 作 为 电 容
框图 如图 2所示 .
警 Jl 主 攀 , .机 I2 c, 52 PH 1_  ̄ 叽 ) I s
图 2 测 量 系 统 框 图
图 3为待 测 信 号 ( ) 的调 理 电路 .由于 电滞 回线发 生器 的输 出 V 和 V 太 小 , 需经 过 放 大方 可 进 行 A/ 处 理 , 以 使 其 分 别 通 过 由 D 所 L 2 M3 4组 成 的两 级 放 大 电 路 将 信 号 放 大.输 入 信号首先通过 由 L 2 M3 4组 成 的 电 压 跟 随器 , 它 不仅 精 度高 , 且 输 入 电阻 大 , 出 电 阻小 , 以 而 输 所
物理实验技术中的铁电材料测量与实验方法

物理实验技术中的铁电材料测量与实验方法引言:铁电材料作为一种特殊的功能材料,在电器和电子工业中有着广泛的应用。
为了研究和探索铁电材料的特性,科学家们开展了一系列的物理实验,并借助先进的测量和实验方法来获得准确和可靠的数据。
本文将介绍物理实验技术中常用的铁电材料测量与实验方法,并探讨它们的原理和应用。
一、铁电材料的基本特性和测量铁电材料具有独特的电极化特性,能够在外界电场的作用下发生自发极化。
为了测量铁电材料的电极化行为,通常使用电压-电荷曲线来描述材料的电极化状态。
常用的测量方法包括极化曲线测量和退极化曲线测量。
极化曲线测量是在不同的偏置电压下,测量材料的产生和消除极化的电荷量。
退极化曲线测量则是通过在一个初始电场下测量极化电荷,然后通过改变电场方向来观察电荷的变化。
这些测量方法能够提供有关铁电材料的极化行为和电压响应的重要信息。
二、电容法和介电谱测量电容法是一种常见的测量铁电材料性质的方法。
它通过测量材料的电容来推断材料的电极化状态。
电容法可以分为恒压法和交流法两种。
恒压法是通过在铁电材料上施加一个固定的电压,然后测量电容的变化来推断材料的电极化行为。
交流法则是通过施加交流电压,并测量材料的电容和电导率来得到材料的介电常数和损耗因子。
这些测量方法广泛应用于铁电材料的电容性能和其频率响应的研究中。
三、X射线衍射测量与结构分析X射线衍射是一种常用的分析方法,可以用于表征铁电材料的晶体结构和晶格参数。
这种方法可以通过材料对入射X射线的散射进行测量,从而确定材料的晶体结构和晶格常数。
X射线衍射方法常用的设备包括X射线衍射仪和衍射图谱仪。
X射线衍射仪通过测量材料对入射X射线的散射角度和强度来获得样品的衍射图谱。
衍射图谱仪则用于解析和分析衍射图谱,从而确定材料的晶体结构和晶格参数。
四、压电力显微术的应用压电力显微术是一种常用的表征铁电材料性质的方法,可以用于研究材料的电极化状态和压电响应。
这种方法利用原子力显微镜的力传感器,可以测量材料在外界电场或者压力作用下产生的微小位移或变形。
铁电性实验

铁电薄膜铁电性能的表征d实验目的了解什么是铁电体,什么是电滞回线以及其测量原理和方法。
实验原理1.电滞回线铁电体的极化随外电场的变化而变化,但电场较强时,极化与电场之间呈非线性关系。
在电场作用下新畴成核长大,畴壁移动,导致极化转向,在电场很弱时,极化线性地依赖于电场(见图12.2-1),此时可逆的畴壁移动成为不可逆的,极化随电场的增加比线性段快。
当电场达到相应于B点值时,晶体成为单畴,极化趋于饱和。
电场进一步增强时,由于感应极化的增加,总极化仍然有所增大(BC段)。
如果趋于饱和后电场减小,极化将循CBD段曲线减小,以致当电场达到零时,晶体仍保留在宏观极化状态,线段OD 表示的极化称为剩余极化Pr 。
将线段CB外推到与极化轴相交于E,则线段OE 为饱和自发极化Ps 。
如果电场反向,极化将随之降低并改变方向,直到电场等于某一值时,极化又将趋于饱和。
这一过程如曲线DFG所示,OF 所代表的电场是使极化等于零的电场,称为矫顽场Ec 。
电场在正负饱和值之间循环一周时,极化与电场的关系如曲线CBDFGHB 所示,此曲线称为电滞回线。
电滞回线可以用图12.2-2的装置显示出来(这是著名的Sayer-Toyer电路),以铁电晶体作介质的电容Cx 上的电压V是加在示波器的水平电极板上,与Cx 串联一个恒定电容Cy (即普通电容),Cy 上的电压Vy 加在示波器的垂直电极板上,很容易证明Vy 与铁电体的极化强度P成正比,因而示波器显示的图像,纵坐标反映P的变化,而横坐标Vx 与加在铁电体上外电场强成正比,因而就可直接观测到P-E的电滞回线。
下面证明Vy和P的正比关系,因y x xy x yC C C C V V ==ωω11(12.2-1)式中ω为图12.2-2中电源V的角频率d S C x 0εε=ε为铁电体的介电常数,ε0为真空的介电常数,S为平板电容Cx 的面积,d为平行平板间距离,代入(12.2-1)式得: E C S d V C S V C C V yx y x Y x y 00εεεε=== (12.2-2) 根据电磁学E E E P χεεεεε000)1(=≈-= (12.2-3)对于铁电体ε>>1,故有后一近似等式,代入(12.2-2)式,P C S V y y = (12.2-4)因S与Cy都是常数,故Vy与P成正比。
实验29-铁电性能测量实验讲义

铁电体电滞回线的测量铁电材料是一类具有自发极化,而且其自发极化矢量在外电场作用下可以翻转的电介质材料,它具有优异的铁电、压电、介电、热释电及电光性能,在非挥发性铁电存储器、压电驱动器、电容器、红外探测器和电光调制器等领域有重要的应用。
铁电材料的主要特征是具有铁电性,即极化强度与外电场之间具有电滞回线的关系,如图1所示。
电滞回线是铁电体的重要特征和重要判据之一,通过电滞回线的测量可以得到自发极化强度P s、剩余极化强度P r、矫顽场E c等重要铁电参数,理解铁电畴极化翻转的动力学过程。
【实验目的】1.了解铁电测试仪的工作原理和使用方法。
2.掌握电滞回线的测量及分析方法。
3.理解铁电材料物理特性及其产生机理。
【实验仪器】本实验采用美国Radiant Technology公司生产的RT Premier Ⅱ型标准铁电测试仪,该仪器可以测量铁电材料的电滞回线、漏电流、疲劳、印痕、PUND (Positive Up Negative Down)等性能,而且配备了变温系统和热释电软件还可以测量热释电性能。
【实验原理】铁电体的自发极化强度并非整个晶体为同一方向,而是包括各个不同方向的自发极化区域,其中具有相同自发极化方向的小区域叫做铁电畴。
电滞回线的产生是由于铁电晶体中存在铁电畴。
铁电体未加电场时,由于自发极化取向的任意性和热运动的影响,宏观上不呈现极化现象。
当加上外电场大于铁电体的矫顽场时,沿电场方向的电畴由于新畴核的形成和畴壁的运动,体积迅速扩大,而逆电场方向的电畴体积则减小或消失,即逆电场方向的电畴转化为顺电场方向,因此表面电荷Q(极化强度P)和外电压V(电场强度E)之间构成电滞回线的关系。
另外由于铁电体本身是一种电介质材料,两面涂上电极构成电容器之后还存在着电容效应和电阻效应,因此一个铁电试样的等效电路如图2所示。
其中C F对应于电畴反转的等效电容,C D对应于线性感应极化的等效电容,R C对应于试样的漏电流和感应极化损耗相对应的等效电阻。
实验一材料的铁电性能测量

实验⼀材料的铁电性能测量实验⼀陶瓷的铁电性能测试1.原理铁电体是在⼀定温度范围内含有能⾃发极化、并且⾃发极化⽅向可随外电场可逆转动的晶体。
在铁电态下,晶体的极化与电场的关系有图1的形状,称为电滞回线。
构成电滞回线的⼏个重要参数饱和极化强度(⾃发极化强度)P s、剩余极化强度P r、矫顽电场E c,是衡量铁电体铁电性能的重要参数。
2.实验仪器设备本实验采⽤美国Radiant公司⽣产的铁电测试系统,该系统由精密⼯作站、⾼压⼯作界⾯(HVI)、10kV⾼压放⼤器(HV A)三部分组成。
3.测量步骤1) 接通测试系统的电源,打开精密⼯作站的电源开关,起动精密⼯作站。
2) 按下Ctrl+Alt+Del,并输⼊密码,登录到WindowsNT,系统会⾃动打开VisionPro 窗⼝(见图1)。
3)把实验样品夹在样品夹上,并确保样品与样品夹接触良好。
4) ⽤⿏标选择“QuikLook”菜单下的“Hysteresis”命令,打开⼀个标题为Hysteresis QuikLook的对话框。
(见图2)5) 在“Hysteresis Task Name”中,写⼊测量任务的名字。
6) 在对话框的右上边的“V oltage Range”选择中,选择“External Amplifier”中的±10000V olts的选项。
图 1图 27) 在“VMax”中,写⼊需要对样品加载的电压值。
8) 在“Hysteresis Period”中,写⼊测量周期。
注:对块状陶瓷样品进⾏⾼压铁电性能测试⼀般需要⼀段较长的持续时间,所以在“Hysteresis Period”中⼀般选择300ms~1000ms。
9) 在“Area”中,写⼊样品的⾯积;在“Thickness”中,写⼊样品的厚度。
10) 在对话框的右下边,取消“Auto Amplification”的选择,在“Amp. Level”的选项中选择×0.001的放⼤倍数,然后在选择“Auto Amplification”。
铁电的测定

铁电薄膜的铁电性能测量实验目的一、了解什么是铁电体,什么是电滞回线及其测量原理和方法。
二、了解铁薄膜材料的功能和应用前景。
实验原理一、铁电体的特点1.电滞回线铁电体的极化随外电场的变化而变化,但电场较强时,极化与电场之间呈非线性关系。
在电场作用下新畴成核长,畴壁移动,导致极化转向,在电场很弱时,极化线性地依赖于电场见图(12.2-1) ,此时可逆的畴壁移动成为不可逆的,极化随电场的增加比线性段快。
当电场达到相应于B点值时,晶体成为单畴,极化趋于饱和。
电场进一步增强时,由于感应极化的增加,总极化仍然有所增大(BC)段。
如果趋于饱和后电场减小,极化将循 CBD段曲线减小,以致当电场达到零时,晶体仍保留在宏观极化状态,线段OD表示的极化称为剩余极化Pr。
将线段CB外推到与极化轴相交于E,则线段OE 为饱和自发极化Ps。
如果电场反向,极化将随之降低并改变方向,直到电场等于某一值时,极化又将趋于饱和。
这一过程如曲线DFG所示,OF所代表的电场是使极化等于零的电场,称为矫顽场 Ec。
电场在正负饱和度之间循环一周时,极化与电场的关系如曲线CBDFGHC所示此曲线称为电滞回线。
图12.2-1 铁电体的电滞回线V图12.2-2 电滞回线的显示电滞回线可以用图12.22-2的装置显示出来(这就是著名的Sawyer-Tower 电路),以电晶体作介质的电容C x 上的电压V 是加在示波器的水平电极板上,与C x 串联一个恒定电容C y (即普通电容),C y 上的电压V y 加在示波器的垂直电极板上,很容易证明V y 与铁电体的极化强度P 成正比,因而示波器显示的图象,纵坐标反映P 的变化,而横坐标V x 与加在铁电体上外电场强成正比,因而就可直接观测到P-E 的电滞回线。
下面证明V y 和P 的正比关系,因y xxy x y C C C C V V ==ωω11(12.2-1)式中ω为图中电源V 的角频率dSC x 0εε=ε为铁电体的介电常数,0ε 为真空的介电常数,S 为平板电容x C 的面积,d 为平行平板间距离,代入(12.2-1)式得: E C S d V C S V C C V yx y x Y x y 00εεεε===(12.2-2) 根据电磁学E E E P χεεεεε000)1(=≈-= (12.2-3) 对于铁电体>>ε1,固有后一近似等式,代入(12.2-2)式 , P C SV yy =因S 与y C 都是常数,故Vy 与P 成正比。
铁电材料制备与性能表征实验提纲

铁电材料制备与性能表征实验提纲实验目的:制备铁电材料,并进行性能测试。
材料:氧化钛(TiO2)粉末、钛酸四丁酯(TBT)、异丙醇、甲苯、乙醇、铝箔片。
仪器设备:自动定量注液器、恒温培养箱、离心机、扫描电子显微镜(SEM)、X射线衍射仪(XRD)。
实验步骤:1. 安全检查。
2. 准备氧化钛(TiO2)粉末,加入异丙醇,用高速搅拌器超声分散1.5小时,将分散液继续搅拌1小时。
3. 加入TBT预聚液,用自动定量注液器按照一定比例浓度注入分散液中,再用高速搅拌器旋转混合1小时,得到均匀溶胶。
4. 加入甲苯、乙醇,搅拌混合。
5. 将铝箔片严格清洗,放入恒温培养箱中,在160摄氏度下烘烤1小时。
6. 涂覆均匀溶胶于铝箔片上,再在空气中烘烤1小时。
7. 离心分离,用干燥箱干燥。
8. 进行SEM和XRD测试,测量铁电材料的晶体结构和形貌,分析其性能。
实验现象记录:1. 在加入TBT预聚液后,液体黏稠度增加。
2. 在涂覆均匀溶胶于铝箔片上时,需要注意溶液的均匀性和数量。
3. 在离心分离时,需要注意时间和速度的控制,不要将铁电材料分离异常。
4. 在测试时,需要谨慎操作,保证仪器的准确性。
实验问题及解决方案:问题1:加入TBT预聚液后,液体黏稠度增加,如何解决?解决方案:可以在混合液中加入少量甲苯或乙醇溶解。
问题2:涂覆均匀溶胶于铝箔片上时,出现溶液不均匀或溶液不足,如何解决?解决方案:可以按照一定比例,将溶液分别涂抹于多个铝箔片上,避免过多或不足。
问题3:在离心分离时,出现铁电材料分离异常,如何解决?解决方案:可以重新加入适量溶剂,再次混合均匀后进行离心分离。
实验影响因素和实验记录:1. TBT预聚液的比例和浓度会影响溶液的黏稠度和铁电材料的形貌。
2. 涂覆均匀溶胶于铝箔片上的方式和数量会影响铁电材料的均匀度和输出能力。
3. 离心分离的时间和速度会影响铁电材料的形态和质量。
实验规范:1. 进行实验前,需要进行全面的安全检查,确保仪器和材料的安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一陶瓷的铁电性能测试
1.原理
铁电体是在一定温度范围内含有能自发极化、并且自发极化方向可随外电场可逆转动的晶体。
在铁电态下,晶体的极化与电场的关系有图1的形状,称为电滞回线。
构成电滞回线的几个重要参数饱和极化强度(自发极化强度)P s、剩余极化强度P r、矫顽电场E c,是衡量铁电体铁电性能的重要参数。
2.实验仪器设备
本实验采用美国Radiant公司生产的铁电测试系统,该系统由精密工作站、高压工作界面(HVI)、10kV高压放大器(HV A)三部分组成。
3.测量步骤
1) 接通测试系统的电源,打开精密工作站的电源开关,起动精密工作站。
2) 按下Ctrl+Alt+Del,并输入密码,登录到WindowsNT,系统会自动打开VisionPro 窗口(见图1)。
3)把实验样品夹在样品夹上,并确保样品与样品夹接触良好。
4) 用鼠标选择“QuikLook”菜单下的“Hysteresis”命令,打开一个标题为Hysteresis QuikLook的对话框。
(见图2)
5) 在“Hysteresis Task Name”中,写入测量任务的名字。
6) 在对话框的右上边的“V oltage Range”选择中,选择“External Amplifier”中的±10000V olts的选项。
图 1
图 2
7) 在“VMax”中,写入需要对样品加载的电压值。
8) 在“Hysteresis Period”中,写入测量周期。
注:对块状陶瓷样品进行高压铁电性能测试一般需要一段较长的持续时间,所以在“Hysteresis Period”中一般选择300ms~1000ms。
9) 在“Area”中,写入样品的面积;在“Thickness”中,写入样品的厚度。
10) 在对话框的右下边,取消“Auto Amplification”的选择,在“Amp. Level”的选项中选择×0.001的放大倍数,然后在选择“Auto Amplification”。
11) 其它参数不需要修改,采取默认值。
12) 打开高压工作界面(HVI)的电源。
13) 打开高压放大器(HV A)的电源,把电源的开关拨到最上方。
14) 按下OK。
注意:当高压工作界面的“High V oltage Enabled”灯亮的时候,高压工作界面正在对样品加载高压,在“High Voltage Enabled”灯亮的过程中,一定不要靠近样品,更不能触摸样品。
15) 当“High Voltage Enabled”灯灭了以后,弹出一个窗口显示测量结果,测量结果包括电磁回线图和测量数据。
注意:一个测量结束后,要立即关掉高压工作界面的电源,当要进行下一个测量时再打开高压工作界面的电源。
4.数据处理和实验报告
对实验结果中的电磁回线和测量数据进行分析,并进行有关事项的讨论和总结,以及提出建议。