实验四码型变换实验

合集下载

[信息与通信]通信原理实验AMIHDB3CMI码型变换波形图

[信息与通信]通信原理实验AMIHDB3CMI码型变换波形图
实验步骤:
1. 将KX01拔去,使CMI编码输入数据悬空(全0码)。测 量TPX05,输出数据为01码,说明具有丰富的时钟信息。 2. 测量CMI译码输出数据是否与发端一致。 3. 观测译码同步信号。
返回
CMI码编码规则测试
7位m序列
15位m序列
返回
1码状态记忆测量
7位m序列,1码是00/11编码,而0码 不编码跟在1码后保持1码的状态
7. 抗连0码性能测试
CMI码编码规则测试
实验步骤:
1. 观测TPX01和TPX05,用TPX01同步,分析编码 输出数据是否与编码理论一致。 2.将KX02设置在1_2位置,重复上一步骤测量。
返回
1码状态记忆测量
实验步骤:
1. 观测TPX01和1码状态记忆输出TPX03,用TPX01 同步,根据观测结果,分析是否符合相互关系。
第四部分 码型变换技术
实验一 AMI/HDB3码型变换实验 实验二 CMI码型变换实验
返回
实验一 AMI/HDB3码型变换实验
实验目的:
1.了解二进制单极性码变换为 AMI/HDB3码的编码规则
2.熟悉HDB3码的基本特征; 3.熟悉HDB3码的编译码器工作
原理和实现方法; 4.根据测量和分析结果,画出电
15位m序列,1码是00/11编码,而0码 不编码跟在1码后保持1码的状态
返回
CMI码解码波形测试
7位m序列,输入数据与解码数据除时延外一一对应
返回
CMI码编码加错波形观测
加错时的译码输出数据与不加错时不同
返回
CMI码检错功能测试
KX01放在Dt时,TPX06与TPY05
KX01设置在M位置,TPY05无错指示

通原实验1-码型变换

通原实验1-码型变换

厚德博学 追求卓越
双极性BRZ 信号的功率谱
数字信号序列: BRZ
Px(ω)
+E
0
1 0 1 0 0 1 1 0
双极性归零(BRZ)码的功率谱
0
1/t
-E
f
双极性BRZ信号的功率谱如图所示。可以看出
1)双极性BRZ信号的功率谱,只有连续谱,不含任何离散分量。当然,不 含可用于提取同步信息的fb分量。 2)双极性 RZ 信号的功率谱的带宽同于单极性 RZ 信号,为
+E 性码。
0
特点:
1.发送能量大,有利于提高接收端的信噪比. 2.在信道上占用的频带较窄.
3.存在直流成份,将导致信号的失真,无法使用交流耦合的线路和设备 4.不能直接提取位同步信号; 5.接收NRZ码的判决电平应取”1”码的一半,由于信道衰减或特性随各种因 素变化时,接收端波形的振幅和宽度容易变化,因而判决门限不够稳定在最 佳电平,使抗噪性能变坏. 厚德博学 追求卓越
例如:
+E
0 电平
1
0
1
0
0
1
0
1
0
0
RZ码与NRZ码相比,除仍具有单极性码的一般特点外,主 要优点是可以直接提取同步信号,但不意味可以作为线路传 输码使用,它可以为其它码型提取同步信号时,而作为一个 过渡码形应用. 厚德博学 追求卓越
单极性归零码 RZ 信号的功率谱
数字信号序列:
Px(ω)
1 0 1 0 0 1 1 0
(3)对信道特性变化不敏感;
(4)可在电缆等无接地线上传输。
厚德博学 追求卓越
双极性非归零码 BNRZ 信号的功率谱
数字信号序列: BNRZ +E -E

实验-CMI码型变换实验

实验-CMI码型变换实验

实验-CMI码型变换实验实验CMI码型变换实验一、实验原理和电路说明在实际的基带传输系统中,并不是所有码字都能在信道中传输。

例如,含有丰富直流和低频成分的基带信号就不适宜在信道中传输,因为它有可能造成信号严重畸变。

同时,一般基带传输系统都从接收到的基带信号流中提取收定时信号,而收定时信号却又依赖于传输的码型,如果码型出现长时间的连“0”或连“1”符号,则基带信号可能会长时间的出现0电位,从而使收定时恢复系统难以保证收定时信号的准确性。

实际的基带传输系统还可能提出其他要求,因而对基带信号也存在各种可能的要求。

归纳起来,对传输用的基带信号的主要要求有两点:1、对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型;2、对所选码型的电波波形要求,期望电波波形适宜于在信道中传输。

前一问题称为传输码型的选择;后一问题称为基带脉冲的选择。

这是两个既有独立性又有互相联系的问题,也是基带传输原理中十分重要的两个问题。

传输码(传输码又称为线路码)的结构将取决于实际信道特性和系统工作的条件。

在较为复杂的基带传输系统中,传输码的结构应具有下列主要特性:1、能从其相应的基带信号中获取定时信息;2、相应的基带信号无直流成分和只有很小的低频成分;3、不受信息源统计特性的影响,即能适应于信息源的变化;4、尽可能地提高传输码型的传输效率;5、具有内在的检错能力,等等。

满足或部分满足以上特性的传输码型种类繁多,主要有:CMI码、AMI、HDB3等等,下面将主要介绍CMI码。

根据CCITT建议,在程控数字交换机中CMI 码一般作为PCM四次群数字中继接口的码型。

在CMI码模块中,完成CMI的编码与解码功能。

CMI编码规则见表4.2.1所示:表4.2.1 CMI的编码规则输入码字编码结果0 011 00/11交替表示因而在CMI编码中,输入码字0直接输出01码型,较为简单。

对于输入为1的码字,其输出CMI码字存在两种结果00或11码,因而对输入1的状态必须记忆。

通信原理实验报告实验四-时分复用数字基带通信系统

通信原理实验报告实验四-时分复用数字基带通信系统

实验四时分复用数字基带通信系统电子二班 044 陈增贤一、实验目的1.掌握时分复用数字基带通信系统的基本原理及数字信号传输过程。

2.掌握位同步信号抖动、帧同步信号错位对数字信号传输的影响。

3.掌握位同步信号、帧同步信号在数字分接中的作用。

二、实验内容1.用数字信源模块、数字终端模块、位同步模块及帧同步模块连成一个理想信道时分复用数字基带通信系统,使系统正常工作。

2.观察位同步信号抖动对数字信号传输的影响。

3.观察帧同步信号错位对数字信号传输的影响。

4.用示波器观察分接后的数据信号、用于数据分接的帧同步信号、位同步信号。

三、基本原理本实验要使用数字终端模块。

1. 数字终端模块工作原理:原理框图如图4-1所示,电原理图如图4-2所示(见附录)。

它输入单极性非归零信号、位同步信号和帧同步信号,把两路数据信号从时分复用信号中分离出来,输出两路串行数据信号和两个8位的并行数据信号。

两个并行信号驱动16个发光二极管,左边8个发光二极管显示第一路数据,右边8个发光二极管显示第二路数据,二极管亮状态表示“1”,熄灭状态表示“0”。

两个串行数据信号码速率为数字源输出信号码速率的1/3。

延迟1延迟2整形延迟3FS-INBS-INS-INFD FD-7FD-15FD-8FD-16BD显示串/并变换串/并变换F2÷3并/串变换并/串变换D2B1F1D1SD-DBD显示B2图4-1 数字终端原理方框图延迟1、延迟2、延迟3、整形及÷3等5个单元可使串/并变换器和并/串变换器的输入信号SD 、位同步信号及帧同步信号满足正确的相位关系,如图4-3所示。

移位寄存器40174把FD 延迟7、8、15、16个码元周期,得到FD-7、FD-15、FD-8(即F1)和FD-16(即F2)等4个帧同步信号。

在FD-7及BD 的作用下,U65(4094)将第一路串行信号变成第一路8位并行信号,在FD-15和BD 作用下,U70(4094)将第二路串行信号变成第二路8位并行信号。

码型变换实验

码型变换实验

通信原理实验码型变换实验一、实验目的1.了解几种常用的数字基带信号.2.掌握常用数字基带传输码型的编码规则.3.掌握常用CPLD实现码型变换的方法.二、实验内容1.观察NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、HDB2.观察全0码或全1码时各码型波形。

3.观察HDB3码、AMI码、BNRZ码正、负极性波形。

4.观察NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、HDB3码、BPH码经过码型反变换后的输出波形。

5.自行设计码型变换电路,下载并观察输出波形。

三、实验器材1.信号源模块2.码型变换模块3.20M双踪示波器一台4.频率计(可选)一台5.连接线若干四、实验步骤1.将信号源模块、码型变换模块小心地固定在主机箱中,确保电源接触良好。

2.插上电源线,打开主机箱右侧的交流开关,再分别桉下两个模块中的开关POWER1、POWER2,对应的发光二极管LED001、LED002、D900、D901发光,按一下信号源模块的复位键,两个模块均开始工作。

3.将信号源模块的拨码开关SW101、SW102设置为00000101 00000000,SW103、SW104 、SW105 设置为01110010 00110000 00101010。

按实验一的介绍,此时分频比千位、十位、个位均为0,百位为5,因此分频比为500,此时位同步信号频率应为4KHz。

观察BS、FS、2BS、NRZ各点波形。

4.分别将信号源模块和码型变换模块上以下四组输入/输出接点用连接线连接:BS与BS、FS与FS、2BS与2BS、NRZ与NRZ。

观察码型变换模块上其余各点波形。

5.任意改变信号源模块上的拨码开关SW103、SW104、SW105的设置,以信号源模块的NRZ码为内触发源,用双踪示波器观察码型变换模块各点波形。

6.将信号源模块上的拨码开关SW103、SW104、SW10全部拨为1或全部拨为0,观察码型变换模块各点波形。

CMI码型变换实验实验报告_图文

CMI码型变换实验实验报告_图文

CMI码型变换实验实验报告_图文本科实验报告实验名称, CMI码型变换实验课程名称, 实验时间, 任课教师, 实验地点,原理验证实验教师,综合设计实验类型, 学生姓名,自主创新学号/班级, 组号,学院, 同组搭档, 专业, 成绩,1. CMI码编码规则测试(1)用示波器同时观测CMI编码器输入数据,TPX01,和输出编码数据,TPX05,。

观测时用TPX01同步,仔细调整示波器同步。

找出并画下一个m序列周期输入数据和对应编码输出数据波形。

根据观测结果,分析编码输出数据是否与编码理论一致。

(实验结果如图,(2)(实验结果如图,2. 1码状态记忆测量(1) 用KX02设置输出周期为15位的序列,用示波器同时观测CMI编码器输入数据,TPX01,和1码状态记忆输出,TPX03,。

观测时用TPX01同步,仔细调整示波器同步。

画下一个m序列周期输入数据和对应1码状态记忆输出数据波形。

根据观测结果,分析是否符合相互关系。

(实验结果如图,(2)将KX02设置在其他位置,重复上述测量。

画下测量波形,分析测量结果。

(实验结果如图,3. CMI码解码波形测试用示波器同时观测CMI编码器输入数据,TPX01,和CMI解码器输出数据,TPY07,。

观测时用TPX01同步。

验证CMI译码器能否正常译码,两者波形除时延外应一一对应。

(实验结果如图,4. CMI码编码加错波形观测跳线开关KX03是加错控制开关,当KX03设置在E_EN位置时,左端,,将在输出编码数据流中每隔一定时间插入1个错码。

TPX06是发端加错指示测试点,用示波器同时观测加错指示点TPX06和输出编码数据TPX05的波形,观测时用TPX06同步。

画下有错码时的输出编码数据,并分析接收端CMI译码器可否检测出。

(实验结果如图,5. CMI码检错功能测试首先将输入信号选择跳线开关KX01设置在Dt位置,左端,,将加错跳线开关KX03设置在E_EN位置,人为插入错码,模拟数据经信道传输误码。

实验四:HDB3码型变换实验

实验四:HDB3码型变换实验

实验四:HDB3码型变换实验
五、实验内容
(一)电源检查
1、使用万用表检测实验箱的电源接入点和GND之间
是否有短路现象,如果有则禁止继续实验。

2、调出二组电源,分别为+7V,-7V
注意:①调完后一定要用万用表确定三组电源的电压极性和电压值正确;
②在连接实验箱和电源时务必关掉电源开关。

(二)为了调测电路方便,实验箱提供了一个时钟源和标准信号源电路(见图5.5)。

图5.5包括了一个主振发生器、1000码发生器和32位PN码序列发生器。

实验者可自己分析工作原理,画出波形,在实验过程中与实际信号波形相比较。

1、测试(2)点的时钟脉冲信号,并记录该波形。

2、将HDB3编码输入端加入“1”码,在12点观测此
时的编码输出,并画出其波形。

3、将HDB3编码输入端加入“0”码,在12点观测此
时的编码输出,并画出其波形。

4、将HDB3编码输入端加入“1000”码,画出1000码
的波形;在12点观测此时的编码输出,并画出其
波形。

5、将HDB3编码输入端加入M序列,画出M序列的波
形(一个周期);在12点观测此时的编码输出,并画出其波形。

6、将HDB3编码输入端加入“1000”码,用连接线连接HDB3的编码输出和译码输入(12点和A点)。

观测HDB3码译码过程,详细记录译码过程中各点波形。

并比较最后的译码输出(L点)和输入信码(1点)。

实验一CMI、PN码型变换实验

实验一CMI、PN码型变换实验

实验一CMI、PN码型变换实验一、实验目的1.熟悉光纤通信传输实验系统中信号发生器的组成原理、光发送端信号产生的方法。

2.了解单片机在光纤通信传输系统中的应用以及该单元电路对整个光纤实验系统的管理与控制过程。

3.掌握伪随机码(PN)发生器的工作原理和实验方法。

4.了解光纤通信采用的线路码型。

5.掌握传号烦转码(CMI)的特点,并了解其编码方法。

6.熟悉示波器的使用。

二、实验仪器1.光纤通信传输系统实验箱一台2.20MHz示波器一台三、实验内容与步骤1.连接电源线,按下电路分路开关PA、PB。

发光二极管D1、D2、D3、D4亮,表明实验箱上±5V 和±12V电源工作正常;2.按下“复位”键,使系统处于复位状态。

此时发光二极管D5~D12依次循环点亮,表明实验系统中的中央处理器电路进入正常工作状态;3.用示波器测出图中各测试点(TP101、TP102、TP103、TP104)以及测试点(89C51的主时钟TP1、89C51的地址锁存信号TP2)的波形;4.按下“PN”键,再按“确认”键,PN码对应的发光二极管D8闪烁,表示系统工作于PN码状态;5.用示波器测出图中各测试点(TP109、TP110)的波形,并做纪录;6.按下“复位”键,使系统处于复位状态。

按下“CMI”键,再按“确认”键,CMI码对应的发光二极管D7闪烁,表示系统工作于CMI码状态;7.用示波器测出图中各测试点(TP109、TP110、TP111、TP112、TP113、TP114、TP115)的波形,并做纪录。

四、实验报告要求1.分析伪随机码发生器的工作原理。

2.分析CMI码编码电路的工作原理。

3.比较CLK时钟、PN码、CMI码的波形,并对波形加以分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

④BRZ码 BRZ码的全称是双极性归零码,与BNRZ码不同的是,发送“1”和“0”时, 在整个码元期间高电平或低电平只持续一段时间,在码元的其余时间内则返回 到零电平。例如: 1 0 1 0 0 1 1 0
+E 0 -E
ห้องสมุดไป่ตู้ 4.3、AMI编码规则
⑤ AMI码 AMI码的全称是传号交替反转码,其编码规则如下:信息码中的“0”仍变换 为传输码的“0”;信息码中的“1”交替变换为传输码的“+1、-1、+1、- 1、…”。例如:
⑧ CMI码 CMI码的全称是传号反转码,其编码规则如下:信息码中的“1”码交替用 “11”和“00”表示,“0”码用“01”表示。例如:
代码:
1
1
0
1
0
0
1
0
CMI码: 11 00 01 11 01 01 00 01
这种码型有较多的电平跃变,因此,含有丰富的定时信息。该码已被ITUT推荐为PCM四次群的接口码型。在光纤传输系统中有时也用CMI码作线路传 输码型。
代码:
1
1
0
0
1
0
1
双相码: 10 10 01 01 10 01 10
BPH码可以用单极性非归零码(NRZ)与位同步信号的模二和来产生。 双相码的特点是只使用两个电平,而不像前面二种码具有三个电平。这种码 既能提取足够的定时分量,又无直流漂移,编码过程简单。但这种码的带宽 要宽些。
4.6、CMI编码规则
4.4、HDB3编码规则
⑥ HDB3码 HDB3码的全称是三阶高密度双极性码,其编码规则如下:将 4 个连“0 ”信息 码用取代节“000V”或“B00V”代替,当两个相邻“V”码中间有奇数个信息“1” 码 时 取 代 节 为 “ 0 0 0 V”; 有 偶 数 个 信 息 “ 1 ” 码 ( 包 括 0 个 ) 时 取 代 节 为 “ B00V”,其它的信息“ 0”码仍为“ 0 ”码,这样,信息码的“ 1 ”码变为带 有符号的“1”码即“+1”或“-1”。例如:
代码: 1000 0 1000 0 1 1 000 0 1 1
HDB3码: -1000 -V +1000 +V -1 +1 -B00 -V +1 -1
HDB3码中“1”、“B”的符号符合交替反转原则,而“V”的符号破坏这 种符号交替反转原则,但相邻“V”码的符号又是交替反转的。HDB3码的特点 是明显的,它除了保持AMI码的优点外,还增加了使连0串减少到至多3个的 优点,而不管信息源的统计特性如何。这对于定时信号的恢复是十分有利的。 HDB3码是ITU-T推荐使用的码之一。本实验电路只能对码长为24位的周期性 NRZ码序列进行编码。
4.5、BPH编码规则
⑦BPH码 BPH 码 的 全 称 是 数 字 双 相 码 ( Digital Diphase), 又 叫 分 相 码 ( Biphase, Split-phase)或曼彻斯特码(Manchester),它是对每个二进制代码分别利用 两个具有两个不同相位的二进制新码去取代的码;或者可以理解为用一个周期 的方波表示“1”码,用该方波的反相来表示“0”码,其编码规则之一是: 0 01(零相位的一个周期的方波); 1 10(π 相位的一个周期的方波)。例如:
4.1、NRZ/RZ编码规则
①NRZ码 NRZ码的全称是单极性不归零码,在这种二元码中用高电平和低电平(这里为零 电平)分别表示二进制信息“1”和“0”,在整个码元期间电平保持不变。例 如: 1 0 1 0 0 1 1 0
+E 0
②RZ码 RZ码的全称是单极性归零码,与NRZ码不同的是,发送“1”时在整个码元期间 高电平只持续一段时间,在码元的其余时间内则返回到零电平。例如:
实验四
码型变换实验
一、实验目的
1、了解几种常见的数字基带信号。 2、掌握常用数字基带传输码型的编码规则。 3、掌握用CPLD/FPGA实现码型变换的方法。
二、实验内容
1、观察NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、 HDB3码、BPH码的波形。
2、观察全0码或全1码时各码型的波形。
3、观察HDB3码、AMI码、BNRZ码的正、负极性波形。 4、观察NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、 HDB3码、BPH码经过码型反变换后的输出波形。 5、自行设计码型变换电路,下载并观察输出波形。
三、实验器材
1、码型变换模块 2、信号源模块 3、 20M双踪示波器 4、频率计(可选) 5、PC机(可选) 6、连接线 1块 1块 1台 1台 1台 若干
4.7、NRZ电路原理
将信号源产生的NRZ码和位同步信号BS送入U900(EPM7128SLC84-15)进行 变换,可以直接得到各种单极性码和各种双极性码的正、负极性编码信号 (因为FPGA的I/O口不能直接接负电平,所以只能将分别代表正极性和负极 性的两路编码信号分别输出,再通过外加电路合成双极性码),如HDB3的正、 负极性编码信号送入U901(4051)的选通控制端,控制模拟开关轮流选通正、 负电平,从而得到完整的HDB3码。解码时同样也需要先将双极性的 HDB3码变 换成分别代表正极性和负极性的两路信号,再送入FPGA进行解码,得到NRZ 码。其它双极性码的编、解码过程相同。 ①NRZ码 从信号源“NRZ”点输出的数字码型即为NRZ码,其产生过程请参考信号源 工作原理。
代码: 100 1 1000 1 1 1…
AMI码: +100 -1 +1000 -1 +1 -1…
AMI码的主要特点是无直流成分,接收端收到的码元极性与发送端完 全相反也能正确判断。译码时只需把AMI码经过全波整流就可以变为单极 性码。由于其具有上述优点,因此得到了广泛应用。但该码有一个重要缺 点,即当用它来获取定时信息时,由于它可能出现长的连0串,因而会造成 提取定时信号的困难。
+E 0 1 0 1 0 0 1 1 0
4.2、BNRZ/BRZ编码规则
③BNRZ码 BNRZ码的全称是双极性不归零码,在这种二元码中用正电平和负电平分别表 示“1”和“0”。与单极性不归零码相同的是整个码元期间电平保持不变,因 而在这种码型中不存在零电平。例如:
1 +E 0 -E 0 1 0 0 1 1 0
四、实验原理
编码规则: 4.1、NRZ/RZ编码规则 4.2、BNRZ/BRZ编码规则 4.3、AMI编码规则 4.4、HDB3编码规则 4.5、BPH编码规则 4.6、CMI编码规则 电路原理: 4.7、NRZ电路原理 4.8、BRZ/BNRZ电路原理 4.9、RZ/BPH/AMI电路原理 4.10、HDB3编码电路原理 4.11、HDB3解码电路原理 4.12、CMI电路原理
相关文档
最新文档