2-3资金的时间价值-复利计算
资金的时间价值复利计算

计算方式
单利的计算公式为 P * r * n ,其中 P 是本金,r 是年利率 ,n 是时间(年)。复利的计
算公式为 (1 + r)^n,其中 r 是年利率,n 是时间(年)。
利息增长
单利的利息是固定的,而复 利的利息会随着时间的推移 而增加。
复利计息方式
01
年度复利
每年计算一次复利,适合长期投资 。
月度复利
每月计算一次复利,适合短期投资 。
03
02
半年度复利
每半年计算一次复利,适合中短期 投资。
日度复利
每日计算一次复利,适合超短期投 资。
04
复利计中,复利计息的收益会远远超过单利计息 。
时间价值
资金的时间价值是复利计息的核心,时间越长,复利 计息的收益越高。
利率影响
利率的高低对复利计息的收益有较大影响,利率越高 ,收益越大。
PART 03
复利计算公式
REPORTING
简单复利计算公式
总结词
简单复利计算公式适用于单期复利的 情况,即本金在期末一次性获得利息 。
详细描述
简单复利计算公式为: FV=P×(1+r)^n,其中FV表示未来值 ,P表示本金,r表示年利率,n表示投 资期限(年)。
02
资金的时间价值反映了资金在不 同时间点上的等价关系,是评估 投资项目经济效益的重要依据。
影响因素
投资收益率
风险水平
投资收益率越高,资金的时间价值越 大。
风险水平越高,资金的时间价值越大 。
时间跨度
时间跨度越长,资金的时间价值越大 。
时间价值的重要性
投资决策
资金的时间价值对于投资决策具 有重要意义,投资者需要根据不 同时间点的资金价值进行比较和 评估。
复利计算

复利终值复利是计算利息的一种方法。
按照这种方法,每经过一个计息期,要将所生利息加入本金再计利息,逐期滚算,俗称“利滚利”。
这里所说的计息期是指相邻两次计息的时间间隔,如年、月、日等。
除非特别指明,计息期为1年。
1、复利终值[例1] 某人将10000元投资于一项事业,年报酬率为6%,经过1年时间的期终金额为:s=p+p×i=p(1+i)=10000×(1+6%)=10600(元)其中:p——现值或初始值;i——报酬率或利率;s——终值或本利和。
若此人不提走现金,将10600元继续投资于该事业,则第二年本利和为:s=[p*(1+i)]*(1+i)=p*(1+i)2=10000×(1+6%)2=10000×1.1236=11236(元)同理,第三年的期终金额为:s=p*(1+i)3=10000×(1+6%)3=10000×1.1910=11910(元)第n年的期终金额为:s=p*(1+i)n上述是计算复利终值的一般公式,其中的(1+i)n被称为复利终值系数或1元的复利终值,用符号(s/p,i,n)表示。
例如,(s/p,6%,3)表示利率为6%的3期复利终值的系数。
为了便于计算,可编制“复利终值系数表”备用。
该表的第一行是利率i,第一列是计息期数n,相应的(1+i)n值在其纵横相交处。
通过该表可以查出,(s/ p,6%,3)=1.1910。
在时间价值为6%的情况下,现在的1元和3年后的1.1910元在经济上是等效的,根据这个系数可以把现值换算成终值。
示例例:张三拟投资10万元于一项目,该项目的投资期为5年,每年的投资报酬率为20%,张三盘算着:这10万元本金投入此项目后,5年后可以收回的本息合计为多少?分析:由于货币随时间的增长过程与复利的计算过程在数学上是相似的,因此,在计算货币的时间价值时,可以使用复利计算的各种方法。
张三的这笔账实际上是关于"复利终值"的计算问题。
资金时间价值的基本公式

资金时间价值的基本公式集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#(三)复利法资金时间价值计算的基本公式(★★★★)例1、某公司拟投资一项目,希望在4年内(含建设期)收回全部贷款的本金与利息。
预计项目从第1年开始每年末能获得60万元,银行贷款年利率为6%。
则项目总投资的现值应控制在( )万元以下。
(2003考题)A.262.48B.207.91C.75.75D.240.00答案:B解析:()()()()91.207%61%61%616011144=+⨯-+⨯=+-+=nniiiAP例2、某购房人从银行贷款50万元,贷款期限10年,按月等额还本付息,贷款年利率6%.每月计息一次,其每月应向银行还款的数额为( )元。
(2008考题42)A.4917B.5551C.7462D.7581答案:B解析:()()()()5551112/%6112/%6112/%650000011110121012=-++⨯⨯=-++=⨯⨯nniiiPA例3、 某项目建设期为3年。
建设期间共向银行贷款1500万元,其中第1年初贷款1000万元,第2年初贷款500万元:贷款年利率6%,复利计息。
则该项目的贷款在建设期末的终值为( )万元。
(2009考题44)A .B .C .175282D .答案:C解析:()()82.1752%61500%61100023=+⨯++⨯=第四节 项目评价项目评价即对推荐方案进行环境影响评价、财务评价、国民经济评价、社会评价及风险分析,以判别项目的环境可行性、经济可行性、社会可行性和抗风险能力。
一、环境影响评价(了解)(★★★★)例4、下列属于环境影响评价内容的有( )。
(2005考题)A.城市化进程的影响B.技术文化条件的影响C.噪声对居民生活的影响D.森林草地植被的破坏E.社会环境、文物古迹的破坏答案:C D E例5、建设项目环境影响评价工作内容包括( )。
资金时间价值复利计算公式

资金时间价值复利计算公式资金的时间价值是指现在一定金额的资金在未来的一些时间点所产生的价值,即同样的资金,未来的价值远小于现在的价值。
这是因为资金在时间流逝过程中可能会发生变化、增值或减值,而这样的变化与时间的长短密切相关。
复利是指以一定的利率将本金连续投资,并将利息加到本金上进行再次投资的过程。
在复利计算中,最重要的是确定投资时间、投资本金和利率。
根据这些指标,可以使用一些公式来计算复利。
常见的复利计算公式包括未来价值公式、现值公式和年金计算公式。
1.未来价值公式:未来价值指的是将一定本金在经过一定时间后所达到的金额。
未来价值公式可以用来计算投资本金在经过一定时间后的未来价值。
未来价值公式如下:FV=PV*(1+r/n)^(n*t)其中,FV为未来价值,PV为现在的投资本金,r为年利率,n为复利的次数,t为投资的时间。
该公式中,n*r为复合利率,n*t为复利的次数。
2.现值公式:现值指的是未来的一定金额按照一定的利率折算到现在的金额。
现值公式可以用来计算未来的一定金额的现值。
现值公式如下:PV=FV/(1+r/n)^(n*t)其中,PV为现值,FV为将来的金额,r为年利率,n为复利的次数,t为投资的时间。
同样,n*r为复合利率,n*t为复利的次数。
3.年金计算公式:年金指的是在一定的时间内,按照一定的利率投资一定金额,并每年取得固定的收益。
年金计算公式可以用来计算在投资一定本金并取得一定年利率下,每年取得的年金。
年金计算公式如下:A=P*r*(1+r/n)^(n*t)/((1+r/n)^(n*t)-1)其中,A为年金,P为投资本金,r为年利率,n为复利的次数,t为投资的时间。
以上是三种常见的复利计算公式。
当我们需要计算资金时间价值时,可以根据不同的情况使用合适的公式。
利用这些公式,我们可以灵活地计算不同时间、不同本金、不同利率下的复利情况,从而更好地理解资金的时间价值。
资金的时间价值和计算方法

资金的时间价值和计算方法资金的时间价值是指不同时间点的资金具有不同的价值,也就是说现在一定金额的资金在未来的某个时间点可能会产生更多的价值,因此可以用更高的价格去衡量。
这是由于资金的时间价值是受到机会成本、通货膨胀、风险等因素的影响。
资金的时间价值的计算方法主要包括现值、未来值、年金和利率的计算。
现值是指将未来的一笔现金流转化为现在的价值。
其计算方法是将未来的现金流量按照一定的折现率计算出来,然后将其加总求和。
折现率通常是以利率的形式存在的,代表了投资者对于未来现金流量的评估。
未来值是指在一定时间后,现金流量的价值。
其计算方法是将现金流量按照一定的利率进行复利计算,得到未来某个时间点的价值。
年金是指每年或每期定期支付的一定金额的现金流量。
其计算方法是将每期收入进行现值或未来值计算,再加总求和。
年金的计算方法主要有普通年金和永续年金。
普通年金是指有固定期限的年金,而永续年金是指没有固定期限的年金。
利率是衡量资金时间价值的重要指标,代表了资金的回报率或者成本。
通常利率有固定利率和浮动利率两种形式。
利率的计算方法主要有单利和复利计算。
单利是指利息只在本金上计算,而复利是指利息可以在本金和之前累计的利息上计算。
除了以上的方法,还有一些其他的方法可以计算资金的时间价值,如净现值、内含报酬率、即期汇率等等。
净现值是指将未来现金流量的现值减去投资成本,得到的差额。
如果净现值为正,则代表该投资项目是可行的;如果净现值为负,则代表该投资项目是不可行的。
内含报酬率是指通过计算项目现金流量的未来值,以求得投资获得的利润率。
即期汇率则是指当下的外汇汇率,用于计算不同币种之间的现金流转换。
总之,资金的时间价值是指不同时间点的资金不同的价值,而计算方法包括现值、未来值、年金和利率等多种形式。
通过对资金时间价值的计算,可以帮助决策者合理评估和选择不同投资项目,并做出更明智的决策。
资金的时间价值是财务管理中的重要概念,它涉及到资金的效用、时间因素和货币的时间价值等多个方面。
3.资金的时间价值

~
0 1 23
t
n
A
(F/A,i,n)称作年金终值系数。
31
二、资金等值计算
F A(1 i)n1 A(1 i)n2 A(1 i) A
两边乘以(1 i)得
F (1 i) A(1 i)n A(1 i)n1 A(1 i)2 A(1 i)
同一数量的资金,在不同时间内,将具有 不同等的价值; 不同等的两笔资金,在不同时间内,将有 可能具有相等的价值。 影响资金等值的因素有三个:资金额的大小、 资金发生的时间和资金时间价值率。
24
• 现值。现值是指资金现在的价值,是资金处于资 金运动起点时刻的价值,又称为“本金”,以符 号P表示。
本利和: F=P(1+ni)=100(1+5×0.1)=150(万元)
利 息:50万元 (2)复利法
本利和 F=P(1+i)n =100(1+0.1)5 =161.05(万元)
利 息:61.05万元
16
我国银行对储蓄存款利息是按单利计算的。
整存整取
三个月 1.71% 半年 1.98% 一年 2.25% 二年 2.79% 三年 3.33% 五年 3.60%
• 终值。终值是现值在未来时点上的等值资金。相 对现值而言,终值又称为将来值、本利和,以符 号F表示。
• 等年值。等年值是指分期等额收付的资金值。由 于各期间隔通常为一年,且各年金额相等,故又 称为年金。以符号A表示。
• 贴现与贴现率。把终值换算为现值的过程叫贴现 或折现。贴现时所用的利率称为贴现率或折现率。
36
例 在银行中存一笔钱,可以使你在 今后的10年中每年收到20000元,你应 该存多少钱?(利率为8%)
资金的时间价值计算总结

资金的时间价值计算总结张攀峰一。
、资金时间价值的含义资金时间价值是指一定量资金在不同时点上价值量的差额,也称为时间的货币价值现值:(present value ) 终值:(future value )(一) 单利终值和现值的计算单利是指只对本金计算利息,通常用P 表示现值,F 表示终值,i 表示利率(贴现率、折现率),n 表示计算利息的期数,I 表示利息。
1.单利的利息 I=P ·i ·n2.单利的终值F=P(1+i ·n) 3.单利的现值 )n · 1(i F P += (二)复利终值和现值的计算复利是指不仅对本金要利息,而且对本金所生的利息也要计息,即“利滚利”。
1. 复利终值的计算复利的终值是指一定量的本金按复利计算的若干年后的本利和。
复利终值的计算公式为n )i 1(+=P F式中n i 1)(+称为“复利终值系数”,用符号(F/P ,i ,n )表示。
(附表一)2. 复利现值的计算复利现值是指在将来某一特定时间取得或支出一定数额的资金,按复利折算到现在的价值。
复利现值计算的公式为n )i 1(+=FP式中的n i 1)(+称为“复利现值系数”,用符号(P/F ,i ,n )表示。
(附表二)3. 复利利息的计算I=F-P4. 名义利率和实际利率名义利率:r实际利率:i名义利率转化为实际利率计算公式 1)1(i -+=m m r 三、年金终值和现值年金(Annuity )是指一定时期内,每隔相同的时间,收入或支出相同的金额的系列款项。
例如折旧、租金、等额分期付款、养老金、保险费、零存整取等都是年金的问题。
(一) 普通年金(或后付年金)普通年金是指在每期期末,间隔相等时间,收入或支出相等金额的系列款项。
1. 普通年金终值(已知年金A ,求年金终值A F )普通年金终值是指每期期末收入或支出的相等款项,按复利计算,在最后一期所得的本利和。
每期期末收入或支出的款项用A 表示,利率用i 表示,期数用n 表示。
【附】资金的时间价值

P=A1[1P=A1[1-(1+K)n(1+i) -n]/i (I-H) (I(I><K) P=NA1/(1+I) (I=K)
(2)复利现值公式
经济含义:若已知在第N年末需要一笔资金 经济含义:若已知在第N F,年利率为I,问现在应向银行存入多少钱 年利率为I,问现在应向银行存入多少钱 才能满足将来的需要? 才能满足将来的需要? 公式: 公式:P=F(1+i) -n 复利现值系数符号: F,I,n) 复利现值系数符号: ( P / F,I,n) 现金流量图: 现金流量图: 例题
(3)年金终值公式
经济含义:假如从第一个计息周期的期末开始, 经济含义:假如从第一个计息周期的期末开始, 以后各个计息周期期末都向银行存入一笔钱A 以后各个计息周期期末都向银行存入一笔钱A, 年利率为I 到第n个周期期末时一次取出, 年利率为I,到第n个周期期末时一次取出,问能 够取出多少钱来? 够取出多少钱来? 公式: 公式: F=A[(1+i) n –1]/i (1+i) 年金终值系数符号: A,I,n) 年金终值系数符号: ( F / A,I,n) 现金流量图的绘制 例题
A1,g ; p A1,
8
等比序列现值公式
A1,k ; p A1,
[1-(1+K)n(1+i) -n]/i (I-H) [1(I-
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
300 i=6%
ห้องสมุดไป่ตู้478.20 i=6%
0 1 2 34 5 6 7 8 年 0 1 2 34 5 6 7 8 年
同一利率下不同时间的货币等值
货币等值是考虑了货币的时间价值 即使金额相等,由于发生的时间不同,其价值并 不一定相等 反之,不同时间上发生的金额不等,其货币的价值 却可能相等
货币的等值包括三个因素
金额 金额发生的时间 利率
2.几个概念
➢折现(贴现):把将来某一时点上的资金金额换 算成现在时点的等值金额的过程 ➢现值:折现到计算基准时点的资金金额 ➢终值:与现值相等的将来某一时点上的资金金额 ➢折现率:折现时的计算利率
第四节 现金流量的概念
一、基本概念
1.现金流出:对一个系统而言,凡在某一时点上 流出系统的资金或货币量,如投资、费用等。 2.现金流入:对一个系统而言,凡在某一时点上 流入系统的资金或货币量,如销售收入等。 3.净现金流量 = 现金流入 - 现金流出 4.现金流量:各个时点上实际的资金流出或资金 流入(现金流入、现金流出及净现金流量的统称)
4
1300
单利年末计息
1000×10%=100 1000×10%= 100 1000×10%= 100 1000×10%= 100
年末本利和 年末偿还
1100 1200 1300 1400
0 0 0 1400
使用期 年初款额
复利年末计息
年末本利和 年末偿还
1
1000
1000×10%=100
1100
0
5.等额分付现值公式
A (已知)
…
0
1
2
3 n –1 n
P=?
P
A
(1 i)n i(1 i)n
1
A(P
/
A, i,
n)
根据
F = P(1+i)n
(1+i)n -1
F =A [ i
]
P(1+i)n
=A
[
(1+i)n i
-1
]
P
A
(1 i)n i(1 i)n
1
A(P
/
A, i,
n)
例1:15年中每年年末应为设备支付维修费800元, 若年利率为6%,现在应存入银行多少钱,才能满足 每年有800元的维修费?
实现 G —— 等差额(或梯度),含义是当各期的支出或收入
是均匀递增或均匀递减时,相临两期资金支出或 收入的差额
类型
一次支付类型计算公式 等额支付类型计算公式
1.整付终值公式
01
2
P (已知)
…
3 n –1
F=? n
F = P(1+i)n = P(F/P,i,n)
整付终值利率系数
公式的推导
年份 1 2
年初本金P P
P(1+i)
当年利息I P·i
P(1+i) ·i
年末本利和F P(1+i) P(1+i)2
… … … …
n-1 n
P(1+i)n-2 P(1+i)n-1
P(1+i)n-2 ·i P(1+i)n-1 ·i
P(1+i)n-1 P(1+i)n
例:在第一年年初,以年利率10%投资1000万元, 则到第4年年末可得本利和多少?
5
6
0
100 700 700 700 700
现金流出
600 200 200 200 200 200
净现金流量 -600 -100 500 500 500 500
现金流量图的说明
➢横轴是时间轴,每个间隔表示一个时间单位,点称为时点,标注时间序 号的时点通常是该时间序号所表示的年份的年末。 ➢纵轴表示现金流量,箭头向上表示现金流入,向下表示现金流出,长短 与现金流量绝对值的大小成比例,箭头处一般应标明金额。 ➢一般情况,时间单位为年,假设投资发生在年初,销售收入、经营成本 及残值回收等均发生在年末。
3000 23
3000
3000
4
5
6
哪个方案好?
方案E 方案F
200 200 200
300
0
1
2
34
400
300
200 200
100
0
1
2
3
4
400
货币的支出和收入的经济效应不仅与货币量的 大小有关,而且与发生的时间有关。由于货币的 时间价值的存在,使不同时间上发生的现金流量 无法直接加以比较,这就使方案的经济评价变得 比较复杂了。
F (已知) n
1
P
F
(1
i)n
F
(P
/
F , i,
n)
1/(1+i)n —— 整付现值利率系数
例1:若年利率为10%,如要在第4年年末得到的 本利和为1464.1万元,则第一年年初的投资为多少?
解:
P
F
(1
1 i)n
1464.1
1
110%4
1464.1 0.6830
1000(万元)
F=?
i=10%
0
1
2
3 4年
1000
F=P(1+i)n =1000 (1+10%)4
= 1464.1万元
可查表 或计算
1.整付终值计算公式总结
已知期初投资为P,利率为i,求第n年末 收回本利F。
F P1 in
1 in 称为整付终值系数,记为 F / P,i, n
2.整付现值公式
0
1
P =?
2 3 … n –1
资金在单位时间内产生的增值(利润或 利息)与投入的资金额(本金)之比, 简称为“利率”或“收益率”,它是衡 量资金时间价值的相对尺度,记作i
1.利息(In) ➢占用资金所付出的代价(或放弃资金使用权所 获得的补偿)
2.利率(i) ➢一个记息周期内所得利息额与本金的比率
➢利率 i I 1 100% p
现金流入
200 200
01
2
现金流出
400
300 200
3
4
时间
注意
第一年年末的时刻点同时也表示第二年年初 立脚点不同,画法刚好相反
第三章 复利计算
复利折算公式 几种特殊的复利折算公式 名义利率、实际利率和连续复利 复利表及其应用
复利计息利息公式
符号定义: i —— 利率 n —— 计息期数 P —— 现在值,本金 F —— 将来值、本利和 A —— n次等额支付系列中的一次支付,在各计息期末
资金的时间价值
概念: 不同时间发生的等额资金在价值上 的差别称为资金的时间价值。
可从两方面理解:
随时间的推移,其数额会增加,叫资金的增值。 资金一旦用于投资,就不能用于消费。从消费
者角度看,资金的时间价值体现为放弃现期消 费的损失所得到的必要补偿。
影响资金时间价值的主要因素
资金的使用时间 资金增值率一定,时间越长,时间价值越大 资金数量的大小 其他条件不变,资金数量越大,时间价值越大 资金投入和回收的特点 总投资一定,前期投入越多,资金负效益越大; 资金回收额一定,较早回收越多,时间价值越大 资金的周转速度 越快,一定时间内等量资金的时间价值越大
2-3资金的时间价值-复利计算
年末 0 1 2 3 4
你选哪个
方案?
A方案 -10000 +7000 +5000 +3000 +1000
单位:元
B方案 -10000 +1000 +3000 +5000 +7000
你又选哪个
方案?
3000
3000
3000
0
方案C
1
2
3
4
5
6
6000
0
1
方案D
3000 3000
解:
10% A 150( A / F,10%,5) 150 (110%)5 1 150 0.1638 24.57(万元)
4.等额分付偿债基金公式总结
已知一个技术方案或投资项目在第n年末
收回本利F,设利率为i,求每一个计息期 期末均支付相同的数额为A 。
A
F
1
i
i n
1
i
1 in 1 称为等额分付偿债基金公式系数,记为 A/F,i,n
2 10.380 20.76万元
5.等额分付现值计算公式总结
已知一个技术方案或投资项目在n年内每 年末均获得相同数额的收益为A ,设利 率为i,求期初需要的投资额P 。
解:
(1 6%)15 1
P
800(P
/
A,6%,15)
800
6% (1
6%)15
800 9.7122 7769.7( 6 元)
例2:某人贷款买房,预计他每年能还贷2 万元,打算15年还清,假设银行的按揭年 利率为5%,其现在最多能贷款多少?
P
A1i1
i n
i
n
1
2 P / A,5%,15
(1)
乘以(1+i)
F(1+i)= A(1+i)+A(1+i)2+…+A(1+i)n-1 +A(1+i)n (2)
(2) -(1)
F(1+i) –F= A(1+i)n – A
F
A
(1
i)n i
1
A(F
/
A, i,
n)
❖等额分付系列公式应用条件
1.每期支付金额相同,均为A;